Multiprocessor EDF and Deadline Monotonic Schedulability Analysis

Size: px
Start display at page:

Download "Multiprocessor EDF and Deadline Monotonic Schedulability Analysis"

Transcription

1 Multiprocessor EDF and Deadline Monotonic Schedulability Analysis Ted Baker Department of Computer Science Florida State University Tallahassee, FL baker

2 Overview 1. question schedulability with EDF and RM on SMP 2. key proof technique λ-busy interval 3. summary of results 4. relation to prior results

3 Dhall Effect with EDF/DM Scheduling on MP. τ 1 τ 2 τ m τ m+1 0 mx+1. τ 1 τ 2 τ m τ m+1 0 mx+1 This is only a problem when we have some tasks with very high local utilization.

4 This example shows worst-case achievable multiprocessor utilization can be as bad as 1, compared to ideal value of m. Until recently, it was used as an excuse for using partitioned scheduling on multiprocessors. However, the example depends on mixing tasks with extremely low and extremely high utilization (or ratio of compute time to deadline). Intuitively, we know we can achieve higher utilization when we have only smaller tasks. 3-1

5 Demand & Load demand of a time window = total work W that would need to be completed within the window for all the deadlines within the interval to be met load of window of length = W.

6 Schedulabity Test Based on Demand Analysis Step 1: Find a lower bound µ on the load of a window leading up to a deadline that is necessary for the deadline to be missed. Step 2: Find an upper bound β on the load of such a window that can be generated by a given task set. Step 3: If β µ the task set must be schedulable.

7 m1 Lower Bound on Load of a Problem Interval τ k is released τ k misses deadline m t t + m( x) x demand x m x, x ck load m c k

8 We call this a problem interval because it ends in a missed deadline. Since the problem job misses its deadline, the sum of the lengths of all the time intervals in which the problem job does not execute must exceed its slack time, c k. 6-1

9 Lower Bound on Load Lemma The load of the interval a missed deadline of τ k is t t W m dk 1 starting in a release of τ k and ending in c k c k

10 T i Upper Bound on Load d Ti i Ti di T i φ ε δ t t head body tail t + load ε d i 1 ci

11 The difficult part is bounding the amount of carried in work, i.e. work that is released, but not completed, before the start of the interval. If we bound this too grossly, e.g. by, we cannot get a useful result. 8-1

12 Carried-in Load Definition The carry-in of τ i at time t is the residual compute time of the last job of task τ i released before t, if any, and is denoted by the symbol ε. all m processors busy on other jobs of other tasks m y x ε φ t t t + Problem: What is the best possible upper bound on carry-in?

13 & (Mostly) Busy Interval Preceding a Missed Deadline single processor busy window: 1. demand of the interval = 100% 2. no demand is carried into the interval multiprocessor busy window: 1. demand of the interval m1!λ "$#λ 2. demand carried into the interval is bounded by c!φλ k 3. %ck λ

14 We start with the interval between a missed deadline and the corresponding release time, then extend it downward until any further extension would not be λ-busy. We call this the maximal λ-busy downward extension of a problem interval. This notion is the right generalization of busy window, for a multiprocessor. (We cannot expect 100% utilization.) 10-1

15 *., / + - ' ( Upper Bound on EDF Demand Lemma For any busy window t t) W i of τ i in the busy window is no greater than * of τk and any other task τi, the EDF demand n )max 0 ( ci,φλ where φ.nt i λ.c k, n d i 10 )di,, 2/Ti )1 if 3 di, and n.0 otherwise. T i T i T i T i φ Ti φ (n 1) T i δ =d i t t head body tail t +

16 The demand of a single task is the work that must be done by that task in the window for the deadline of the problem task to complete by its deadline. 11-1

17 9 ; : < > > > 9 87of τk the EDF load Wi Upper Bound on EDF Load Lemma For any busy window β i, where t t 6 due to τ i is at most β i i= T 1 T i= 1 T i d i T i d i λt i if λ if λ c k c k T i T i

18 This result is shown by applying the preceding bound on W i and choosing φ and n to maximize W i A. 12-1

19 F J K L C C EDF Schedulablity Test Theorem A set of periodic tasks τ 1BDC preemptive EDF scheduling if, for every task τ k, n E1 i min 1B β i where β i is as defined in the lemma above. B τn is schedulable on m processors using IGH m 1 c k c k

20 Q N N Utilization Bound Corollary A set of periodic tasks τ 1 and with deadline equal to period, is guaranteed to be schedulable on m processors MDN using preemptive EDF scheduling if n O1 i T i P m M τn with maximum individual utilization λ Rλ 1 S$Tλ This was previously shown by Goossens, Funk, Baruah, using a different proof. We have it as a consequence of the more general schedulability test, for the special case where deadline equals period. Goossens, Funk, Baruah showed that this is tight as a guaranteed utilization bound.

