Incorporating Effects of Forest Litter in a Snow Process Model

Size: px
Start display at page:

Download "Incorporating Effects of Forest Litter in a Snow Process Model"

Transcription

1 57th EASTERN SNOW CONFERENCE Syracuse, New York, USA, 2000 Incorporating Effects of Forest Litter in a Snow Process Model ABSTRACT J. P. H A R D Y, 1 R. MELLOH, 1 P. ROBINSON, 1 AND R. JORDAN 1 N e t s o l a r r a d i a t i o n o f t e n d o m i n a t e s t h e s n o w s u r f a c e e n e r g y e x c h a n g e d u r i n g a b l a t i o n i n m a n y c o n i f e r f o r e s t s. R e f l e c t i o n o f s o l a r r a d i a t i o n f r o m t h e s n o w s u r f a c e d e p e n d s n o t o n l y o n s n o w p r o p e r t i e s, b u t a l s o o n f o r e s t l i t t e r l y i n g o n a n d w i t h i n t h e s n o w p a c k. W e k n o w o f n o v a l i d a t e d m o d e l r e p o r t e d i n t h e l i t e r a t u r e t h a t a c c o u n t s f o r t h e i n f l u e n c e o f f o r e s t l i t t e r o n s n o w s u r f a c e e n e r g y e x c h a n g e s. T h e p u r p o s e o f t h i s w o r k i s t o t e s t a n e x i s t i n g a l g o r i t h m s a b i l i t y t o a c c u m u l a t e f o r e s t l i t t e r i n s n o w l a y e r s a n d t o p r e d i c t t h e s u b s e q u e n t e f f e c t o f l i t t e r o n t h e s n o w s u r f a c e a l b e d o. F i e l d s t u d i e s i n a c o n i f e r s t a n d o f r e d s p r u c e -b a l s a m f i r i n n o r t h e r n V e r m o n t, U S A, p r o v i d e d k e y d a t a f o r v a l i d a t i o n, i n c l u d i n g s u b c a n o p y r a d i a t i o n, m e t e o r o l o g y, s n o w d e p t h, a n d i m a g e s o f l i t t e r a c c u m u l a t i o n. W e r a n t h e l i t t e r a l g o r i t h m c o u p l e d w i t h t h e s n o w m o d e l S N T H E R M f o r t h e a b l a t i o n s e a s o n, a n d p r e d i c t io n s c o m p a r e d w e l l w i t h m e a s u r e m e n t s o f s n o w d e p t h, s n o w s u r f a c e l i t t e r c o v e r a g e, a n d s n o w s u r f a c e a l b e d o b e n e a t h t h e c o n i f e r c a n o p y. M o d e l r e s u l t s s u g g e s t t h a t f o r t h i s f o r e s t a n d a b l a t i o n s e a s o n, t h e c u r r e n t l i t t e r a l g o r i t h m r e a l i s t i c a l l y d i s t r i b u t e s l i t te r i n t h e s n o w p a c k t h r o u g h t i m e w i t h v a l i d a t e d e f f e c t s o n s n o w s u r f a c e l i t t e r c o n c e n t r a t i o n a n d a l b e d o. T h e p o o r r e l a t i o n s h i p b e t w e e n d a i l y t o t a l w i n d s p e e d a n d c h a n g e i n l i t t e r c o v e r a g e o n t h e s n o w s u r f a c e s u g g e s t t h a t, f o r t h i s f o r e s t a n d a b l a t i o n s e a s o n, i n c o r p o r a t i n g w i n d e v e n t s i n t o t h e a l g o r i t h m w i l l n o t i m p r o v e t h e r e s u l t s. K e y W o r d s : A l b e d o, F o r e s t l i t t e r, S n o w m o d e l l i n g 1 U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire , USA jhardy@crrel.usace.army.mil

