Simulations of Accreting Black Holes on Horizon Scales

Size: px
Start display at page:

Download "Simulations of Accreting Black Holes on Horizon Scales"

Transcription

1 Simulations of Accreting Black Holes on Horizon Scales Jonathan C. McKinney UMD McKinney, Alexander Tchekhovskoy, Roger Blandford (2012) (Science Express Nov 15, 2012) Viz: Ralf Kaehler (Stanford) and JCM

2 Precision BH Physics? Soon: Complete, self-consistent Radiative Disk-Jet Models Horizon-scale observations of BHs (Vincent Fish s talk) Concordance for M, a, etc. (polarized spectra, QPOs, imaging) Signatures & Methods to test GR (Emanuele Berti and other talks) This Talk: Effect of Magnetic Field & BH s Spin Direction (Tilt) With Fully 3D General Relativistic Magnetohydrodynamics Simulations (using HARM code)

3 M BH in M87 Optical+X-ray: 13kpc 300pc M~( )E9Msun (Gebhardt & Thomas 2009) D~16Mpc Lbol/Ledd~1E-6 Lbol/(Mdot c 2 )~1E-2 Optical: 1kpc VLBI Radio: 1kpc 0.06pc Junor (1999) Biretta (1999,2002) VLBA Radio: 0.1pc 0.01pc : Walker et al. (2008)

4 Earth-Wide VLBI shows M87 correlated flux size ~ 5.5rs Doeleman et al. (2012, Science) Vincent Fish (Thurs. 11:35am) Hada et al. (2011, Nature) 2Ghz to 43Ghz 1.3mm = 230 Ghz

5 Constraint of Spin in M87? Doeleman et al. (2012, Science) ISCO ISCO z 5.5rs 3 sigma 1sigma But ISCO = Inner-Most Stable Circular Orbit ISCO important for thin Keplerian disks but not for thick radiatively inefficient flows (RIAFs) as in M87

6 a = -0.9 and a = +0.9 Jets are similar size! a= -0.9 : eff~35% ISCO=8.7M a=+0.9 : eff~100% ISCO=2.3M GRMHD Simulations (Jet = where most power is) So, ISCO might not work as jet base size for M87 (Tchekhovskoy & McKinney 2012)

7 Role of Magnetic Field / Flux Weak Field MRI Disk + Blandford-Znajek Jet = Flux is Fine-Tuned Saturated Field MAD Disk + Blandford-Znajek Jet = Flux in Force Balance z z R MRI = Magneto-Rotational Instability Blandford & Znajek (77) MacDonald & Thorne (82), Balbus & Hawley (1991,1998) MAD = Magnetically Arrested Disk Znajek (76), Bisnovatyi-Kogan & Ruzmaikin (74,76), Narayan et al. (03), Reynolds et al. (06), Igumenshchev et al. (03)

8 How much Magnetic Flux? Coherent Flux near Galactic Nucleus or in ISM: or greater Magnetospheric Radius (McKinney, Tchekhovskoy, Blandford 2012): 1) Mass Flux Bz 2) Ram/Gravity vs. Field 3) Solve for Bz 4) Integrate Bz out to r m R m 5) Solve for r m ( ) SgrA* : r m >10 7 r g M87 : r m > 10 2 r g

9 Role of Magnetic Flux Accumulation Physical Setup: Spin: a=0.99 (+-0.9,0.5,0.2,0.1,0) Radiatively Inefficient Thick Extended-R Disk Run: ~30,000M Numerical Setup: Fully 3D (no syms) Kerr-Schild Coords 288x128x x128x256 Large outer radius Explicit Res+Conv Tests Tchekhovskoy, Narayan, McKinney (2011) McKinney, Tchekhovskoy, Blandford (2012)

10 Magnetically Choked Accretion Flow Mass Accretion Rate BH & Jet Dimensionless Magnetic Flux BH & Jet Efficiency 30 Years for M87

11 Magnetically Choked Accretion Flow Time-Azimuthal Average: Red: Magnetic Field Lines Gray: Velocity Stream Lines Blue: Disk-Jet Boundary Green: Outflow Black: Unbound Outflow Magnetic Flux Accumulates up to Natural Limit Force Balance between Ram/Gravity and Magnetic Flux MRI (magneto-rotational/balbus-hawley instability) suppressed! Igumenshchev et al. (08,09), Tchekhovskoy et al. (11,12), McKinney et al. (12)

12 Black Hole Tilt Frame-dragging force -> Lense-Thirring Precession -> Disk warp Lamb et al. Why Care? Affects: BH Spin Evolution Photon Spectra Variability and QPOs Jet direction? Resolved Image