21 `_X Ti Y Z [ X U V Upper Bound on DM Demand Lemma For any busy window t tw of τ k and any task τ i, the DM demand W i of τ i in the busy window is no greater than n Ymax 0 V ci Yφλ λ\ where n\ c k_, ^] δ i W1, φ\nt i Wδi Y, δ\ci i if iak, and δi \\di if i k.

22 Essentially the same analysis, using the λ-busy window, can be applied to fixed-priority scheduling, including deadline monotonic. 15-1

23 Upper Bound on DM Demand (Pictures) T i Ti T i Ti d i... φ Ti φ (n 1) T i δ = t t head body tail t + T k T k T k T k c c c k k... c k k φ T k φ (n 1) T k δ = t t head body tail t +

24 There are two cases because (only) τ k must have its absolute deadline at the end of the interval. The other tasks can have absolute deadlines after that point, so long as their relative deadlines are b dk. 16-1

25 l m k i j f c d f e e h i n n m f o e i n Upper bound on DM load Lemma For any busy window at most t t e of τ k the DM load W i g due to τi, i hk, is β i T i T i 1 1 T i δ i T i δ i λt i if λ if λ c k c k T i T i where δ i ici for i hk, and δk idk.

26 u DM Schedulability Test Theorem A set of periodic tasks is schedulable on m processors using preemptive deadline-monotonic scheduling if, for every task τ k, kp1 β i q1 i m r s 1t where β i is as defined in the lemma above. c k

27 } } y x RM Utilization Bound A set of periodic tasks with maximum individual utilization λ and deadline equal to period, is guaranteed to be schedulable on m processors, m rate monotonic scheduling if n iw1 T i m 2 1zλ {$ λ v 2, using preemptive This improves on the result of Baruah and Goossens that a set of tasks, all with deadline equal to period, is guaranteed to be schedulable on m processors using RM scheduling if T for i~1 i D 3 n and n iw 1 T 3. i x 1 x m

28 ƒ Tightness of RM Utilization Bound There exist task sets with maximum individual task utilization λ that are not feasible with preemptive RM scheduling on m processors and have utilization arbitrarily close to λ mln 2 1 λ

29 We conjecture that this may be the actual guaranteed RM utilization bound, though we have not been able to prove it yet. 20-1

30 utilization bound lower bound upper bound λ m 25 30

31

32 ratio of upper to lower bound ratio λ m 25 30

33 The figures show how much of a gap there is between our lower bound on the minimum achievable RM utilization and our upper bound. The first is a direct plot of the upper and lower bounds. The second showns the ratio of the upper bound to the lower bound. 20-2

34 Other Papers on Global MP EDF and RM Schedulability 1. A. Srinivasan, S. Baruah, Deadline-based scheduling of periodic task systems on multiprocessors, Information Processing Letters 84 (2002) x 2. B. Andersson, S. Baruah and J. Jonsson, Static-priority scheduling on multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium London, England (December 2001). 3. B. Andersson and J. Jonsson, Fixed-priority preemptive multiprocessor scheduling: to partition or not to partition, Proceedings of the International Conference on Real-Time Computing Systems, Cheju Island, South Korea (December 2000). 4. S. Baruah and Joel Goossens, Rate-monotonic scheduling on uniform multiprocessors, UNC-CS TR02-025, University of North Carolina Department of Computer Science (May 2002).