2 INTRODUCTION F o r e s t s a r e w e l l k n o w n t o a l t e r t h e a c c u m u l a t i o n o f s n o w o n t h e g r o u n d a n d t o m o d i f y n e a r - s u r f a c e m i c r o m e t e o r o l og y, w h i c h c o n t r o l s s n o w m e l t r a t e s. N e t s o l a r r a d i a t i o n ( i n c o m i n g m i n u s r e f l e c t e d ) o f t e n d o m i n a t e s t h e s n o w s u r f a c e e n e r g y e x c h a n g e d u r i n g a b l a t i o n i n m a n y c o n i f e r f o r e s t s ( P r i c e a n d D u n n e , M e t c a l f e a n d B u t t l e , H a r d i n g a n d P o m e r o y , D a v i s e t a l , H a r d y e t a l ). T h e s o l a r r a d i a t i o n i n c i d e n t o n t h e s n o w s u r f a c e d e p e n d s o n f o r e s t s t r u c t u r e a n d v a r i e s w i t h t r e e s p e c i e s, s k y c o n d i t i o n s, a n d s o l a r a n g l e. R e f l e c t i o n o f s o l a r r a d i a t i o n f r o m t h e s n o w s u r f a c e d e p e n d s n o t o n l y o n s n o w p r o p e r t i e s ( g r a i n s i z e, p a r t i c l e d e n s i t y, a n d l i q u i d w a t e r c o n t e n t ), b u t o n f o r e s t l i t t e r ( l e a v e s, t w i g s, n e e d l e s, b a r k, a n d b r a n c h e s ) l y i n g o n a n d w i t h i n t h e s n o w p a c k a n d p r o t r u d i n g v e g e t a t i o n. L i t t e r d e p o s i t e d o n t h e s n o w s u r f a c e a c c u m u l a t e s i n l i t t e r h o r i z o n s a s t h e s n o w p a c k d e v e l o p s. T h e s e l i t t e r h o r i z o n s, u s u a l l y s e p a r a t e d b y s u b s e q u e n t s n o w f a l l s, a r e r e -e x p o s e d d u r i n g m e l t. N e t s o l a r r a d i a t i o n i n a f o r e s t e n v i r o n m e n t t h u s d e p e n d s o n f o r e s t s t r u c t u r e a n d t i m e o f y e a r, a s w e l l a s t h e a c c u m u l a t i o n a n d r e-e x p o s u r e o f f o r e s t d e b r i s. M a n y i n v e s t i g a t o r s c o n s i d e r a l b e d o o f t h e f o r e s t c a n o p y ( e. g., O t t e r m a n e t a l , L i s t o n , B e t t s a n d B a l l , N a k a i e t a l , N i a n d W o o d c o c k i n p r e s s ) o r t h e e f f e c t s o f d u s t a n d s o o t o n s n o w s u r f a c e a l b e d o ( e. g., W i s c o m b e a n d W a r r e n , G e r l a n d e t a l ). O t h e r s q u a l i t a t i v e l y d e s c r i b e t h e e f f e c t t h a t p r o t r u d i n g v e g e t a t i o n h a s o n s n o w a l b e d o ( P o m e r o y e t a l ) o r e v e n m a k e m u l t i p l e m e a s u r e m e n t s o f n e t r a d i a t i o n b e n e a t h a f o r e s t ( P r i c e a n d D u n n e , N a d e a u a n d G r a n b e r g ). M e a s u r e m e n t s o f a l b e d o b e n e a t h a f o r e s t c a n o p y a r e r a r e, a n d w h e n t h e y d o e x i s t a r e l i m i t e d ( H a r d i n g a n d P o m e r o y , P o m e r o y a n d D i o n ). M o s t s n o w p r o c e s s m o d e l s u s e t h e w e l l-k n o w n f a c t t h a t s n o w a l b e d o d e c r e a s e s a s s n o w m e t a m o r p h o s e s t o l a r ge r g r a i n s, w h i l e i g n o r i n g l i t t e r e f f e c t s, w h i c h c a n b e s u b s t a n t i a l ( J o r d a n , D i n g m a n , A l b e r t a n d K r a j e s k i , P o m e r o y e t a l ). P r o g r e s s i n t h i s a r e a h a s b e e n s e v e r e l y l i m i t e d d u e t o t h e l a c k o f w i n t e r d a t a o n t h r o u g h -c a n o p y r a d i a t i o n, s n o w a l b e d o, a n d l i t t e r f a l l i n f o r e s t e d e n v i r o n m e n t s. A p r e v i o u s s n o w p a c k e n e r g y b a l a n c e s t u d y i n t h e b o r e a l f o r e s t i n t r o d u c e d a p r o v i s i o n a r y t e c h n i q u e t o e s t i m a t e l i t t e r f a l l a n d i t s i n c o r p o r a t i o n i n t h e s n o w p a c k ( H a r d y e t a l ). T h e t e c h n i q u e i n c o r p o r a t e s l i t t e r w i t h i n a c c u m u l a t i n g s n o w l a y e r s w i t h c o n t i n u e d d e p o s i t i o n d u r i n g s n o w a b l a t i o n, a n d r e e m e r g e n c e o f l i t t e r a s t h e s n o w p a c k m e l t s. W h e n c o u p l e d w i t h t h e s n o w m o d e l S N T H E R M ( J o r d a n ), t h e l i t t e r m o d e l p r o v i d e d t h e n e c e s s a r y c o r r e c t i o n t o o b t a i n a g r e e m e n t b e t w e e n m o d e l a n d a c t u a l s n o w a b l a t i o n a t t h e b o r e a l f o r e s t s i t e, b u t t h e p r e v i o u s s t u d y l a c k e d q u a n t i t a t i v e l i t t e r a n d a l b e d o d a t a t o v a l i d a t e t h e m o d e l. T h e p u r p o s e o f t h i s r e s e a r c h i s t o p r o v i d e f u r t h e r v a l i d a t i o n o f t h e H a r d y e t a l. ( ) l i t t e r m o d e l, u s i n g a c o m p r e h e n s i v e f o r e s t l i t t e r a n d a l b e d o d a t a s e t c o l l e c t e d i n a t e m p e r a t e f o r e s t i n n o r t h e r n V e r m o n t, U S A ( M e l l o h e t a l. i n p r e p ). S e c o n d a r i l y, o u r o b j e c t i v e i s t o a s s e s s o p p o r t u n i t i e s t o i m p r o v e t h e e q u a t i o n t h a t c o n t r o l s l i t t e r i n p u t r a t e s t o t h e m o d e l, t o a c c o u n t f o r i m p o r t a n t m e t e o r o l o g i c a l e v e n t s, e s p e c i a l l y h i g h w i n d s. STUDY AREA T h e s t u d y a r e a i s l o c a t e d w i t h i n a s m a l l c o n i f e r f o r e s t i n t h e W -9 s u b -w a t e r s h e d ( k m 2, ?2 6?N, ?2 8?W ) o f t h e S l e e p e r s R i v e r R e s e a r c h W a t e r s h e d ( k m 2 ) i n n o r t h e r n V e r m o n t, U S A. R o b i n s o n e t a l. ( i n p r e p ) d e t e r m i n e d t h e f o r e s t c h a r a c t e r i s t i c s o f t h e p l o t. T h e c o n i f e r p l o t m e a s u r e s 2 2 m? 2 2 m a n d i s d o m i n a t e d b y r e d s p r u c e b a l s a m f i r (Picea rubens Abies balsamea ) (Fig. 1). The average tree h e i g h t i s m a n d t h e a v e r a g e c r o w n h e i g h t i s 8. 0 m. T o t a l D B H ( D i a m e t e r a t B r e a s t H e i g h t o r 1. 5 m f r o m t h e g r o u n d ) p e r h e c t a r e o f a l l s t a n d i n g t r e e s, l i v i n g a n d d e a d, i s m. T h e p e r c e n t c o v e r o f t h e b a l s a m f i r c a l c u l a t e d a s B a s a l A r e a ( B A ) o f l i v e t r e e s i s a p p r o x i m a t e l y 6 1 % c o m p a r e d t o 3 9 % f o r t h e r e d s p r u c e. T h e y o u n g r e d s p r u c e a p p e a r t o b e d y i n g u n d e r t h e d e e p s h a d e o f t h e m a t u r e b a l s a m f i r, m a n y n o t l i v i n g b e y o n d 0. 1-m DBH. T h e s h r u b l a y e r i s v o i d o f a n y w o o d y v e g e t a t i o n b e t w e e n 0. 5 m a n d 2. 0 m. T h e g r o u n d c o v e r w a s n o t s u r v e y e d, b u t a n a b u n d a n c e o f f a l l e n t r e e s a n d b a l s a m f i r s e e d l i n g s w a s o b s e r v e d.