13 Black Hole Tilt [15deg] Weak Magnetic Field and MHD Turbulence Lense-Thirring Precession No Jet, no Bardeen- Petterson Alignment Precession just set by outer disk extent Fragile et al (Danilo Teixeira Wed, 3:12pm)

14 GR-MHD with Tilt Physical Setup: Spin: a=0.99 (+-0.94,0.9,0) Radiatively Inefficient Thick Extended-R Disk (H/R=0.3,0.6) Run: ~30,000M Tilt: 0.1,0.3,0.6,0.7rad, 90deg (Tilt turned on mid-way) McKinney, Tchekhovskoy, Blandford (2012, Science Mag. Express Nov 15) Numerical Setup: Fully 3D (no syms.) Kerr-Schild Coords. 288x128x x128x256 Large outer radius

15 Black Hole Tilt [0deg -> 90deg] Naturally Saturated Magnetic Field Strength Jet Controls Disk

16

17

18 Some Effects of BH Tilt Bardeen-Petterson effect (LT=Lense-Thirring) for thin disks Magneto-spin mechanism for thick disks with jets (Can derive magneto-spin radius and EM>LT radius) Disk Warps & Jet Bends near Horizon (Impacts EHT interpretations of SgrA* & M87) Blazar zone where disk & jet interact (New dissipation mechanism) No precession for EM forces, unlike LT: TDEs, GRBs, etc. (Gezari, Kesden (Mon 3:12pm), Dai (Mon 2:36pm) & Nakar talks)

19 Old Disk & Jet Theory Disk with weak Jet (Fat Dog with tiny Tail) Weak Magnetic Fields Amplified by MRI Lense-Thirring with viscosity dominates New Disk & Jet Theory Jet can dominate Disk (Dog Chasing Tail) Magnetic Flux Naturally Accumulates Electromagnetic fields can dominate Gravity

3D GRMHD Jet Simulations [and other stuff] Jonathan McKinney Stanford/KIPAC

3D GRMHD Jet Simulations [and other stuff] Jonathan McKinney Stanford/KIPAC 3D GRMHD Jet Simulations [and other stuff] Jonathan McKinney Stanford/KIPAC Issues Addressed Radio Loud/Quiet Dichotomy Caused by Environment, Spin, Galaxy Evolution? Magnetosphere near BH How different

More information

Testing GR with Imaging of SMBHs, part deux

Testing GR with Imaging of SMBHs, part deux Testing GR with Imaging of SMBHs, part deux Avery E Broderick Sheperd Doeleman (MIT Haystack) Vincent Fish (MIT Haystack) Alan Rogers (MIT Haystack) Dimitrios Psaltis (Arizona) Tim Johannsen (Arizona/UW-PI-CITA)

More information

The Size of the Jet Launching Region in M87

The Size of the Jet Launching Region in M87 The Size of the Jet Launching Region in M87 Jason Dexter TAC Postdoctoral Fellow UC Berkeley With Eric Agol and Jonathan McKinney M87 Center of Virgo Cluster Ultra relagvisgc jet Largest in angular size

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

Black hole accretion with a tilt

Black hole accretion with a tilt Black hole accretion with a tilt Alexander (Sasha) Tchekhovskoy Northwestern University Koushik Chatterjee Matthew Liska M87 Jet: Acceleration and Collimation over 5 Orders in Distance Chandra XRC Relativistic

More information

3D GRMHD SIMULATIONS OF BLACK HOLE ACCRETION DISKS. Ramesh Narayan

3D GRMHD SIMULATIONS OF BLACK HOLE ACCRETION DISKS. Ramesh Narayan 3D GRMHD SIMULATIONS OF BLACK HOLE ACCRETION DISKS Ramesh Narayan BH Accretion Astrophysical black holes nearly always have observable accretion disks around them These accretion disks provide information

More information

Charged particle motion around magnetized black hole

Charged particle motion around magnetized black hole Charged particle motion around magnetized black hole Martin Kološ, Arman Tursunov, Zdeněk Stuchĺık Silesian University in Opava, Czech Republic RAGtime workshop #19, 23-26 October, Opava 2017 Black hole

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Probing general relativistic precession with tomography and polarimetry

Probing general relativistic precession with tomography and polarimetry Probing general relativistic precession with tomography and polarimetry Adam Ingram Michiel van der Klis, Matt Middleton, Chris Done, Diego Altamirano, Phil Uttley, Magnus Axelsson, Tom Maccarone, Juri

More information

Binary Black Holes: An Introduction

Binary Black Holes: An Introduction Binary Black Holes: An Introduction Roger Blandford KIPAC Stanford 29 xi 2012 Tucson 1 Inertial Confinement of Extended Radio Sources Three Dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles

More information

Models of Inefficient Accretion onto a Black Hole and Pair Production in Jets

Models of Inefficient Accretion onto a Black Hole and Pair Production in Jets Models of Inefficient Accretion onto a Black Hole and Pair Production in Jets Monika Mościbrodzka University of Illinois Urbana-Champaign In collaboration with: C.F. Gammie, J. Dolence, H. Shiokawa, P.K.