35 5. S. Baruah, J. Gherke and C.G. Plaxton, Fast scheduling of periodic tasks on multiple resources, Proceedings of the 9th International Parallel Processing Symposium (April 1995) S. Funk, J. Goossens and S. Baruah, On-line scheduling on uniform multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium, IEEE Computer Society Press (December 2001). 7. J. Goossens, S. Funk and S. Baruah, Priority-driven scheduling of periodic task systems on multiprocessors, technical report UNC-CS TR01-024, University of North Carolina Computer Science Department, Real Time Systems, Kluwer, (to appear). 8. A. Srinivasan and S. Baruah, Deadline-based scheduling of periodic task systems on multiprocessors, Information Processing Letters 84 (2002) C.A. Phillips, C. Stein, E. Torng, J Wein, Optimal time-critical scheduling via resource augmentation, Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing (El Paso, Texas, 1997)

Rate-monotonic scheduling on uniform multiprocessors

Rate-monotonic scheduling on uniform multiprocessors Rate-monotonic scheduling on uniform multiprocessors Sanjoy K. Baruah The University of North Carolina at Chapel Hill Email: baruah@cs.unc.edu Joël Goossens Université Libre de Bruxelles Email: joel.goossens@ulb.ac.be

More information

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #14 Risat Pathan Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Implementation Multiprocessor scheduling -- Partitioned

More information

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling II: Global Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 28, June, 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 42 Global Scheduling We will only focus on identical

More information

Schedulability analysis of global Deadline-Monotonic scheduling

Schedulability analysis of global Deadline-Monotonic scheduling Schedulability analysis of global Deadline-Monotonic scheduling Sanjoy Baruah Abstract The multiprocessor Deadline-Monotonic (DM) scheduling of sporadic task systems is studied. A new sufficient schedulability

More information

Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors. Sanjoy K.

Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors. Sanjoy K. Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors Sanjoy K. Baruah Abstract In fixed-priority scheduling the priority of a job, once assigned,

More information

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Lecture Outline Scheduling periodic tasks The rate monotonic algorithm Definition Non-optimality Time-demand analysis...!2

More information

Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors

Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors Georg von der Brüggen, Jian-Jia Chen, Wen-Hung Huang Department of

More information

the currently active 1 job whose deadline parameter is the smallest, is an optimal scheduling algorithm in the sense that if a system can be scheduled

the currently active 1 job whose deadline parameter is the smallest, is an optimal scheduling algorithm in the sense that if a system can be scheduled Priority-driven scheduling of periodic task systems on multiprocessors Λ Joël Goossens Shelby Funk Sanjoy Baruah Abstract The scheduling of systems of periodic tasks upon multiprocessor platforms is considered.

More information

Multiprocessor Real-Time Scheduling Considering Concurrency and Urgency

Multiprocessor Real-Time Scheduling Considering Concurrency and Urgency Multiprocessor Real-Time Scheduling Considering Concurrency Urgency Jinkyu Lee, Arvind Easwaran, Insik Shin Insup Lee Dept. of Computer Science, KAIST, South Korea IPP-HURRAY! Research Group, Polytechnic

More information

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Jan Reineke Saarland University July 4, 2013 With thanks to Jian-Jia Chen! Jan Reineke July 4, 2013 1 / 58 Task Models and Scheduling

More information

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Moonju Park Ubiquitous Computing Lab., IBM Korea, Seoul, Korea mjupark@kr.ibm.com Abstract. This paper addresses the problem of

More information

The Partitioned Scheduling of Sporadic Tasks According to Static-Priorities

The Partitioned Scheduling of Sporadic Tasks According to Static-Priorities The Partitioned Scheduling of Sporadic Tasks According to Static-Priorities Nathan Fisher Sanjoy Baruah The University of North Carolina at Chapel Hill Department of Computer Science, CB-3175 Chapel Hill,

More information

Real-Time and Embedded Systems (M) Lecture 5

Real-Time and Embedded Systems (M) Lecture 5 Priority-driven Scheduling of Periodic Tasks (1) Real-Time and Embedded Systems (M) Lecture 5 Lecture Outline Assumptions Fixed-priority algorithms Rate monotonic Deadline monotonic Dynamic-priority algorithms

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-011-45 011 Multi-core Real-Time

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Noname manuscript No. (will be inserted by the editor) Multi-core Real-Time Scheduling for Generalized Parallel Task Models Abusayeed Saifullah Jing Li Kunal Agrawal Chenyang Lu Christopher Gill Received:

More information

Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4

Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4 Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4 Priority-driven Scheduling Assign priorities to jobs, based on their deadline or other timing constraint Make scheduling