3 Figure 1. Photo taken on 9 April 1999 (day 99) in the conifer forest. Note the litter on the snow surface and the abundance of fallen trees on the ground. A p p r o x i m a t e l y 0. 8 k m f r o m t h e c o n i f e r s i t e i s t h e l o c a t i o n o f a m e t e o r o l o g i c a l s t a t i o n s i t u a t e d i n a l a r g e o p e n a r e a a n d i n o p e r a t i o n s i n c e A t t h e o p e n s i t e, t h e m e a n a n n u a l t e m p e r a t u r e i s a b o u t 4 C a n d t h e m e a n a n n u a l p r e c i p i t a t i o n i s a b o u t m m. S n o w f a l l a v e r a g e s m m w i t h a m a x i m u m s n o w w a t e r e q u i v a l e n t ( S W E ) n o r m a l l y t o m m ( P a n g b u r n e t a l ). METHODS Forest characterization: Meteorological and snow measurements P r i o r t o t h e / s n o w s e a s o n, t h e f o r e s t c o m m u n i ty s u r r o u n d i n g t h e c o n i f e r s i t e w a s q u a n t i f i e d u s i n g s a m p l i n g m e t h o d s d e s c r i b e d i n D a u b e n m i r e ( ) a n d B r o w e r e t a l. ( ). P a r a m e t e r s a n a l y z e d i n c l u d e d s p e c i e s c o m p o s i t i o n, a b u n d a n c e, r e l a t i v e s p e c i e s d e n s i t y, a n d p e r c e n t c o v e r i n s h r u b a n d t r e e l a y e r s. R o b i n s o n e t a l. ( i n p r e p ) p r o v i d e a d e t a i l e d e x p l a n a t i o n o f t h e s e s a m p l i n g m e t h o d s. D u r i n g t h e s n o w a b l a t i o n s e a s o n ( l a t e F e b r u a r y t h r o u g h A p r i l ) M e l l o h e t a l. ( i n p r e p ) c o n t i n u o u s l y m e a s u r e d i n c o m i n g s o l a r a n d l o n g w a v e r a d i a t i o n t h r o u g h t h e c a n o p y a n d r e f l e c t e d s o l a r r a d i a t i o n f r o m t h e s n o w p a c k u s i n g a r r a y s o f f o u r u p - a n d f o u r d o w n l o o k i n g r a d i o m e t e r s ( E p p l e y p y r a n o m e t e r s, P S P ) i n t h e c o n i f e r s i t e. T w o u p l o o k i n g E p p l e y p y r g e o m e t e r s ( P I R ; 8 - t o 5 0 -? m w a v e l e n g t h ) m e a s u r e d i n c o m i n g l o n g w a v e r a d i a t i o n b e n e a t h t h e c o n i f e r c a n o p y. T w o - m e t e r, s u b c a n o p y a i r t e m p e r a t u r e, r e l a t i v e h u m i d i t y, a n d w i n d s p e e d w e r e a l s o m e a s u r e d i n t h e c o n i f e r s i t e. M e a s u r e m e n t a n d d e p l o y m e n t d e t a i l s a r e o u t l i n e d i n M e l l o h e t a l. ( i n p r e p ). T h e m e t e o r o l o g i c a l p a r a m e t e r s m e a s u r e d a t t h e o p e n s i t e c o n s i s t o f a i r t e m p e r a t u r e a n d r e l a t i v e h u m i d i t y, w i n d s p e e d a n d d i r e c t i o n ( 2 -m a n d 6-m h e i g h t ), c o n t i n u o u s s n o w d e p t h, i n c o m i n g a n d r e f l e c t e d s o l a r r a d i a t i o n, i n c o m i n g a n d o u t g o i n g l o n g w a v e r a d i a t i o n, a n d p r e c i p i t a t i o n. T h e s n o w p a c k p r o p e r t i e s w e r e m e a s u r e d a n d m o n i t o r e d t w o w a y s. F i r s t, a n u l t r a s o n i c d e p t h s e n s o r m e a s u r e d s n o w d e p t h f r o m a s i n g l e p o i n t i n t h e f o r e s t. T h i s d e p t h g a u g e m e a s u r e d t h e d i s t a n c e f r o m t h e s e n s o r t o t h e s n o w s u r f a c e a n d p r o v i d e d a c o n t i n u o u s r e c o r d o f s n o w d e p t h f o r v a l i d a t i o n o f o u r m o d e l r u n s. S e c o n d, s n o w d e p t h a n d i t s v a r i a b i l i t y w e r e r e g u l a r l y m e a s u r e d b y m a n u a l s u r v e y s, a s w e r e o c c a s i o n a l m e a s u r e m e n t s o f s n o w d e n s i t y a t t h e s t u d y s i t e d u r i n g t h e a b l a t i o n s e a s o n. A t p e a k a c c u m u l a t i o n a n d t o i n i t i a l i z e t h e s n o w m od e l, t h e s n o w d e n s i t y p r o f i l e a t m v e r t i c a l r e s o l u t i o n u s i n g a cm 3 d e n s i t y c u t t e r w a s m e a s u r e d a l o n g w i t h s n o w t e m p e r a t u r e s u s i n g d i a l s t e m t h e r m o m e t e r s.

4 Snow surface and in-pack litter contamination A n o v e l, r a d i o -l i n k e d c a m e r a s y s t e m c o l l e c t e d a n d t r a n s m i t t e d r e a l -t i m e d i g i t a l i m a g e s o f t h e s n o w s u r f a c e c o n d i t i o n. M e l l o h e t a l. ( i n p r e p ) p r o v i d e s p e c i f i c s o f t h e d e s i g n a n d d e p l o y m e n t o f t h e c a m e r a s y s t e m. T h i s t e c h n i q u e d o c u m e n t e d s n o w s u r f a c e l i t t e r c h r o n o l o g y f r o m F e b r u a r y t h r o u g h A p r i l i t s a c c u m u l a t i o n a n d r e -e x p o s u r e d u r i n g m e l t. T h e d o w n l o a d e d a n d p r o c e s s e d i m a g e s w e r e a n a l y z e d u s i n g i m a g e -p r o c e s s i n g s o f t w a r e t o c r e a t e b i n a r y ( p u r e b l a c k a n d w h i t e ) i m a g e s f o r s t a t i s t i c a l a n a l y s i s. S t e r e o l o g i c p a r a m e t e r s w e r e c o m p u t e d a u t o m a t i c a l l y b y p a s s i n g t e s t l i n e s a c r o s s t h e b i n a r y i m a g e a n d u s i n g e q u a t i o n s f o r c o u n t i n g s t a t i s t i c s, a s d e s c r i b e d b y D o z i e r e t a l. ( ). T h e p o i n t d e n s i t y s t a t i s t i c p r o v i d e d t h e t w o -d i m e n s i o n a l l i t t e r c o v e r a g e ( % ) a t t h e s n o w s u r f a c e, b u t a s i m p l e r a t i o o f b l a c k t o w h i t e a r e a s c o u l d p r o v i d e t h e s a m e r e s u l t s. I n a d d i t i o n t o m e a s u r i n g s n o w p r o p e r t i e s a t p e a k a c c u m u l a t i o n ( s e e a b o v e ), s n o w s a m p l e s a p p r o x i m a t e l y 0. 3 m w i d e, 0. 5 m l o n g, a n d 0. 1 m d e e p w e r e c o l l e c t e d t o q u a n t i f y t h e l i t t e r i n t h e s n o w p a c k ( M e l l o h e t a l. i n p r e p ). Ea c h o f t h e f i v e s a m p l e s w a s m e l t e d t o s e p a r a t e l i t t e r f r o m s n o w a n d d r a i n e d o f e x c e s s w a t e r ; t h e l i t t e r w a s d r i e d i n a s o i l -d r y i n g o v e n f o r 2 4 h o u r s a n d w e i g h e d ( R o b i n s o n e t a l. i n p r e p ). Snow process model S N T H E R M i s a n i n t e r n a t i o n a l l y r e c o g n i z e d, o n e -d i m e n s i o n a l m a s s a n d e n e r g y b a l a n c e m o d e l f o r p r e d i c t i n g s n o w p a c k p r o p e r t i e s a n d p r o c e s s e s ( J o r d a n ), a n d i s t h e f o u n d a t i o n f o r t h i s s n o w m o d e l l i n g e f f o r t. S N T H E R M c a l c u l a t e s e n e r g y e x c h a n g e a t t h e s u r f a c e a n d b o t t o m o f t h e s n o w c o v e r, i n -p a c k p r o c e s s e s, g r a i n g r o w t h, d e n s i f i c a t i o n a n d s e t t l e m e n t, m e l t i n g a n d l i q u i d w a t e r f l o w, h e a t c o n d u c t i o n a n d v a p o r d i f f u s i o n ( J o r d a n ). H a r d y e t a l. ( , ) s u c c e s s f u l l y a p p l i e d S N T H E R M t o f o r e s t e d e n v i r o n m e n t s b y l i n k i n g i t t o a g e o m e t r i c-o p t i c, r a d i a t i v e -t r a n s f e r m o d e l ( L i e t a l , N i e t a l ). S N T H E R M c o m p u t e s r e f l e c t e d s o l a r r a d i a t i o n u s i n g a n a l b e d o r o u t i n e t h a t a c c o u n t s f o r c h a n g e s i n a l b e d o d u e t o g r a i n g r o w t h, s u n a n g l e, a n d c l o u d c o v e r ( M a r k s ) a n d m o s t r e c e n t l y, r e d u c e s a l b e d o t o a c c o u n t fo r t h e o p t i c a l t h i n n i n g o f s n o w ( H a r d y e t a l ). S i n c e c l e a n s n o w i s u n l i k e l y b e l o w a f o r e s t c a n o p y, H a r d y e t a l. ( ) i n t r o d u c e d a p r o v i s i o n a l r o u t i n e t o e s t i m a t e l i t t e r f a l l o n t h e f o r e s t f l o o r t h a t r e d u c e d t h e s u b c a n o p y s n o w a l b e d o a s f o r e s t l i t t e r a c c u m u l a t e s. T h e r o u t i n e a l l o w s t h e f r a c t i o n a l c o v e r a g e o f l i t t e r i n o r o n t h e s n o w p a c k t o i n c r e a s e t h r o u g h o u t t h e e n t i r e s n o w s e a s o n a c c o r d i n g t o e q. 1 : lc = 1. 0 ( 1. 0 lr ) d a y ( 1 ) w h e r e lc i s t h e f r a c t i o n a l l i t t e r c o v e r a g e ( m 2 m 2 ), lr i s t h e d a i l y l i t t e r r a t e ( m 2 m 2 d 1 ) o f t h e f o r e s t, a n d day i s t h e n u m b e r o f l i t t e r a c c u m u l a t i o n d a y s f o r w h i c h t h e l i t t e r c o v e r a g e i s c a l c u l a t e d. T h e r e s u l t i n g a l b e d o i s a w e i g h t e d a v e r a g e o f l i t t e r a l b e d o a n d c l e a n s n o w a l b e d o i n p r o p o r t i o n t o t h e i r a r e a l c o v e r a g e. T h i s l i t t e r r o u t i n e w a s i n t e n d e d a s a p r e l i m i n a r y a t t e m p t a t c o n s i d e r i n g t h e w e l l-k n o w n e f f e c t l i t t e r h a s o n r e d u c i n g a l b e d o. Snow model initialization W e r a n t h e m o d e l f r o m 1 M a r c h ( d a y 6 0 ) t h r o u g h 2 3 A p r i l ( d a y ). T h e m e t e o r o l o g i c a l f i l e u s e d f o r t h e d u r a t i o n o f t h e m o d e l r u n i n c l u d e s a i r t e m p e r a t u r e, r e l a t i v e h u m i d i t y, a n d w i n d s p e e d d a t a f r o m t h e c o n i f e r s t a t i o n. W e u s e d a n a i r t e m p e r a t u r e t h r e s h o l d o f C t o s e p a r a t e p r e c i p i t a t i o n e v e n t s a s s n o w o r r a i n. U s i n g t h e i n c o m i n g s o l a r r a d i at i o n f r o m t h e o p e n s i t e a n d t h e m e a n o f t h e f o u r -u p l o o k i n g P S P s f r o m t h e c o n i f e r s i t e, w e e s t a b l i s h e d t h e t r a n s m i s s i v i t y f o r e a c h t i m e s t e p. B e c a u s e o f r a p i d l y c h a n g i n g s u n a n g l e s i n t h e s p r i n g, w e d i v i d e d t h e m o d e l l i n g p e r i o d i n t o t w o p e r i o d s a n d m u l t i p l i e d t h e m e a n t r a n s m i s s i v i t y f o r e a c h p e r i o d b y t h e u n o b s t r u c t e d p y r a n o m e t e r d a t a t o o b t a i n a v a l u e f o r t h e s u b c a n o p y i n c o m i n g s o l a r r a d i a t i o n. W e a l l o w e d S N T H E R M t o e s t i m a t e r e f l e c t e d r a d i a t i o n b a s e d o n s n o w g r a i n s i z e, a g e, a n d l i t t e r c o v e r a g e. T h e m e a n o f t h e f o u r-i n v e r t e d P S P s p r o v i d e d r e f l e c t e d r a d i a t i o n d a t a f o r a l b e d o v a l i d a t i o n. W e a v e r a g e d t h e l o n g w a v e d a t a f r o m b o t h P I R s f o r l o n g w a v e i n p u t. D a t a f o r t h e s n o w p r o p e r t i e s r e q u i r e d b y t h e m o d e l ( s n o w l a y e r t h i c k n e s s, t e m p e r a t u r e, d e n s i t y, a n d g r a i n s i ze ) w e r e o b t a i n e d f r o m s n o w p i t o b s e r v a t i o n s o n 9 M a r c h a n d a d j u s t e d t o r e p r e s e n t t h e s n o w c o n d i t i o n s f o r 1 M a r c h. L i t t e r a c c u m u l a t e d o n t h e s n o w s u r f a c e b e g i n n i n g w i t h