More information

RADIATION FROM ACCRETION ONTO BLACK HOLES

RADIATION FROM ACCRETION ONTO BLACK HOLES RADIATION FROM ACCRETION ONTO BLACK HOLES Accretion via MHD Turbulence: Themes Replacing dimensional analysis with physics MRI stirs turbulence; correlated by orbital shear; dissipation heats gas; gas

More information

mm-vlbi observations: Black hole physics and the origin of jets

mm-vlbi observations: Black hole physics and the origin of jets mm-vlbi observations: Black hole physics and the origin of jets T.P.Krichbaum et al, with: (+GMVA team, +EHT team +A. Marscher's group) Max-Planck Planck-Institut für f r Radioastronomie Bonn, Germany

More information

Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes

Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes arxiv:1211.3651v1 [astro-ph.co] 15 Nov 2012 Jonathan C. McKinney, 12 Alexander Tchekhovskoy, 3 Roger D. Blandford

More information

Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole

Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole The Harvard community has made this article openly available. Please share how this access benefits you.

More information

The geometric origin of quasi-periodic oscillations in black hole binaries

The geometric origin of quasi-periodic oscillations in black hole binaries X-ray Universe 2014 Dublin - 17 th June The geometric origin of quasi-periodic 6000 oscillations in black hole binaries GRS1915+105 Adam Ingram Michiel van der Klis, Chris Done Time (s) 15 5 10 20 Black

More information

Tidal Disruption Events

Tidal Disruption Events Tidal Disruption Events as a probe of super-eddington accretion Jane Lixin Dai 戴丽 心 Niels Bohr Institute UMD: Jonathan McKinney, Cole Miller, Nathan Roth, Erin Kara 1 UCSC/NBI: Enrico Ramirez-Ruiz Tidal

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

Spectra and variability properties of accretion flows: testing QPO models with Athena

Spectra and variability properties of accretion flows: testing QPO models with Athena Spectra and variability properties of accretion flows: testing QPO models with Athena Chris Done Adam Ingram Chris Fragile Mari Kolehmainen, Aya Kubota Transients Huge amounts of data, long term variability

More information

Black hole shadow images with partially-ssa thick accretion flows: possible evidence of a highly spinning black hole

Black hole shadow images with partially-ssa thick accretion flows: possible evidence of a highly spinning black hole Black hole shadow images with partially-ssa thick accretion flows: possible evidence of a highly spinning black hole Tomohisa KAWASHIMA (NAOJ) In collaboration with Motoki KINO (Kogakuin U./NAOJ) Dawn

More information

AGN accretion and disk-jet coupling

AGN accretion and disk-jet coupling AGN accretion and disk-jet coupling Bożena Czerny Center for Theoretical Physics And Copernicus Astronomical Center 5th Workshop on Compact Steep Spectrum and GHz-Peaked Spectrum Radio Sources Rimini,

More information

Thomas Tauris MPIfR / AIfA Uni. Bonn

Thomas Tauris MPIfR / AIfA Uni. Bonn Thomas Tauris MPIfR / AIfA Uni. Bonn 1: Introduction Degenerate Fermi Gases Non-relativistic and extreme relativistic electron / (n,p,e - ) gases : White Dwarfs Structure, cooling models, observations

More information

Black Hole Accretion and Wind

Black Hole Accretion and Wind Black Hole Accretion and Wind Feng Yuan Shanghai Astronomical Observatory, Chinese Academy of Sciences Accretion Regimes Hyper-accretion, slim disk, ADAF (Abramowicz et al. 1988) TDEs, ULXs, SS433 Thin

More information

Outflows & Jets: Theory & Observations

Outflows & Jets: Theory & Observations Outflows & Jets: Theory & Observations Lecture winter term 008/009 Henrik Beuther & Christian Fendt 10.10 17.10 4.10 31.10 07.11 14.11 1.11 8.11 05.1 1.1 19.1 6.1 09.01 16.01 3.01 30.01 Introduction &

More information

VLBA Observations of the Jet Collimation Region in M87

VLBA Observations of the Jet Collimation Region in M87 VLBA Observations of the Jet Collimation Region in M87 R. Craig Walker Collaborators: Radio: P. E. Hardee (U. Alabama), W. Junor (UC/LANL), F. Davies (UCLA), C. Ly (STScI) TeV, γ-ray, X-ray connection:

More information

TDE Disk Assembly: Connecting Disruption to Accretion / Light Curve Jane Lixin Dai

TDE Disk Assembly: Connecting Disruption to Accretion / Light Curve Jane Lixin Dai TDE Disk Assembly: Connecting Disruption to Accretion / Light Curve Jane Lixin Dai Assistant Professor / Carlsberg Fellow, Center for Transient Astrophysics / DARK Cosmology Center, Niels Bohr Institute

More information

Roberto Soria (UCAS) Jets and outflows from super-eddington sources

Roberto Soria (UCAS) Jets and outflows from super-eddington sources Jets and outflows from super-eddington sources Roberto Soria (UCAS) Also thanks to: Ryan Urquhart (ICRAR PhD student) James Miller-Jones (ICRAR-Curtin) Manfred Pakull (Strasbourg Observatory) Christian

More information

Black Hole Shadow with Accretion Flow and Jets

Black Hole Shadow with Accretion Flow and Jets Black Hole Shadow with Accretion Flow and Jets Hung-Yi Pu (ASIAA) M87 workshop 2016/05/24 Collaborators: Kinwah Wu (UCL), Ziri Younsi (ITP & ULC), Yosuke Mizuno (ITP), Kazunori Akiyama (MIT & NAOJ), Kazuki

More information

Polarimetry on M87. Outline of talk - Introduc8on: Accre8on Flow - SMA results - ALMA challenge. Keiichi Asada (ASIAA)

Polarimetry on M87. Outline of talk - Introduc8on: Accre8on Flow - SMA results - ALMA challenge. Keiichi Asada (ASIAA) Polarimetry on M87 Outline of talk - Introduc8on: Accre8on Flow - SMA results - ALMA challenge Keiichi Asada (ASIAA) Introduction M 87 and its Accretion Flows - Low-Luminosity AGNs are subclass of AGN.

More information

Bulletin on the Biggest, Baddest Black Hole on the Block

Bulletin on the Biggest, Baddest Black Hole on the Block Bulletin on the Biggest, Baddest Black Hole on the Block (SgrA* that is) Scott C. Noble UIUC CTA Lunch Seminar September 21, 2005 Outline: Introduction: How Big and Bad is it? M, R, tdyn, d, etc. What

More information

Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A*

Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A* International Journal of Astronomy 2015, 4(1): 5-11 DOI: 10.5923/j.astronomy.20150401.02 Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A* E. M. Howard Department of Physics and Astronomy,

More information

Jet Formation Roger Blandford KIPAC Stanford

Jet Formation Roger Blandford KIPAC Stanford Jet Formation Roger Blandford KIPAC Stanford 13 v 2013 Q50 Caltech 1 Black Holes Schwarzschild (1915-6) Oppenheimer & Snyder (1939) Kerr (1963) Bardeen, Carter, Hawking, Israel, Penrose, Robinson, Teukolsky,

More information

PoS(10th EVN Symposium)052

PoS(10th EVN Symposium)052 MIT Haystack Observatory, USA E-mail: vfish@haystack.mit.edu Due to recent technological and scientific advancements, VLBI at 1.3 mm wavelength has matured to a point where observations can readily achieve

More information

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems MHD Simulations of Star-disk Interactions in Young Stars & Related Systems Marina Romanova, Cornell University R. Kurosawa, P. Lii, G. Ustyugova, A. Koldoba, R. Lovelace 5 March 2012 1 1. Young stars 2.

More information

Disc jet coupling in black hole accretion systems II. Force-free electrodynamical models

Disc jet coupling in black hole accretion systems II. Force-free electrodynamical models Mon. Not. R. Astron. Soc. 375, 531 547 (2007) doi:10.1111/j.1365-2966.2006.11220.x Disc jet coupling in black hole accretion systems II. Force-free electrodynamical models Jonathan C. McKinney and Ramesh

More information

Focussing on X-ray binaries and microquasars

Focussing on X-ray binaries and microquasars Focussing on X-ray binaries and microquasars Didier BARRET Centre d Etude Spatiale des Rayonnements Toulouse, France Thank you Peter and Dolorès and the organizing committee I will start with the conclusions

More information

PoS(11th EVN Symposium)056

PoS(11th EVN Symposium)056 MIT Haystack Observatory, USA E-mail: vfish@haystack.mit.edu The Event Horizon Telescope is a project to observe and eventually image the Schwarzschild radius scale structure around nearby supermassive