More information

arxiv: v1 [cs.os] 21 May 2008

arxiv: v1 [cs.os] 21 May 2008 Integrating job parallelism in real-time scheduling theory Sébastien Collette Liliana Cucu Joël Goossens arxiv:0805.3237v1 [cs.os] 21 May 2008 Abstract We investigate the global scheduling of sporadic,

More information

this reason, analysts are often concerned with designing a system that will be guaranteed to meet all deadlines of a real-time instance while minimizi

this reason, analysts are often concerned with designing a system that will be guaranteed to meet all deadlines of a real-time instance while minimizi Energy minimization techniques for real-time scheduling on multiprocessor platforms Λ Shelby Funk y Joël Goossens z Sanjoy Baruah y October 1, 2001 Abstract The scheduling of systems of periodic tasks

More information

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor Tardiness ounds under Global EDF Scheduling on a Multiprocessor UmaMaheswari C. Devi and James H. Anderson Department of Computer Science The University of North Carolina at Chapel Hill Abstract This paper

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors

Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors Shinpei Kato and Nobuyuki Yamasaki Department of Information and Computer Science Keio University, Yokohama, Japan {shinpei,yamasaki}@ny.ics.keio.ac.jp

More information

EDF Feasibility and Hardware Accelerators

EDF Feasibility and Hardware Accelerators EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo, Waterloo, Canada, arrmorton@uwaterloo.ca Wayne M. Loucks University of Waterloo, Waterloo, Canada, wmloucks@pads.uwaterloo.ca

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems

The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems Abstract A polynomial-time algorithm is presented for partitioning a collection of sporadic tasks among the processors of an identical

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling Real-Time Systems Lecture 6 Dynamic Priority Scheduling Online scheduling with dynamic priorities: Earliest Deadline First scheduling CPU utilization bound Optimality and comparison with RM: Schedulability

More information

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling I: Partitioned Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 22/23, June, 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 47 Outline Introduction to Multiprocessor

More information

Tardiness Bounds under Global EDF Scheduling on a. Multiprocessor

Tardiness Bounds under Global EDF Scheduling on a. Multiprocessor Tardiness Bounds under Global EDF Scheduling on a Multiprocessor UmaMaheswari C. Devi and James H. Anderson Department of Computer Science The University of North Carolina at Chapel Hill Abstract We consider

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Improved Schedulability Analysis of EDF Scheduling on Reconfigurable Hardware Devices

Improved Schedulability Analysis of EDF Scheduling on Reconfigurable Hardware Devices Improved Schedulability Analysis of EDF Scheduling on Reconfigurable Hardware Devices Nan Guan 1, Zonghua Gu 2, Qingxu Deng 1, Weichen Liu 2 and Ge Yu 1 1 Dept of Computer Science and Engineering 2 Dept

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Marcus Völp, Hermann Härtig WS 2013/14 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed

More information

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous Kecheng Yang and James H. Anderson Department of Computer Science, University of North Carolina

More information

A New Task Model and Utilization Bound for Uniform Multiprocessors

A New Task Model and Utilization Bound for Uniform Multiprocessors A New Task Model and Utilization Bound for Uniform Multiprocessors Shelby Funk Department of Computer Science, The University of Georgia Email: shelby@cs.uga.edu Abstract This paper introduces a new model

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

Schedulability Analysis and Priority Assignment for Global Job-Level Fixed-Priority Multiprocessor Scheduling

Schedulability Analysis and Priority Assignment for Global Job-Level Fixed-Priority Multiprocessor Scheduling 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium Schedulability Analysis and Priority Assignment for Global Job-Level Fixed-Priority Multiprocessor Scheduling Hyoungbu Back,

More information

Real-time scheduling of sporadic task systems when the number of distinct task types is small

Real-time scheduling of sporadic task systems when the number of distinct task types is small Real-time scheduling of sporadic task systems when the number of distinct task types is small Sanjoy Baruah Nathan Fisher Abstract In some real-time application systems, there are only a few distinct kinds

More information

Task assignment in heterogeneous multiprocessor platforms

Task assignment in heterogeneous multiprocessor platforms Task assignment in heterogeneous multiprocessor platforms Sanjoy K. Baruah Shelby Funk The University of North Carolina Abstract In the partitioned approach to scheduling periodic tasks upon multiprocessors,