5 t h e f i r s t s n o w f a l l. W h e n a m o d e l r u n b e g i n s a t p e a k a c c u m u l a t i o n, t h e l i t t e r c o n t e n t o f t h e i n i t i a l s n o w l a y e r s a r e c o m p u t e d u s i n g e q. 1 b a s e d o n t h e n u m b e r o f d a y s b e t w e e n s n o w e v e n t s l e a d i n g t o m a x i m u m a c c u m u l a t i o n. I n o r d e r t o r u n t h e l i t t e r a l g o r i t h m w i t h S N T H E R M, S N T H E R M r e q u i r e s a n a d d i t i o n a l c o l u m n c o n t a i n i n g e s t i m a t e s o f l i t t e r c o n t e n t i n t h e s n o w i n p u t f i l e. W e u s e d p r e c i p i t a t i o n d a t a f r o m t h e o p e n s i t e t o d e t e r m i n e t h e t i m i n g o f s n o w f a l l e v e n t s l e a d i n g u p t o 1 M a r c h a n d t h e r e f o r e c o m p u t e d l i t t e r c o v e r a g e f o r e a c h s n o w l a y e r. T o v a l i d a t e t h e m o d e l o u t p u t w e c o m p a r e d m a n u a l a n d c o n t i n u o u s m e a s u r e m e n t s o f s n o w d e p t h i n t h e c o n i f e r f o r e s t ; p e r c e n t l i t t e r c o v e r a g e d e r i v e d f r o m d i g i t a l i m a g e s ; a n d o u r m e a s u r e m e n t s o f f o r e s t a l b e d o, w i t h S N T H E R M o u t p u t. RESULTS D r y s p r i n g w e a t h e r ( i. e., c l e a r r a d i o m e t e r s ) p e r m i t t e d n e a r l y c o n t i n u o u s m e a s u r e m e n t o f t h r o u g h -c a n o p y i n c o m i n g r a d i a t i o n a n d t h a t r e f l e c t e d f r o m t h e s n o w-c o v e r e d f o r e s t f l o o r i n t h e s e s t a n d s f r o m l a t e w i n t e r t h r o u g h t h e s n o w m e l t s e a s o n ( M e l l o h e t a l. i n p r e p. ). S u b c a n o p y i n c o m i n g s o l a r r a d i a t i o n w a s c o m p a r e d w i t h t h a t m e a s u r e d i n t h e o p e n s i t e, l e s s t h a n o n e k i l o m e t e r a w a y. M e a n c o n i f e r t r a n s m i s s i v i t y f o r t h e m o d e l l e d p e r i o d w a s L o n g w a v e r a d i a t i o n d a t a m e a s u r e d b y t h e t w o P I R s w e r e i n v e r y c l o s e a g r e e m e n t ( r 2 = ) a n d w e r e a v e r a g e d t o r e p r e s e n t t h e i n c i d e n t l o n g w a v e c o m p o n e n t i n t h e f o r e s t. A s e x p e c t e d, t h e l o n g w a v e c o m p o n e n t i n t h e f o r e s t h a d h i g h e r v a l u e s b u t m u c h l o w e r t e m p o r a l v a r i a t i o n t h a n m e a s u r e d i n t h e o p e n s i t e. L o w w i n d s p e e d s i n t h e c o n i f e r s i t e s u g g e s t t h a t t h e t u r b u l e n t f l u x e s a r e l o w a n d t h a t t h e r a d i a t i on b a l a n c e d o m i n a t e s t h e s u r f a c e e n e r g y f l u x e s. Photos of snow surface T h e e l e c t r o n i c d i g i t a l c a m e r a s y s t e m s u c c e s s f u l l y m o n i t o r e d s n o w s u r f a c e c o n d i t i o n s r e m o t e l y u s i n g r a d i o c o m m u n i c a t i o n s ( M e l l o h e t a l. i n p r e p ). T h e t w i c e -d a i l y d i g i t a l i m a g e s o f t h e s n ow s u r f a c e d o c u m e n t l i t t e r c o n d i t i o n s f r o m 4 M a r c h t h r o u g h t h e c o m p l e t i o n o f m e l t o n 2 1 A p r i l ( e. g., F i g. 2 ). D u r i n g t h i s p e r i o d, 5 0 i m a g e s w e r e o f s u f f i c i e n t q u a l i t y t o p r o c e s s, o f w h i c h 3 0 p r o v i d e d u s e f u l i n f o r m a t i o n. T w e n t y o f t h e i m a g e s e i t h e r w e r e f r e e o f l i t t e r d u e t o a r e c e n t s n o w f a l l, s u g g e s t e d n o c h a n g e f r o m t h e p r i o r i m a g e, o r c o n t a i n e d b a r e g r o u n d. A n a l y s e s o f t h e d i g i t a l i m a g e s p r o v i d e d p e r c e n t s u r f a c e l i t t e r c o v e r a g e f r o m m a x i m u m s n o w d e p t h t h r o u g h s p r i n g a s l i t t e r l a y e r s w e r e r e-e x p o s e d d u r i n g m e l t o u t. T h e l a t e s t i m a g e w i t h c o m p l e t e s n o w c o v e r w a s t a k e n 1 6 A p r i l w i t h l i t t e r c o v e r a g e o f 2 5 %. T h e n e x t i m a g e w a s f r o m 1 9 A p r i l a n d h a s a l i t t e r c o v e r a g e o f 5 6 % a n d i n c l u d e s s o m e b a r e g r o u n d. B y 2 1 A p r i l a l l b u t 3 % o f t h e i m a g e w a s s n o w - f r e e. T h e r e l a t i o n s h i p b e t w e e n l i t t e r c o v e r a g e d e r i v e d f r o m t h e d i g i t a l i m a g e s a n d t h e d a i l y a v e r a g e a l b e d o m e a s u r e d i n t h e f o r e s t e d s t a n d i s d e s c r i b e d b y a s e c o n d o r d e r p o l y n o m i a l ( r 2 = ) ( M e l l o h e t a l. i n p r e p. ). a b