More information

OJ 287: Deciphering the Rosetta Stone of blazars

OJ 287: Deciphering the Rosetta Stone of blazars OJ 287: Deciphering the Rosetta Stone of blazars Silke Britzen, MPIfR, Bonn Takalo 1994 in cooperation with: C. Fendt 2, G. Witzel 3, S.J. Qian 4, I. Pashchenko 5, O. Kurtanidze 6,7, M. Zajacek 1,8,10,

More information

TeV Observations of Extragalactic Sources

TeV Observations of Extragalactic Sources TeV Observations of Extragalactic Sources Henric Krawczynski (Washington University in St. Louis), Oct. 2, 2009 Plan of Talk: Status of Experiments Key-Results: Radio Galaxies Blazars Starburst Galaxies

More information

Theoretical aspects of microquasars

Theoretical aspects of microquasars Theoretical aspects of microquasars Bingxiao Xu Department of Physics & Astronomy, GSU ABSTRACT: Microquasars (black hole X-ray binaries with relativistic jets) are first found by means of multiwavelengths

More information

Ultra-High Angular Resolution VLBI

Ultra-High Angular Resolution VLBI Ultra-High Angular Resolution VLBI Rusen Lu ( 路如森 ) rslu@haystack.mit.edu MIT Haystack Observatory Ultra-High Angular Resolution VLBI enabled by mm-vlbi Rusen Lu ( 路如森 ) rslu@haystack.mit.edu MIT Haystack

More information

PROBING THE MAGNETIC FIELD STRUCTURE IN SGR A ON BLACK HOLE HORIZON SCALES WITH POLARIZED RADIATIVE TRANSFER SIMULATIONS

PROBING THE MAGNETIC FIELD STRUCTURE IN SGR A ON BLACK HOLE HORIZON SCALES WITH POLARIZED RADIATIVE TRANSFER SIMULATIONS DRAFT VERSION JANUARY 22, 216 Preprint typeset using LATEX style emulateapj v. 1/23/1 PROBING THE MAGNETIC FIELD STRUCTURE IN SGR A ON BLACK HOLE HORIZON SCALES WITH POLARIZED RADIATIVE TRANSFER SIMULATIONS

More information

Magnetic Fields in Blazar Jets

Magnetic Fields in Blazar Jets Magnetic Fields in Blazar Jets Bidzina Z. Kapanadze Ilia State University, Tbilisi, Georgia MFPO 2010- Cracow, May 17-21 Blazars are defined as a AGN class with following features: featureless spectra;

More information

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley)

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) in collaboration with Ian Parrish, Prateek Sharma, Jim Stone, Greg Hammett Hydra A w/ Chandra Galactic

More information

Testing astrophysical black holes. Cosimo Bambi Fudan University

Testing astrophysical black holes. Cosimo Bambi Fudan University Testing astrophysical black holes Cosimo Bambi Fudan University http://www.physics.fudan.edu.cn/tps/people/bambi/ 29 October 2015 Interdisciplinary Center for Theoretical Studies (USTC, Hefei) Plan of

More information

Testing the nature of astrophysical black hole candidates. Cosimo Bambi Fudan University

Testing the nature of astrophysical black hole candidates. Cosimo Bambi Fudan University Testing the nature of astrophysical black hole candidates Cosimo Bambi Fudan University http://www.physics.fudan.edu.cn/tps/people/bambi/ 26 September 2013, National Astronomical Observatories, Beijing

More information

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Zhi-Qiang Shen (Shanghai Astronomical Observatory) In collaboration with: L. Huang, M. Cai, F. Yuan, S.-M. Liu K. Y. Lo,

More information

Numerical simulations of super-eddington accretion flow and outflow

Numerical simulations of super-eddington accretion flow and outflow Numerical simulations of super-eddington accretion flow and outflow Ken Ohsuga (NAOJ), Shin Mineshige (Kyoto), Hiroyuki Takahashi (NAOJ) Collaboration with T. Ogawa, T. Kawashima, & H. Kobayashi Today

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

Binary black-hole mergers in magnetized disks: Simulations in full general relativity

Binary black-hole mergers in magnetized disks: Simulations in full general relativity Binary black-hole mergers in magnetized disks: Simulations in full general relativity Brian D. Farris, Roman Gold, Vasileios Paschalidis, Zachariah B. Etienne, and Stuart L. Shapiro arxiv:1207.3354 University

More information

Testing the nature of astrophysical black hole candidates. Cosimo Bambi (Fudan University, Shanghai)

Testing the nature of astrophysical black hole candidates. Cosimo Bambi (Fudan University, Shanghai) Testing the nature of astrophysical black hole candidates Cosimo Bambi (Fudan University, Shanghai) 8 June 2013, Annual Meeting of the Physics Department Fudan University, Shanghai Tests of General Relativity