More information

Static priority scheduling

Static priority scheduling Static priority scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

New Slack-Monotonic Schedulability Analysis of Real-Time Tasks on Multiprocessors

New Slack-Monotonic Schedulability Analysis of Real-Time Tasks on Multiprocessors New Slack-Monotonic Schedulability Analysis of Real-Tie Tasks on Multiprocessors Risat Mahud Pathan and Jan Jonsson Chalers University of Technology SE-41 96, Göteborg, Sweden {risat, janjo}@chalers.se

More information

The Feasibility Analysis of Multiprocessor Real-Time Systems

The Feasibility Analysis of Multiprocessor Real-Time Systems The Feasibility Analysis of Multiprocessor Real-Time Systems Sanjoy Baruah Nathan Fisher The University of North Carolina at Chapel Hill Abstract The multiprocessor scheduling of collections of real-time

More information

EDF and RM Multiprocessor Scheduling Algorithms: Survey and Performance Evaluation

EDF and RM Multiprocessor Scheduling Algorithms: Survey and Performance Evaluation 1 EDF and RM Multiprocessor Scheduling Algorithms: Survey and Performance Evaluation Omar U. Pereira Zapata, Pedro Mejía Alvarez CINVESTAV-IPN, Sección de Computación Av. I.P.N. 258, Zacatenco, México,

More information

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption 12 Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption Jinkyu Lee, Department of Computer Science and Engineering, Sungkyunkwan University, South Korea. Kang G.

More information

Laxity dynamics and LLF schedulability analysis on multiprocessor platforms

Laxity dynamics and LLF schedulability analysis on multiprocessor platforms DOI 10.1007/s11241-012-9157-x Laxity dynamics and LLF schedulability analysis on multiprocessor platforms Jinkyu Lee Arvind Easwaran Insik Shin Springer Science+Business Media, LLC 2012 Abstract LLF Least

More information

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems Zhishan Guo and Sanjoy Baruah Department of Computer Science University of North Carolina at Chapel

More information

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol.

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol. Bounding the End-to-End Response imes of asks in a Distributed Real-ime System Using the Direct Synchronization Protocol Jun Sun Jane Liu Abstract In a distributed real-time system, a task may consist

More information

Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment

Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment C. Liu and J. Layland Journal of the ACM, 20(1):46--61, January 1973. 2 Contents 1. Introduction and Background 2. The Environment

More information

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Lecture Outline The rate monotonic algorithm (cont d) Maximum utilisation test The deadline monotonic algorithm The earliest

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

An Optimal Real-Time Scheduling Algorithm for Multiprocessors

An Optimal Real-Time Scheduling Algorithm for Multiprocessors An Optimal Real-Time Scheduling Algorithm for Multiprocessors Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen ECE Dept., Virginia Tech Blacksburg, VA 24061, USA {hjcho,binoy}@vt.edu The MITRE Corporation

More information

Real-time Systems: Scheduling Periodic Tasks

Real-time Systems: Scheduling Periodic Tasks Real-time Systems: Scheduling Periodic Tasks Advanced Operating Systems Lecture 15 This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of

More information

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors Technical Report No. 2009-7 Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors RISAT MAHMUD PATHAN JAN JONSSON Department of Computer Science and Engineering CHALMERS UNIVERSITY

More information

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES Department for Embedded Systems/Real-Time Systems, University of Ulm {name.surname}@informatik.uni-ulm.de Abstract:

More information

Predictability of Least Laxity First Scheduling Algorithm on Multiprocessor Real-Time Systems

Predictability of Least Laxity First Scheduling Algorithm on Multiprocessor Real-Time Systems Predictability of Least Laxity First Scheduling Algorithm on Multiprocessor Real-Time Systems Sangchul Han and Minkyu Park School of Computer Science and Engineering, Seoul National University, Seoul,

More information

Real-Time Scheduling and Resource Management

Real-Time Scheduling and Resource Management ARTIST2 Summer School 2008 in Europe Autrans (near Grenoble), France September 8-12, 2008 Real-Time Scheduling and Resource Management Lecturer: Giorgio Buttazzo Full Professor Scuola Superiore Sant Anna