6 Figure 2. Two examples of digital images obtained from the remote camera system and the corresponding binary image. The images were obtained on 1 April (a) and 12 April (b) and represent 7% and 24% litter coverage, respectively. Model run using litter routine W e c o m p a r e d m e a s u r e m e n t s o f s n o w d e p t h, s n o w s u r f a c e l i t t e r c o v e r a g e, a n d s n o w s u r f a c e a l b e d o b e n e a t h t h e c o n i f e r c a n o p y w i t h r e s u l t s o f a S N T H E R M m o d e l r u n u s i n g t h e l i t t e r e q u a t i o n ( e q. 1 ). W e a s s u m e d a l i t t e r r a t e o f d 1 f o r t h i s c o n i f e r s i t e ( a n i n c r e a s e o f d 1 a s p r e vi o u s l y u s e d f o r a b l a c k s p r u c e s t a n d ). T h e a l b e d o o f t h e c o n i f e r l i t t e r ( ) w a s b a s e d o n r e s u l t s o f O k e ( ) a n d a l b e d o m e a s u r e m e n t s o f t h e f o r e s t f l o o r a f t e r c o m p l e t e s n o w m e l t ( M e l l o h e t a l. i n p r e p ). T h e g r o u n d i n t h e c o n i f e r s i t e w a s c o n t i n u o u s l y s n o w c o v e r e d f o r approximately 125 d a y s, o f w h i c h 4 8 d a y s w e r e m o d e l l e d. T h e s n o w i n p u t f i l e c o n t a i n e d e s t i m a t e s o f l i t t e r c o v e r a g e, c o m p u t e d f r o m e q. 1, i n e a c h e x i s t i n g s n o w l a y e r f r o m d a y 3 5 0, , t o d a y 6 0, ( T a b l e 1 ). T h e s u m o f t h e l i t t e r c o v e r a g e i n T a b l e 1 i s , w h i c h e q u a l s t h e d a i l y l i t t e r r a t e ( d 1 ) m u l t i p l i e d b y t h e n u m b e r o f s n o w d a y s ( 7 5 ) b e t w e e n d a y 3 5 0, , a n d d a y 6 0, T h e r e a r e t w o w a y s t h e f r a c t i o n o f l i t t e r o n t h e s n o w s u r f a c e i n c r e a s e s. E i t h e r e x i s t i n g s n o w l a y e r s me l t, l e a v i n g b e h i n d t h e i r l i t t e r o n t h e s n o w s u r f a c e, o r a d d i t i o n a l l i t t e r a c c u m u l a t e s o n t h e s n o w s u r f a c e t h r o u g h t i m e. S i m i l a r l y, l i t t e r l e a v e s t h e s n o w p a c k l a t e i n t h e a b l a t i o n s e a s o n a s t h e l o w e s t s n o w l a y e r s m e l t a n d l i t t e r b e c o m e s p a r t o f t h e f o r e s t f l o o r. T h e l i t t e r e q u a t i o n e s t i m a t e s t o t a l l i t t e r c o v e r a g e o f 5 3 % i n t h i s c o n i f e r f o r e s t a t t h e e n d o f t h e s n o w a b l a t i o n p e r i o d. O n 9 M a r c h, w h i l e a n a l y z i n g t h e s n o w p a c k p r o f i l e i n t h e c o n i f e r f o r e s t, s i g n i f i c a n t l i t t e r h o r i z o n s w e r e n o t e d a t s n o w h e i g h t s o f a p p r o x i m a t e l y 3 1 c m, 3 9 c m, a n d c m, w i t h t h e m o s t p r o n o u n c e d l i t t e r h o r i z o n a t 3 1 c m. T h e c o l l e c t e d s n o w a n d l i t t e r s a m p l e s t h a t w e r e s e p a r a t e d, d r i e d, a n d w e i g h e d c o n f i r m e d t h o s e o b s e r v a t i o n s ( F i g. 3 a ). F o r c o m p a r i s o n, w e p l o t t h e m o d e l l e d l i t t e r c o v e r a g e i n t h e s n o w p a c k, a s d e t e r m i n e d b y S N T H E R M f o r d a y 6 8, a n d b i n n e d a c c o r d i n g t o F i g u r e 3 a ( F i g. 3 b ). T h e m o d e l l e d l i t t e r c o v e r a g e s h o w s a s i m i l a r p r o f i l e o f l i t t e r a c c u m u l a t i o n a s t h e m e a s u r e d s a m p l e s w i t h t h e g r e a t e s t a c c u m u l a t i o n m i d-s n o w p a c k a n d t h e m o s t s i g n i f i c a n t l i t t e r l a y e r a t b e t w e e n a n d 3 3-c m h e i g h t. T h e m o s t p r o n o u n c e d l i t t e r h o r i z o n s o c c u r w h e n t h e p e r i o d b e t w e e n s n o w e v e n t s i s l o n g e s t. Table 1. Snow property input file used to initialize SNTHERM. The input file is based on snow property measurements made in the conifer site on 9 March and adjusted for 1 March. Litter coverage is the percent coverage for the respective snow layer. The surface snow layer is at the top of the table. Temp. (K) Snow height (m) Density (Kg m 3 ) Grain size (m) Litter coverage (%)

