Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman


 Brent Welch
 4 years ago
 Views:
Transcription
1 Digital Microelectronic ircuits ( ) Presented by: Mr. Adam Teman Lecture 8: atioed Logic 1
2 Motivation In the previous lecture, we learned about Standard MOS Digital Logic design. MOS is unquestionably the leading design family in use today, do to its many advantages and relative simplicity. However, it has a number of drawbacks that have led to the development of alternative solutions. The main drawback of Standard MOS is its relatively large area (2N transistors to implement an Ninput gate). In this lecture, we will start to overview a number of alternative logic families that try to reduce the number of transistors needed to implement a logic function. 2
3 What will we learn today? 8.1 atioed Logic 8.2 Pseudo NMOS 8.3 LE of Pseudo NMOS 3
4 atioed Logic 8.2 Pseudo NMOS 8.3 LE of Pseudo NMOS Let s start with an important concept that has driven a number of logic families: ATIOED LOGI 4
5 atioed Logic oncept When we discussed Standard MOS during the previous two lectures, we spent quite a while analyzing the sizes of the transistors. It is important to note that these sizing considerations improved the performance (=speed) of the logic gates, but not their functionality. In other words, even if we implemented the gates without size considerations, we would arrive at the requested logic function (though it might take a while ). 5
6 atioed Logic oncept atioed Logic is an attempt to reduce the number of transistors required to implement a given logic function, waiving the assurance of functionality. As its name implies, in order to ensure functionality, a certain ratio of sizes has to be kept between various devices that make up the gate. atioed Logic has another great disadvantage high static power dissipation which makes it vary scarcely used. But the concept is implemented in quite a few complex circuits (such as memory circuits), and so it is important to understand. 6
7 atioed Logic oncept The concept of atioed Logic uses the same Pull Down Network as MOS, but uses a simple Load as its Pull Up Network. This Load constantly leaks current from the supply to the output capacitance. In this way, the output is charged when the PDN is closed, providing a 1. On the other hand, the Load s resistance is much larger than that of an open PDN, so when the PDN is open, the output is pulled down to V OL. The ratio between the resistance of the Load and the PDN is crucial in designing such a gate, hence it is called atioed Logic. 7
8 VT of Generic atioed Logic Gate 8
9 atioed Logic haracteristics N transistors + Load V DD V V OL OH V PDN DD PDN L esistive Load L Asymmetrical esponse F Static Power onsumption In 1 In 2 PDN Slow pull up: t 0.69 plh out L In 3 V SS 9
10 Load Implementation Early atioed Logic designs used a simple resistor as the Load. This approach had several drawbacks, especially with the difficulty in resistor implementation in VLSI. 10
11 Load Implementation Accordingly, the Load was replaced with a Diodeconnected nmos (V GD =0) a.k.a. Saturated Load Inverter. This circuit stopped conducting at V GS =V DD V Tn (weak 1 ) providing a largely reduced swing. 11
12 Load Implementation To improve the swing, the nmos (also known as an enhancement mode nmos) was replaced with a Depletion Mode nmos. This is a special, highly doped nmos with a negative threshold voltage (V Tn <0). This was used for some time until the Pseudo nmos inverter was invented, replacing the nmos load with a pmos connected to ground. 12
13 atioed Logic 8.2 Pseudo NMOS 8.3 LE of Pseudo NMOS The only really surviving ratioed logic family is: PSEUDO NMOS 13
14 Pseudo nmos The topology of a Pseudo nmos gate is shown in the following figure: The clear advantage of this gate over Standard MOS is the reduced number of transistors:» N+1 transistors to implement an Ninput gate. 14
15 Pseudo nmos Using a pmos in the PUN, we get a Strong 1 when the PDN is closed, so V OHmax =V DD. On the other hand, when the PDN is open, there is a fight between the PDN and the pmos load. 15
16 Pseudo nmos To calculate V OLmin, we will equate the pmos saturation current with the PDN current, assuming that it consists of nmos devices in Linear Mode. We will mark the drive strength of the PDN as k neq and assume short channel devices*: 2 V 1 2 Dp p DD Tp DSAT Dn neq DD Tn OL OL DSAT I k V V V I k V V V V 2 2 *alculate for long channel devices at home! 16
17 Pseudo nmos Making a few minor assumptions, we arrive at: V OL k p VDD VTp VDSAT p Wp V k V V W neq DD Tn n neq DSAT So to get a Low V OLmin, we need the pmos to be much smaller than the equivalent width of the nmos network. Making the pmos small means a small charge current, resulting in a large t plh! 17
18 Pseudo nmos In addition, we get static power dissipation from the direct path between V DD and GND when outputting a 0 : V Plow VDDI low VDDk p VDD VTp VDSAT 2 DSAT 2 Accordingly, Pseudo nmos won t usually be used in low power or high frequency applications. 18
19 Pseudo nmos However, when large fanin gates are needed, the reduced transistor count can be attractive. 19
20 VT of Pseudo NMOS 20
21 Pseudo NMOS haracteristics Summary Small β ratio (small pmos, big PDN):» Lower VOL» Better Gain» Less static power» Fast t phl But» Slow t plh» Bigger capacitive load In general:» N+1 Transistors» Only 1 NMOS load to previous stage» Make sure PMOS resistance at least 4 x PDN 21