More information

Kinetic modelling of pulsar magnetospheres

Kinetic modelling of pulsar magnetospheres Kinetic modelling of pulsar magnetospheres Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes In collaboration with : Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton), Jérémy Mortier (U. Grenoble

More information

January 20, Doctoral Thesis Defense. Jeremy Schnittman. Radiation Transport Around Kerr Black Holes

January 20, Doctoral Thesis Defense. Jeremy Schnittman. Radiation Transport Around Kerr Black Holes Radiation Transport Around Kerr Black Holes Jeremy Schnittman Doctoral Thesis Defense January 20, 2005 Massachusetts Institute of Technology Outline Background/Motivation Ray Tracing Hot Spot Model Peak

More information

arxiv: v1 [astro-ph.he] 12 Sep 2018

arxiv: v1 [astro-ph.he] 12 Sep 2018 Mon. Not. R. Astron. Soc. 000, 1 5 (2018) Printed 14 September 2018 (MN LATEX style file v2.2) Large-Scale Poloidal Magnetic Field Dynamo Leads to Powerful Jets in GRMHD Simulations of Black Hole Accretion

More information

Acceleration and Collimation of Relativistic Magnetized Jets

Acceleration and Collimation of Relativistic Magnetized Jets Acceleration and Collimation of Relativistic Magnetized Jets Alexander (Sasha) Tchekhovskoy with Ramesh Narayan and Jonathan McKinney Harvard University Chandra X-ray Observatory Magnificent Galaxy Jets

More information

Magnetically-dominated relativistic jets.

Magnetically-dominated relativistic jets. Magnetically-dominated relativistic jets. Serguei Komissarov University of Leeds UK N.Vlahakis, Y.Granot, A.Konigl, A.Spitkovsky, M.Barkov, J.McKinney, Y.Lyubarsky, M.Lyutikov, N.Bucciantini Plan 1. Astrophysical

More information

AGN jet launch scenarios

AGN jet launch scenarios AGN jet launch scenarios Rony Keppens Centre for mathematical Plasma Astrophysics Department of Mathematics, KU Leuven Rony Keppens (KU Leuven) Jet launch Nov. 2013, IAC winter school 1 / 48 Astrophysical

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

The MRI in a Collisionless Plasma

The MRI in a Collisionless Plasma The MRI in a Collisionless Plasma Eliot Quataert (UC Berkeley) Collaborators: Prateek Sharma, Greg Hammett, Jim Stone Modes of Accretion thin disk: energy radiated away (relevant to star & planet formation,

More information

Formation of lamp-post coronae in Seyfert Galaxies and X-ray binaries

Formation of lamp-post coronae in Seyfert Galaxies and X-ray binaries NASA/NuSTAR, Wilkins et al 2015 Formation of lamp-post coronae in Seyfert Galaxies and X-ray binaries Yajie Yuan (Spitzer Fellow, Princeton) In collaboration with: Roger Blandford, Dan Wilkins (Stanford)

More information

Physics of Active Galactic nuclei

Physics of Active Galactic nuclei Physics of Active Galactic nuclei October, 2015 Isaac Shlosman University of Kentucky, Lexington, USA and Theoretical Astrophysics Osaka University, Japan 1 Lecture 2: supermassive black holes AND accretion

More information

What we know about the coevolution of mass and spin in black holes: Accretion vs mergers Large spin vs small

What we know about the coevolution of mass and spin in black holes: Accretion vs mergers Large spin vs small What we know about the coevolution of mass and spin in black holes: Accretion vs mergers Large spin vs small Conclusions Accretion tends to make black holes spin faster Mergers tend to make black holes

More information

The connection between millimeter and gamma-ray emission in AGNs

The connection between millimeter and gamma-ray emission in AGNs The connection between millimeter and gamma-ray emission in AGNs Marcello Giroletti INAF Istituto di Radioastronomia Secondo Workshop sull'astronomia millimetrica e submillimetrica in Italia Bologna, 2-3

More information

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made?

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? * What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? 1 * Galaxies contain massive black holes which power AGN * Gas accretes through a magnetized disk * Blazars are relativistically

More information

Microquasars and The Power of Spin

Microquasars and The Power of Spin Microquasars and The Power of Spin Ralph Spencer, Tony Rushton with thanks to Mr Tony Blair COST Valencia 2010 1 Overview What are Microquasars? A bit of history A gallery of objects The link to AGN A

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY. Bruno Giacomazzo University of Trento, Italy

GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY. Bruno Giacomazzo University of Trento, Italy GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY Bruno Giacomazzo University of Trento, Italy PART I: BINARY NEUTRON STAR MERGERS WHY SO INTERESTING? Due to their duration and