7 43-59 Day Weight of Dry Litter (g) Day Litter Coverage % Figure 3. Profile of dry litter weights in the snowpack as collected on day 68 and processed by Robinson et al. (in prep) (Fig. 3a). Profile of SNTHERM-determined litter in the snowpack on day 68 (Fig. 3b). These data were binned to compare with field data. L i t t e r c o v e r a g e p r o f i l e s d e t e r m i n e d b y S N T H E R M d u r i n g t h e m o d e l r u n w e r e b i n n e d i n t o 5-cm i n t e r v a l s a n d p l o t t e d f o r e v e r y t e n d a y s o f m o d e l o u t p u t ( F i g. 4 ). T h e s e r i e s o f p l o t s s h o w s t h e d i s t r i b u t i o n o f l i t t e r i n t h e s n o w p a c k t h r o u g h t i m e a n d t h e i n c r e a s e i n l i t t e r c o n c e n t r a t i o n a s t h e s n o w m e l t s. S n o w d e p t h s f o r d a y s 6 0, 7 0, 8 0, 9 0, a n d w e r e , , , , a n d 4. 5 c m, r e s p e c t i v e l y. B e c a u s e S N T H E R M o u t p u t s l i t t e r i n n o d e s o f v a r y i n g t h i c k n e s s a n d c o m b i n e s a n d d i v i d e s n o d e s, i t i s n o t p r a c t i c a l t o t r a c k i n d i v i d u a l l i t t e r h o ri z o n s. F i g u r e 4 e s u g g e s t s a s u r f a c e l i t t e r c o v e r a g e o f 6 2 % o n d a y 1 0 0, c o m p a r e d w i t h m o d e l e s t i m a t e o f t o t a l l i t t e r c o v e r a g e o f 5 3 % a t t h e e n d o f t h e s n o w a b l a t i o n p e r i o d. T h i s d i s c r e p a n c y i s e a s i l y e x p l a i n e d b y t h e w a y S N T H E R M a c c o u n t s f o r l i t t e r i n a m e l t i n g s n o w p a c k. O n d a y t h e s n o w p a c k i s 4. 5 c m d e e p a n d c o n t a i n s a s u m o f 6 2 % l i t t e r i n f i v e r e m a i n i n g s n o w l a y e r s. J u s t b e f o r e c o m p l e t e a b l a t i o n o n d a y 1 0 7, t h e s n o w s u r f a c e l i t t e r c o n t e n t i s 5 3 %. T h e m i s s i n g l i t t e r i s i n c o r p o r a t e d i n t o t h e f o r e s t f l o o r a n d n o t c o n s i d e r e d snow surface l i t t e r.

8 Snow Height (cm Day 60 Snow Height (cm Day Litter Coverage (%) Litter Coverage (%) Snow Height (cm Day 80 Snow Height (cm) Day Litter Coverage (%) Litter Coverage (%) Day 100 Snow Height (cm) Litter Coverage (%) Figure 4. Time series of modelled litter coverage in the snowpack from day 60 to day 100, in 10-day intervals. F i g u r e 5 c o m p a r e s m e a s u r e m e n t s o f s n o w d e p t h, s n o w s u r f a c e l i t t e r c o v e r a g e, a n d a l b e d o i n t h e c o n i f e r f o r e s t t o r e s u l t s f r o m S N T H E R M. M o d e l l e d s n o w d e p t h c o m p a r e s f a v o r a b l y w i t h s n o w s e n s o r d a t a a n d m a n u a l m e a s u r e m e n t s ( F i g. 5 a ), b u t m e l t e d t h r e e d a y s e a r l i e r. M o d e l l e d s n o w s u r f a c e l i t t e r c o v e r a g e t r a c k e d t h e m e a s u r e d l i t t e r c o v e r a g e e x t r e m e l y w e l l t h r o u g h t h e a b l a t i o n s e a s o n ( F i g. 5 b ). J u s t p r i o r t o t h e m o d e l p r e d i c t i n g c o m p l e t e s n o w a b l a t i o n, t h e l i t t e r c o v e r a g e i n c r e a s e d d r a m a t i c a l l y t o c l o s e l y m a t c h t h e m e a s u r e d l i t t e r c o v e r a g e. F i n a l l y, S N T H E R M - p r e d i c t e d s n o w s u r f a c e a l b e d o g r a d u a l l y d e c r e a s e s a s l i t t e r a c c u m u l a t e s o n t h e s n o w s u r f a c e, r e a c h i n g t h e a l b e d o o f t h e l i t t e r ( ) a t t h e t i m e o f c o m p l e t e s n o w a b l a t i o n a n d t h r e e t o f o u r d a y s e a r l i e r t h a n t h e s n o w u n d e r t h e c a m e r a ( F i g. 5 c ). E a r l y i n t h e m o d e l l i n g p e r i o d ( d a y s 6 0 t o 7 5 ), t h e m e a s u r e d a l b e d o s h o w s m u c h v a r i a b i l i t y a s i t r e s p o n d s t o s n o w e v e n t s, w h i l e t h e m o d e l l e d

9 r e s p o n s e i s l e s s p r o n o u n c e d. B e t w e e n d a y s 8 9 a n d 1 0 3, S N T H E R M p r e d i c t s a h i g h e r -t h a n - m e a s u r e d a l b e d o b e n e a t h t h e c o n i f e r c a n o p y, a l t h o u g h f o r m u c h o f t h a t t i m e t h e m o d e l i s w i t h i n t h e range of the 15 -m i n u t e m e a s u r e m e n t s. Figure 5. Results from SNTHERM model runs incorporating the litter algorithm and compared with a) measured snow depth, b) snow surface litter coverage, and c) measured albedo from the snow surface.