22 atioed Logic 8.2 Pseudo NMOS 8.3 LE of Pseudo NMOS Now we can compare this logic family using our previously developed design methodology: LOGIAL EFFOT OF PSEUDO NMOS 22
23 PseudoNMOS ising Edge t plh is simply through the pmos: t 0.69 plh L p,min Let s look at the Logical Effort parameters of this transition: eq p,min W min W min 1 G n g min A βw min 1 min d n d 23
24 ising Edge Logical Effort Now it is straightforward to calculate the LE parameters. eq p,min G n g min d n d min 1 p p,min n dmin n p,min 2 3dmin p,min ndmin 2 LE n p,min dmin p LE 1 gate inv gate inv W min d, gate d,min g, gate g,min for =1: 4 2 n p LE for =4: 10 8 n p LE
25 But what about t phl? PseudoNMOS Falling Edge» Let s find the Thevenin Equivalent: V N Thevenin V DD N P Thevenin N N P P» So we would expect: t 0.69 phl L Thevenin» But the swing is V DD /2, not V Thevenin /2» So it actually takes a bit longer to discharge. 25
26 esponse on Falling edge The smaller PUN :» The smaller the swing, so it takes less time to reach 0.5(V OH V OL )» But the longer it takes to reach 0.5V DD! 26
27 Falling Edge Logical Effort t phl presents a new problem:» Both the PUN and PDN are conducting. thevenin n p I PUN I PDN 1 I PDN I PUN So eq is smaller than n? How could this be the pmos is fighting the discharge It s because of the swing 27
28 Pseudo nmos Logical Effort What is the actual?» Available urrent is the difference between PDN and PUN.» The current is approximately proportional to the resistance. I PUN VDD VDD V DD eq PDN PUN n,min eq n,min 1 eq p,min n 2 n for =1: 2 for =4: n eq n,min n eq n,min 3.5 n,min n I PDN 1 I PDN I PUN So eq is bigger than n? That makes more sense 28
29 Pseudo nmos Logical Effort So the parameters for pull down: eq n nmin 1 2 G n g min d n d min 1 p LE n d,min p nmin n n 0.5 n min 3d,min 3 n 0.5 nmin n g,min LE n nmin g,min n n gate inv gate inv d, gate d,min g, gate g,min for =1: 4 2 n p LE 3 3 for =4: 10 8 n p LE I PUN I PDN 1 I PDN I PUN 29
30 Pseudo nmos Logical Effort  Summary So to summarize:» With β=1 (high V OL ), we got: t plh : p LE t : 3 3 phl p LE 3 3» Our LE is LOWE than an inverter!» But don t forget we have depleted noise margins and we have static power» With β=4 (more realistic), we got: t plh : p LE t : 3 3 phl p LE 21 21» Our HL transition has much better performance than MOS!» But the LH transition is much worse. 30
31 Last Lecture Pseudo NMOS 31
32 Last Lecture ising Edge (easy): 32
33 Last Lecture Falling Edge ( complicated ): 33
34 Another Example What if we were to give the pmos a long L?» Say we want β=4, so we would choose W p /L p =W min /4 Lmin g gmin d 2 dmin 4 8 eqlh P eq p I I I 7 I eqhl I 7 HL n eq eq eq LH : p LH LE 3 3 LH HL : p 8 HL LE HL W 4L W L min min min min I PUN I PDN 1 I PDN I PUN 34
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationLecture 12 Circuits numériques (II)
Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationLecture 14  Digital Circuits (III) CMOS. April 1, 2003
6.12  Microelectronic Devices and Circuits  Spring 23 Lecture 141 Lecture 14  Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model
ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationDigital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman
Digital Microelectronic Circuits (3611301 ) Presented by: Adam Teman Lecture 4: The CMOS Inverter 1 Last Lectures Moore s Law Terminology» Static Properties» Dynamic Properties» Power The MOSFET Transistor»
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationCHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS
CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationCMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationLecture 13  Digital Circuits (II) MOS Inverter Circuits. March 20, 2003
6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS
More informationEE141. Administrative Stuff
Spring 2004 Digital Integrated ircuits Lecture 15 Logical Effort Pass Transistor Logic 1 dministrative Stuff First (short) project to be launched next Th. Overall span: 1 week Hardware lab this week Hw
More informationLecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:308:00pm in 105 Northgate
EE4Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:308:00pm in 05 Northgate Exam is
More informationCPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationVLSI Design and Simulation
VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter FirstOrder DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More information! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:
ESE 570: Digital Integrated ircuits and LSI Fundamentals Lecture Outline! Inverter Power! Dynamic haracteristics Lec 10: February 15, 2018 MOS Inverter: Dynamic haracteristics " Delay 3 Power Inverter
More informationEE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates)
EE 330 Lecture 37 Digital Circuits Other Logic Families Static Power Dissipation Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates) Review from Last Time Inverter
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More informationDigital Microelectronic Circuits ( ) Logical Effort. Lecture 7: Presented by: Adam Teman
Digital Microelectronic ircuits (36113021 ) Presented by: Adam Teman Lecture 7: Logical Effort Digital Microelectronic ircuits The VLSI Systems enter  BGU Lecture 7: Logical Effort 1 Last Lectures The
More informationDigital Integrated Circuits A Design Perspective
Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits  2 guntzel@inf.ufsc.br
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More informationBased on slides/material by. Topic 34. Combinational Logic. Outline. The CMOS Inverter: A First Glance
ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html
More informationEE 330 Lecture 39. Digital Circuits. Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates)
EE 330 Lecture 39 Digital ircuits Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates) Review from last lecture Other MOS Logic Families Enhancement Load NMOS Enhancement
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationLow Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 08 MOS Inverters  III Hello, and welcome to today
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationPractice 3: Semiconductors
Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC
ESE 570: Digital Integrated Circuits and LSI Fundamentals Lec 0: February 4, 207 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic Characteristics
More informationSpiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp
27.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 27.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance
More informationDigital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo
Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationIntroduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline
Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and
More informationThe Physical Structure (NMOS)
The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar
More informationCOMP 103. Lecture 16. Dynamic Logic
COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationSRAM Cell, Noise Margin, and Noise
SRAM Cell, Noise Margin, and Noise C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of MAH and BAW 1 Overview Reading Rabaey 5.3 W&H 2.5 Background Reading a memory cell can disturb its value. In addition,
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides
More informationEE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multipleinput gates
EE 330 Lecture 36 Digital Circuits Transfer Characteristics of the Inverter Pair One device sizing strategy Multipleinput gates Review from Last Time The basic logic gates It suffices to characterize
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 16, 2016 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic
More informationPassTransistor Logic
all 26 Digital tegrated ircuits nnouncements No new homework this week roject phase one due on Monday Midterm 2 next Thursday Review session on Tuesday Lecture 8 Logic Dynamic Logic EE4 EE4 2 lass Material
More informationDigital Microelectronic Circuits ( )
Digital Microelectronic ircuits (36113021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,
More informationEE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1
RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermediate steps: a correct solution without an explanation will get zero
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna Lecture Outline! Inverter Power! Dynamic Characteristics
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More informationStatic CMOS Circuits
Static MOS ircuits l onventional (ratioless) static MOS» overed so far l Ratioed logic (depletion load, pseudo nmos) l ass transistor logic ombinational vs. Sequential Logic In Logic ircuit In Logic
More informationStatic CMOS Circuits. Example 1
Static CMOS Circuits Conventional (ratioless) static CMOS Covered so far Ratioed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More information4.10 The CMOS Digital Logic Inverter
11/11/2004 section 4_10 The CMOS Digital Inverter blank.doc 1/1 4.10 The CMOS Digital Logic Inverter Reading Assignment: pp. 336346 Complementary MOSFET (CMOS) is the predominant technology for constructing
More informationCPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look
CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates epartment of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka )
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More informationCPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI esign I L07: MO Logic Gates, Pass Transistor Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More informationChapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter
Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More informationDigital Integrated Circuits 2nd Inverter
Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response
More informationP. R. Nelson 1 ECE418  VLSI. Midterm Exam. Solutions
P. R. Nelson 1 ECE418  VLSI Midterm Exam Solutions 1. (8 points) Draw the crosssection view for AA. The crosssection view is as shown below.. ( points) Can you tell which of the metal1 regions is the
More informationCMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.
CMOS Inverter: Steady State Response CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates R p V OL = V OH = V M = f(r n, R p ) epartment of Electrical and Computer Engineering University
More informationEE115C Digital Electronic Circuits Homework #3
Electrical Engineering Department Spring 1 EE115C Digital Electronic Circuits Homework #3 Due Thursday, April, 6pm @ 56147E EIV Solution Problem 1 VTC and Inverter Analysis Figure 1a shows a standard
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationECE 342 Electronic Circuits. Lecture 34 CMOS Logic
ECE 34 Electronic Circuits Lecture 34 CMOS Logic Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 De Morgan s Law Digital Logic  Generalization ABC... ABC...
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationEEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,
More information