More information

Measuring the Spin of the Accreting Black Hole In Cygnus X-1

Measuring the Spin of the Accreting Black Hole In Cygnus X-1 Measuring the Masses and Spins of Stellar Black Holes Measuring the Spin of the Accreting Black Hole In Cygnus X-1 Lijun Gou Harvard-Smithsonian Center for Astrophysics Collaborators: Jeffrey McClintock,

More information

arxiv: v1 [astro-ph.he] 9 Jan 2015

arxiv: v1 [astro-ph.he] 9 Jan 2015 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 4 November 208 (MN LATEX style file v2.2) Jet and disk luminosities in tidal disruption events Tsvi Piran, Aleksander Sądowski 2,4, Alexander Tchekhovskoy

More information

Polarization Studies of Extragalactic Relativistic Jets from Supermassive Black Holes. Iván Agudo

Polarization Studies of Extragalactic Relativistic Jets from Supermassive Black Holes. Iván Agudo Polarization Studies of Extragalactic Relativistic Jets from Supermassive Black Holes Iván Agudo What is an active galactic nuclei (AGN)? Compact regions at the centre of galaxies with much higher than

More information

arxiv: v1 [astro-ph.he] 31 May 2017

arxiv: v1 [astro-ph.he] 31 May 2017 Preprint 1 June 2017 Compiled using MNRAS LATEX style file v3.0 Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes I. Contopoulos 1,2, A. Nathanail 3,4, A.

More information

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Astronomy 422! Lecture 7: The Milky Way Galaxy III! Astronomy 422 Lecture 7: The Milky Way Galaxy III Key concepts: The supermassive black hole at the center of the Milky Way Radio and X-ray sources Announcements: Test next Tuesday, February 16 Chapters

More information

Energy Extraction from Spinning Black Holes Via Relativistic Jets

Energy Extraction from Spinning Black Holes Via Relativistic Jets Energy Extraction from Spinning Black Holes Via Relativistic Jets The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Narayan,

More information

Localisation of Non-thermal Emission Production Sites in AGN. Andrei Lobanov Max-Planck-Institut für Radioastronomie, Bonn

Localisation of Non-thermal Emission Production Sites in AGN. Andrei Lobanov Max-Planck-Institut für Radioastronomie, Bonn Localisation of Non-thermal Emission Production Sites in AGN Andrei Lobanov Max-Planck-Institut für Radioastronomie, Bonn Jet (Changing) AGN Paradigm A. Lobanov The BLR is a multicomponent complex Jet

More information

Key Results from Dynamical Spacetime GRMHD Simulations. Zachariah Etienne

Key Results from Dynamical Spacetime GRMHD Simulations. Zachariah Etienne Key Results from Dynamical Spacetime GRMHD Simulations Zachariah Etienne Outline Lecture 1: The mathematical underpinnings of GRMHD, astrophysical importance Lecture 2: Solving GRMHD equations numerically

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Observational inferences of black hole spin and jet power across the mass scale. Elena Gallo University of Michigan

Observational inferences of black hole spin and jet power across the mass scale. Elena Gallo University of Michigan Observational inferences of black hole spin and jet power across the mass scale Elena Gallo University of Michigan Are black hole jets spin- powered? Theory [McKinney talk s]: Likely so (at least the most

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Accretion Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk April 01 Accretion - Accretion efficiency - Eddington

More information

General Relativistic MHD Simulations of Neutron Star Mergers

General Relativistic MHD Simulations of Neutron Star Mergers General Relativistic MHD Simulations of Neutron Star Mergers Luca Baiotti Osaka University with Luciano Rezzolla, Bruno Giacomazzo, Kentaro Takami Plan of the talk Brief overview of the status of BNS simulations

More information

Outflow from hot accretion flows Nature, origin and properties

Outflow from hot accretion flows Nature, origin and properties Outflow from hot accretion flows ------Nature, origin and properties (arxiv:1206.4173) Feng Yuan Shanghai Astronomical Observatory Chinese Academy of Sciences Accretion physics Motivation Outflow: important

More information

Binary black holes in nuclei of extragalactic radio sources 3C 345. VLBI component = radio blob superluminal motion = apparent motion

Binary black holes in nuclei of extragalactic radio sources 3C 345. VLBI component = radio blob superluminal motion = apparent motion Binary black holes in nuclei of extragalactic radio sources 3C 345 VLBI component = radio blob superluminal motion = apparent motion VLBI observations of compact radio sources show that the ejection of

More information

X-ray Binaries. Image credit: Robert Hynes (2002)