10 Influence of winds on litter coverage W e i n v e s t i g a t e d t h e i n f l u e n c e o f w i n d s o n s n o w s u r f a c e l i t t e r c o v e r a g e t o a s s e s s t h e i m p o r t a n c e o f i n c l u d i n g t h i s m e t e o r o l o g i c a l p a r a m e t e r i n t h e l i t t e r a l g o r i t h m. W e c o n d u c t e d t h i s a n a l y s i s o n l y f o r t h e p e r i o d p r i o r t o r a p i d s n o w ab l a t i o n ( u p t o d a y 8 8 ), a t w h i c h p o i n t i t i s d i f f i c u l t t o s e p a r a t e t h e r e -e x p o s u r e o f b u r i e d l i t t e r l a y e r s d u r i n g s n o w a b l a t i o n f r o m t h e a c c u m u l a t i o n o f a d d i t i o n a l l i t t e r. T w o-m e t e r w i n d s p e e d s a v e r a g e d o v e r t h e 1 5 -m i n u t e i n t e r v a l s i n t h e c o n i f e r s i t e d u r i ng the s n o w a b l a t i o n s e a s o n n e v e r e x c e e d m s 1. B y s u m m i n g t h e s u b c a n o p y w i n d s p e e d s f o r d a y s b e t w e e n l i t t e r o b s e r v a t i o n s, v i a s n o w s u r f a c e p h o t o s ( u s u a l l y e v e r y o n e t o t h r e e d a y s ), a n d d i v i d i n g b y t h e n u m b e r o f d a y s b e t w e e n l i t t e r o b s e r v a t i o n s, w e o b t a i n e d a m e a n d a i l y t o t a l w i n d s p e e d. T h i s d a i l y t o t a l w i n d s p e e d w a s c o m p a r e d w i t h t h e c o r r e s p o n d i n g c h a n g e i n p e r c e n t l i t t e r c o v e r a g e ( F i g. 6 ), w h e r e p o s i t i v e v a l u e s r e p r e s e n t e d a n i n c r e a s e i n l i t t e r c o v e r a g e s i n c e t h e l a s t o b s e r v a t i o n a n d n e g a t i v e v a l u e s r e p r e s e n t a d e c r e a s e. N o t e t h e t i m e s c a l e d o e s n o t r e p r e s e n t c o n s e c u t i v e d a y s, b u t r a t h e r w a s b a s e d o n d a y s w i t h o b s e r v a t i o n s o f l i t t e r a c c u m u l a t i o n o n t h e s n o w s u r f a c e. F o r d a y s 6 5 t h r o u g h 6 7, w i n d s w e r e s t e a d y w h i l e l i t t e r a c c u m u l a t e d. F o r d a y s 6 8, 7 0, a n d 7 1, t h e i n c r e a s i n g w i n d s c o r r e s p o n d e d t o l e s s l i t t e r o n t h e s n o w s u r f a c e b e c a u s e o f t h e p r e v i o u s p r e c i p i t a t i o n e v e n t. D a y s 7 7 a n d 7 8, a s w e l l a s d a y s 8 5 t h r o u g h 8 7, s h o w e d t h e o p p o s i t e i n f l u e n c e e x p e c t e d i f t h e s e w i n d s w e r e t o s i g n i f i c a n t l y i n c r e a s e l i t t e r f a l l o n t h e s n o w s u r f a c e. A l e a s t s q u a r e s r e g r e s s i o n t h r o u g h a s c a t t e r d i a g r a m o f l i t t e r c h a n g e v s. d a i l y w i n d s p e e d y i e l d s a n r 2 = , c o n f i r m i n g t h i s w e a k r e l a t i o n s h i p Day in Year Change in Litter Coverage Daily Total Wind Speed Figure 6. Mean daily total wind speed in the conifer forest compared to change in litter accumulation for the days prior to the onset of rapid snow ablation. DISCUSSION M e a s u r e m e n t s o f s n o w s u r f a c e l i t t e r c o v e r a g e a n d s u b c a n o p y a l b e d o f r o m a c o n i f e r f o r e s t i n n o r t h e r n V e r m o n t, U S A ( M e l l o h e t a l. i n p r e p ) p r o v i d e d v a l i d a t i o n d a t a f o r t h e l i t t e r a l g o r i t h m d e v e l o p e d b y H a r d y e t a l. ( ). I m a g e s o b t a i n e d f r o m t h e d i g i t a l c a m e r a s y s t e m w e r e k e y t o p r o v i d i n g n e a r -d a i l y i n f o r m a t i o n o n t h e s n o w s u r f a c e l i t t e r a c c u m u l a t i o n f o r m o d e l v a l i d a t i o n. M u l t i p l e m ea s u r e m e n t s o f t h e s u b c a n o p y s n o w a l b e d o w e r e r e q u i r e d t o h a v e c o n f i d e n c e i n t h e s o l a r c o m p o n e n t s b e n e a t h a f o r e s t c a n o p y. S N T H E R M, c o u p l e d w i t h t h e l i t t e r a l g o r i t h m, e s t i m a t e d f o r e s t l i t t e r c o n c e n t r a t i o n s i n a l l s n o w l a y e r s, f o r e v e r y t i m e s t e p a s o u t p u t b y t h e m o d e l. S N T H E R M e s t i m a t e s o f i n -p a c k f o r e s t l i t t e r c o m p a r e d f a v o r a b l y w i t h m e a s u r e d l i t t e r i n t h e s n o w p a c k o n 9 M a r c h, a n d s h o w a l o g i c a l p r o g r e s s i o n o f c o n c e n t r a t i o n s t h r o u g h t h e a b l a t i o n s e a s o n. T h e l i t t e r a l g o r i t h m, a s c o u p l e d w i t h S N T H E R M, p r e d i c t e d s n o w d e p t h, l i t t e r c o v e r a g e, a n d s n o w s u r f a c e a l b e d o b e n e a t h t h i s f o r e s t c a n o p y. B o t h t h e p r e d i c t e d s n o w d e p t h a n d l i t t e r c o v e r a g e