More information

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas January 24, 2014

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas January 24, 2014 Paper Presentation Amo Guangmo Tong University of Taxes at Dallas gxt140030@utdallas.edu January 24, 2014 Amo Guangmo Tong (UTD) January 24, 2014 1 / 30 Overview 1 Tardiness Bounds under Global EDF Scheduling

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

On the Soft Real-Time Optimality of Global EDF on Uniform Multiprocessors

On the Soft Real-Time Optimality of Global EDF on Uniform Multiprocessors On the Soft Real-Time Optimality of Global EDF on Uniform Multiprocessors Kecheng Yang and James H Anderson Department of Computer Science, University of North Carolina at Chapel Hill Abstract It has long

More information

Contention-Free Executions for Real-Time Multiprocessor Scheduling

Contention-Free Executions for Real-Time Multiprocessor Scheduling Contention-Free Executions for Real-Time Multiprocessor Scheduling JINKYU LEE, University of Michigan ARVIND EASWARAN, Nanyang Technological University INSIK SHIN, KAIST A time slot is defined as contention-free

More information

Semi-Partitioned Scheduling of Sporadic Task Systems on Multiprocessors

Semi-Partitioned Scheduling of Sporadic Task Systems on Multiprocessors Semi-Partitioned Scheduling of Sporadic Task Systems on Multiprocessors Shinpei Kato, Nobuyuki Yamasaki, and Yutaka Ishikawa Department of Computer Science, The University of Tokyo, Tokyo, Japan Department

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

CPU SCHEDULING RONG ZHENG

CPU SCHEDULING RONG ZHENG CPU SCHEDULING RONG ZHENG OVERVIEW Why scheduling? Non-preemptive vs Preemptive policies FCFS, SJF, Round robin, multilevel queues with feedback, guaranteed scheduling 2 SHORT-TERM, MID-TERM, LONG- TERM

More information

2.1 Task and Scheduling Model. 2.2 Definitions and Schedulability Guarantees

2.1 Task and Scheduling Model. 2.2 Definitions and Schedulability Guarantees Fixed-Priority Scheduling of Mixed Soft and Hard Real-Time Tasks on Multiprocessors Jian-Jia Chen, Wen-Hung Huang Zheng Dong, Cong Liu TU Dortmund University, Germany The University of Texas at Dallas,

More information

EDF Scheduling. Giuseppe Lipari CRIStAL - Université de Lille 1. October 4, 2015

EDF Scheduling. Giuseppe Lipari  CRIStAL - Université de Lille 1. October 4, 2015 EDF Scheduling Giuseppe Lipari http://www.lifl.fr/~lipari CRIStAL - Université de Lille 1 October 4, 2015 G. Lipari (CRIStAL) Earliest Deadline Scheduling October 4, 2015 1 / 61 Earliest Deadline First

More information

arxiv: v1 [cs.os] 28 Feb 2018

arxiv: v1 [cs.os] 28 Feb 2018 Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Tas Systems Jian-Jia Chen 1, Georg von der Brüggen 2, and Nilas Ueter 3 1 TU Dortmund University, Germany jian-jian.chen@tu-dortmund.de

More information

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014 Paper Presentation Amo Guangmo Tong University of Taxes at Dallas gxt140030@utdallas.edu February 11, 2014 Amo Guangmo Tong (UTD) February 11, 2014 1 / 26 Overview 1 Techniques for Multiprocessor Global

More information

Deadline-driven scheduling

Deadline-driven scheduling Deadline-driven scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

EDF Scheduling. Giuseppe Lipari May 11, Scuola Superiore Sant Anna Pisa

EDF Scheduling. Giuseppe Lipari   May 11, Scuola Superiore Sant Anna Pisa EDF Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 11, 2008 Outline 1 Dynamic priority 2 Basic analysis 3 FP vs EDF 4 Processor demand bound analysis Generalization

More information

Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate

Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate Zhishan Guo 1, Kecheng Yang 2, Sudharsan Vaidhun 1, Samsil Arefin 3, Sajal K. Das 3, Haoyi Xiong 4 1 Department of

More information

A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets

A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets Abstract The problem of feasibility analysis for asynchronous periodic task sets (ie where tasks can have an initial offset

More information

CIS 4930/6930: Principles of Cyber-Physical Systems

CIS 4930/6930: Principles of Cyber-Physical Systems CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 11 Scheduling Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930: Principles