X-ray Binaries. Image credit: Robert Hynes (2002) Ramesh Narayan X-ray Binaries Image credit: Robert Hynes (2002) Galactic Nuclei Image credit: Lincoln Greenhill, Jim Moran Outline Measuring BH mass Estimating BH spin Testing Relativity Evidence for the

More information

Monster in the Middle The Milky Way s Central Black Hole

Monster in the Middle The Milky Way s Central Black Hole Monster in the Middle The Milky Way s Central Black Hole Charles F. Gammie University of Illinois at Urbana-Champaign Department of Astronomy and Department of Physics OLLI, 12 Oct 2017 NASA, ESA / Tepletz+

More information

PoS(10th EVN Symposium)053

PoS(10th EVN Symposium)053 Building an Event Horizon Telescope: (sub)mm VLBI in the ALMA era MIT Haystack Observatory E-mail: sdoeleman@haystack.mit.edu Recent technical and scientific progress in (sub)mm VLBI now makes it very

More information

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array FAPESP CUNY Week, New York, November 2018 M82 Star Formation- Clouds-SNRturbulence connection Sun & Stars

More information

Disk modelling by global radiation-mhd simulations

Disk modelling by global radiation-mhd simulations Disk modelling by global radiation-mhd simulations ~Confrontation of inflow & outflow~ Shin Mineshige (Kyoto) & Ken Ohsuga (NAOJ) Magnetic tower jet by RMHD simulation (Takeuchi+11) Outline Introduction

More information

Extreme gravity in neutron-star systems with XEUS

Extreme gravity in neutron-star systems with XEUS Extreme gravity in neutron-star systems with XEUS Mariano Méndez Kapteyn Astronomical Institute, University of Groningen, The Netherlands Probing strong gravitational fields Adapted from Kramer et al.

More information

Exciting Waves/Modes in Black-Hole Accretion Disks

Exciting Waves/Modes in Black-Hole Accretion Disks Exciting Waves/Modes in Black-Hole Accretion Disks Dong Lai Cornell University L Observatoire de Paris Meudon, Dec.1, 2008 Edwin E. Salpeter 1924-2008.11 Autobiography: Annual Review Astro & Astrophys.

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nicholas Nelson Lecture 26 Thur 14 Apr 2011 zeus.colorado.edu/astr1040-toomre toomre HST Abell 2218 Reading clicker what makes the light? What

More information

Measuring Black Hole Spin in AGN. Laura Brenneman (Harvard-Smithsonian CfA)

Measuring Black Hole Spin in AGN. Laura Brenneman (Harvard-Smithsonian CfA) Measuring Black Hole Spin in AGN Laura Brenneman (Harvard-Smithsonian CfA) Single and Double Special Massive thanks Black to: Holes in Galaxies Chris Reynolds, University Andy Fabian, of Michigan Martin

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

PIC modeling of particle acceleration and high-energy radiation in pulsars

PIC modeling of particle acceleration and high-energy radiation in pulsars PIC modeling of particle acceleration and high-energy radiation in pulsars Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes In collaboration with : Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton),

More information

Instabilities of relativistic jets

Instabilities of relativistic jets Instabilities of relativistic jets G. Bodo INAF Osservatorio Astrofisico di Torino, Italy A. Mignone, P. Rossi, G. Mamatsashvili, S. Massaglia, A. Ferrari show f Universality of relativistic jet phenomenon

More information

Imaging nearby super-massive Black Holes and the study of jet formation in AGN. T.P.Krichbaum

Imaging nearby super-massive Black Holes and the study of jet formation in AGN. T.P.Krichbaum Global mm-vlbi with Apex Imaging nearby super-massive Black Holes and the study of jet formation in AGN T.P.Krichbaum (on behalf of the European mm-vlbi team) Max-Planck Planck-Institut für f r Radioastronomie

More information

Black hole spin evolution affected by magnetic field decay

Black hole spin evolution affected by magnetic field decay MNRAS 446, 1829 1847 2015 doi:10.1093/mnras/stu2078 Black hole spin evolution affected by magnetic field decay Anna Chashkina and Pavel Abolmasov Sternberg Astronomical Institute, Moscow State University,

More information

High-Energy Astrophysics

High-Energy Astrophysics Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Lecture 10 - rescheduled to HT 2013 Week 1 Today s lecture AGN luminosity functions and their

More information

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Deciphering the Violent Universe, Playa del Carmen, December 11-15, 2017 Accretion disk coronae Star Formation

More information

Resolving Black Holes with Millimeter VLBI

Resolving Black Holes with Millimeter VLBI Resolving Black Holes with Millimeter VLBI Vincent L. Fish MIT Haystack Observatory and the Event Horizon Telescope collaboration Model courtesy C. Gammie Bringing resolution to black holes There is lots

More information