More information

Tardiness Bounds for FIFO Scheduling on Multiprocessors

Tardiness Bounds for FIFO Scheduling on Multiprocessors Tardiness Bounds for FIFO Scheduling on Multiprocessors Hennadiy Leontyev and James H. Anderson Department of Computer Science, University of North Carolina at Chapel Hill leontyev@cs.unc.edu, anderson@cs.unc.edu

More information

Controlling Preemption for Better Schedulability in Multi-Core Systems

Controlling Preemption for Better Schedulability in Multi-Core Systems 2012 IEEE 33rd Real-Time Systems Symposium Controlling Preemption for Better Schedulability in Multi-Core Systems Jinkyu Lee and Kang G. Shin Dept. of Electrical Engineering and Computer Science, The University

More information

arxiv: v1 [cs.os] 25 May 2011

arxiv: v1 [cs.os] 25 May 2011 Scheduling of Hard Real-Time Multi-Thread Periodic Tasks arxiv:1105.5080v1 [cs.os] 25 May 2011 Irina Lupu Joël Goossens PARTS Research Center Université libre de Bruxelles (U.L.B.) CP 212, 50 av. F.D.

More information

Scheduling periodic Tasks on Multiple Periodic Resources

Scheduling periodic Tasks on Multiple Periodic Resources Scheduling periodic Tasks on Multiple Periodic Resources Xiayu Hua, Zheng Li, Hao Wu, Shangping Ren* Department of Computer Science Illinois Institute of Technology Chicago, IL 60616, USA {xhua, zli80,

More information

There are three priority driven approaches that we will look at

There are three priority driven approaches that we will look at Priority Driven Approaches There are three priority driven approaches that we will look at Earliest-Deadline-First (EDF) Least-Slack-Time-first (LST) Latest-Release-Time-first (LRT) 1 EDF Earliest deadline

More information

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs cs.unc.edu Steve Goddard Computer Science & Engineering University of Nebraska Ð Lincoln goddard@cse cse.unl.edu

More information

Multiprocessor Scheduling of Age Constraint Processes

Multiprocessor Scheduling of Age Constraint Processes Multiprocessor Scheduling of Age Constraint Processes Lars Lundberg Department of Computer Science, University of Karlskrona/Ronneby, Soft Center, S-372 25 Ronneby, Sweden, email: Lars.Lundberg@ide.hk-r.se

More information

Networked Embedded Systems WS 2016/17

Networked Embedded Systems WS 2016/17 Networked Embedded Systems WS 2016/17 Lecture 2: Real-time Scheduling Marco Zimmerling Goal of Today s Lecture Introduction to scheduling of compute tasks on a single processor Tasks need to finish before

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Multi-core Real-Time Scheduling for Generalized Parallel Task Models Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill Department of Computer Science and Engineering Washington University

More information

Partitioned scheduling of sporadic task systems: an ILP-based approach

Partitioned scheduling of sporadic task systems: an ILP-based approach Partitioned scheduling of sporadic task systems: an ILP-based approach Sanjoy K. Baruah The University of North Carolina Chapel Hill, NC. USA Enrico Bini Scuola Superiore Santa Anna Pisa, Italy. Abstract

More information

AS computer hardware technology advances, both

AS computer hardware technology advances, both 1 Best-Harmonically-Fit Periodic Task Assignment Algorithm on Multiple Periodic Resources Chunhui Guo, Student Member, IEEE, Xiayu Hua, Student Member, IEEE, Hao Wu, Student Member, IEEE, Douglas Lautner,

More information

Global mixed-criticality scheduling on multiprocessors

Global mixed-criticality scheduling on multiprocessors Global mixed-criticality scheduling on multiprocessors Haohan Li Sanjoy Baruah The University of North Carolina at Chapel Hill Abstract The scheduling of mixed-criticality implicit-deadline sporadic task

More information

arxiv: v1 [cs.os] 6 Jun 2013

arxiv: v1 [cs.os] 6 Jun 2013 Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation Joël Goossens Pascal Richard arxiv:1306.1316v1 [cs.os] 6 Jun 2013 Abstract We consider the partitioned scheduling

More information

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling CSCE 990: Real-Time Systems Static-Priority Scheduling Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/realtimesystems Static-priority Scheduling Real-Time Systems Static-Priority

More information

On-line scheduling of periodic tasks in RT OS

On-line scheduling of periodic tasks in RT OS On-line scheduling of periodic tasks in RT OS Even if RT OS is used, it is needed to set up the task priority. The scheduling problem is solved on two levels: fixed priority assignment by RMS dynamic scheduling

More information

immediately, without knowledge of the jobs that arrive later The jobs cannot be preempted, ie, once a job is scheduled (assigned to a machine), it can

immediately, without knowledge of the jobs that arrive later The jobs cannot be preempted, ie, once a job is scheduled (assigned to a machine), it can A Lower Bound for Randomized On-Line Multiprocessor Scheduling Jir Sgall Abstract We signicantly improve the previous lower bounds on the performance of randomized algorithms for on-line scheduling jobs

More information

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Junsung Kim, Björn Andersson, Dionisio de Niz, and Raj Rajkumar Carnegie Mellon University 2/31 Motion Planning on Self-driving Parallel

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2017 年 11 月 29 日 These slides use Microsoft clip arts. Microsoft copyright

More information

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling Andreas Karrenbauer and Thomas Rothvoß Institute of Mathematics École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

More information

Analysis Techniques for Supporting Harmonic Real-Time Tasks with Suspensions

Analysis Techniques for Supporting Harmonic Real-Time Tasks with Suspensions Analysis Techniques for Supporting Harmonic Real-Time Tass with Suspensions Cong Liu, Jian-Jia Chen, Liang He, Yu Gu The University of Texas at Dallas, USA Karlsruhe Institute of Technology (KIT), Germany

More information

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 Koen Langendoen Marco Zuniga Question: 1 2 3 4 5 Total Points:

More information

Reservation-Based Federated Scheduling for Parallel Real-Time Tasks

Reservation-Based Federated Scheduling for Parallel Real-Time Tasks Reservation-Based Federated Scheduling for Parallel Real-Time Tasks Niklas Ueter 1, Georg von der Brüggen 1, Jian-Jia Chen 1, Jing Li 2, and Kunal Agrawal 3 1 TU Dortmund University, Germany 2 New Jersey

More information

Supporting Intra-Task Parallelism in Real- Time Multiprocessor Systems José Fonseca

Supporting Intra-Task Parallelism in Real- Time Multiprocessor Systems José Fonseca Technical Report Supporting Intra-Task Parallelism in Real- Time Multiprocessor Systems José Fonseca CISTER-TR-121007 Version: Date: 1/1/2014 Technical Report CISTER-TR-121007 Supporting Intra-Task Parallelism

More information

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions Common approaches 3 3. Scheduling issues Priority-driven (event-driven) scheduling This class of algorithms is greedy They never leave available processing resources unutilized An available resource may

More information

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts.

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts. TDDI4 Concurrent Programming, Operating Systems, and Real-time Operating Systems CPU Scheduling Overview: CPU Scheduling CPU bursts and I/O bursts Scheduling Criteria Scheduling Algorithms Multiprocessor

More information

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Real-time operating systems course 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Definitions Scheduling Scheduling is the activity of selecting which process/thread should

More information

TEMPORAL WORKLOAD ANALYSIS AND ITS APPLICATION TO POWER-AWARE SCHEDULING

TEMPORAL WORKLOAD ANALYSIS AND ITS APPLICATION TO POWER-AWARE SCHEDULING TEMPORAL WORKLOAD ANALYSIS AND ITS APPLICATION TO POWER-AWARE SCHEDULING Ye-In Seol 1, Jeong-Uk Kim 1 and Young-Kuk Kim 2, 1 Green Energy Institute, Sangmyung University, Seoul, South Korea 2 Dept. of

More information

Embedded Systems 14. Overview of embedded systems design

Embedded Systems 14. Overview of embedded systems design Embedded Systems 14-1 - Overview of embedded systems design - 2-1 Point of departure: Scheduling general IT systems In general IT systems, not much is known about the computational processes a priori The

More information

Optimal Semi-Partitioned Scheduling in Soft Real-Time Systems

Optimal Semi-Partitioned Scheduling in Soft Real-Time Systems Optimal Semi-Partitioned Scheduling in Soft Real-Time Systems James H. Anderson 1, Benjamin N. Casses 1, UmaMaheswari C. Devi 2, and Jeremy P. Erickson 1 1 Dept. of Computer Science, University of North

More information