11 c o m p a r e d w e l l w i t h m e a s u r e m e n t s a n d f i e l d o b s e r v a t i o n s. S n o w d e p t h p r e d i c t i o n s m a y i m p r o v e b y c o n s i d e r i n g t h e s h a d i n g e f f e c t s o f l i t t e r o n t h e s n o w s u r f a c e l a t e i n t h e a b l a t i o n s e a s o n. S n o w s u r f a c e a l b e d o p r e d i c t i o n s d u r i n g t h e e a r l y p o r t i o n o f t h e m o d e l r u n a r e l e s s v a r i a b l e t h a n t h e m e a s u r e m e n t s. D u r i n g t h i s p e r i o d, s n o w o n t h e r a d i o m e t e r s r e q u i r e d r e m o v a l o f s o m e a l b e d o d a t a, s o t h e s e d a i l y a v e r a g e v a l u e s i n c l u d e s o m e m i s s i n g t i m e s t e p s. T h e h i g h e r m o d e l p r e d i c t i o n s o f s n o w s u r f a c e a l b e d o i n t h e f o r e s t f r o m d a y s 8 9 t o i s e x p l a i n e d b y t h e n a t u r e o f t h i s p a r t i c u l a r c o n i f e r f o r e s t. T h e c a m e r a c a p t u r i n g s n o w s u r f a c e l i t t e r i m a g e s v i e w s a 1 -? 1 -m a r e a t h a t i s c l e a r o f f a l l e n t r e e s t e m s. T h e p r e d i c t e d l i t t e r c o v e r a g e o n t h e s n o w s u r f a c e c a p t u r e s t h a t c o n d i t i o n w e l l. H o w e v e r, t h r e e o f t h e f o u r d o w n l o o k i n g P S P s h a d o n e o r m o r e l a r g e f a l l e n t r e e s t e m ( s ) i n t h e f i e l d o f v i e w ( s e e F i g. 1 ), t h e r e b y r e d u c i n g t h e a l b e d o s i g n i f i c a n t l y c o m p a r e d t o s n o w w i t h o u t p r o t r u d i n g l o g s ( P o m e r o y e t a l ). T h e a b s e n c e o f t h e s e l o g s w o u l d i n c r e a s e m e a s u r e d a l b e d o a s v i e w e d b y t h e d o w n l o o k i n g P S P s. A d d i t i o n a l l y, t h e m o d e l p r e d i c t s a t h i n ( l e s s t ha n 1 0 -c m ) s n o w p a c k f r o m d a y 9 6 o n, y e t f o r t h e a l b e d o e s t i m a t e s, t h e m o d e l c o n s i d e r s l i t t e r o n t h e s n o w s u r f a c e o n l y. R a d i a t i o n p e n e t r a t i o n a n d s u b s u r f a c e l i t t e r c o v e r a g e c o n s i d e r a t i o n s w o u l d f u r t h e r r e d u c e a l b e d o p r e d i c t i o n s a n d a r e p a r t o f f u t u r e m o d e l re f i n e m e n t s. I n i t i a l l y, o u r i n t e n t w a s t o t e s t t h e l i t t e r e q u a t i o n ( e q. 1 ), w h i c h p r e v i o u s l y w a s n o t v a l i d a t e d w i t h f o r e s t l i t t e r a n d a l b e d o d a t a. W e t h e n p l a n n e d t o m o d i f y t h e r o u t i n e b y i n c o r p o r a t i n g e f f e c t s o f w e a t h e r e v e n t s t o i m p r o v e t h e l i t t e r a l g o r i t h m. T h i s c o m p l e x, y e t p o o r r e l a t i o n s h i p ( r 2 = ; m = ) b e t w e e n d a i l y t o t a l w i n d s p e e d u n d e r t h e c a n o p y a n d c h a n g e i n l i t t e r c o v e r a g e o n t h e s n o w s u r f a c e s u g g e s t t h a t, f o r t h i s f o r e s t a n d a b l a t i o n s e a s o n, i n c o r p o r a t i n g w i n d e v e n t s i n t o t h e a l g o r i th m w i l l n o t i m p r o v e t h e r e s u l t s. CONCLUSIONS T h e f i e l d d a t a p r o v i d e d b y M e l l o h e t a l. ( i n p r e p ) a l l o w e d t h e f i r s t v a l i d a t i o n o f a p r e v i o u s l y p r o p o s e d a l g o r i t h m t o i n c o r p o r a t e t h e e f f e c t s o f f o r e s t l i t t e r o n s n o w s u r f a c e a l b e d o i n t o a s n o w m e l t m o d e l. T h e s i m p l e a l g o r i t h m a l l o w s l i t t e r t o a c c u m u l a t e o n t h e s n o w s u r f a c e a s a f u n c t i o n o f t i m e a n d a g i v e n l i t t e r r a t e. O u r m o d e l l i n g r e s u l t s s u g g e s t t h e a l g o r i t h m i s s u c c e s s f u l i n a c c u r a t e l y e s t i m a t i n g t h e f r a c t i o n a l c o v e r a g e o f f o r e s t l i t t e r o n a s n o w s u r f a c e. T h i s e s t i m a t e improved SNTHERM s a b i l i t y t o p r e d i c t t h e s n o w s u r f a c e a l b e d o a n d s u b s e q u e n t r a t e o f s n o w a b l a t i o n. T o f u r t h e r v a l i d a t e t h e a l g o r i t h m, t h e m o d e l s h o u l d r u n f o r a v a r i e t y o f f o r e s t t y p e s a n d w i t h m o r e P S P s t o c a t c h t h e i n h e r e n t v a r i a b i l i t y o f t h e s o l a r c o m p o n e n t s b e n e a t h a f o r e s t c a n o p y. C u r r e n t r e s e a r c h ( a b l a t i o n s e a s o n ) e x t e n d s t h e w o r k o f M e l l o h e t a l. ( i n p r e p ) b y i n s t a l l i n g 2 0 E p p l e y P S P s ( 1 0 u p l o o k i n g a n d 1 0 d o w n l o o k i n g ) i n o n e m i x e d s p e c i e s s t a n d, a n d r e p e a t i n g t h e m e a s u r e m e n t s e q u e n c e d e s c r i b e d a b o v e. W e w i l l f u r t h e r t e s t t h e l i t t e r a l g o r i t h m i n t h e m i x e d s p e c i e s s t a n d. ACKNOWLEDGMENTS T h i s w o r k i s f u n d e d b y D e p a r t m e n t o f t h e A r m y p r o j e c t n u m b e r A T 2 4 -SP , Interaction of Solar Radiation, Litter, and Albedo in the Forest During Snowmelt, f o r R. M e l l o h, J. H a r d y, a n d P. R o b i n s o n. W e a p p r e c i a t e h e l p f u l d i s c u s s i o n s a n d r e v i e w s b y B. D a v i s a n d G. K o e n i g. REFERENCES A l b e r t, M., a n d G. K r a j e s k i ( ) A f a s t, p h y s i c a l l y b a s e d p o i n t s n o w m e l t m o d e l f o r u s e i n d i s t r i b u t e d a p p l i c a t i o n s. Hydrological Processes, 1 2 ( 1 0 / 1 1 ) : B e t t s, A. K., a n d J. H. B a l l ( ) A l b e d o o v e r t h e b o r e a l f o r e s t. Journal of Geophysical Research, ( D 2 4 ) : 2 8, ,

12 B r o w e r, J. E., J. Z a r, a n d C. N. v o n E n d e ( ) Field and Laboratory Methods for General Ecology. D u b u q u e, I o w a : W i l l a m C. B r o w n P u b l i s h e r s, p. D a u b e n m i r e, R. ( ) Plant Communities. N e w Y o r k : H a r p e r a n d R o w, p. D a v i s, R. E., J. P. H a r d y, W. N i, C. W o o d c o c k, J. C. M c K e n z i e, R. J o r d a n, a n d X. L i ( ) V a r i a t i o n o f s n o w c o v e r a b l a t io n i n t h e b o r e a l f o r e s t : A s e n s i t i v i t y s t u d y o n t h e e f f e c t s o f c o n i f e r c a n o p y. Journal of Geophysical Research, ( N 2 4 ) : 2 9, , D i n g m a n, S. L. ( ) P h y s i c a l H y d r o l o g y. E n g l e w o o d C l i f f s, N e w J e r s e y : P r e n t i c e H a l l. D o z i e r, J., R. D a v i s, a n d R. P e r l a ( ) O n t h e o b j e c t i v e a n a l y s i s o f s n o w m i c r o s t r u c t u r e, a v a l a n c h e, f o r m a t i o n, m o v e m e n t, a n d e f f e c t s. I n Proceedings of the Davos Symposium, September I A H S P u b l i c a t i o n n o , p G e r l a n d, S., J. -G. W i n t h e r, J. B. O r b a e k, G. E. L i s t o n, N. A. Or i t s a n d, A. B l a n c o, a n d B. I v a n o v ( ) P h y s i c a l a n d o p t i c a l p r o p e r t i e s o f s n o w c o v e r i n g a r c t i c t u n d r a o n S v a l b a r d. I n Snow Hydrology: The Integration of Physical, Chemical and Biological Systems (J.P. Hardy, M.R. A l b e r t, a n d P. M a r s h, E d. ). C h i c h e s t e r : J o h n W i l e y a n d S o n s, L t d., p. H a r d i n g, R. J., a n d J. W. P o m e r o y ( ) T h e e n e r g y b a l a n c e o f t h e w i n t e r b o r e a l l a n d s c a p e. Journal of Climate, 9 : H a r d y, J. P., R. E. D a v i s, R. J o r d a n, X. L i, C. W o o d c o c k, W. N i, a n d J. C. M c K e n z i e ( ) S n o w a b l a t i o n m o d e l l i n g a t t h e s t a n d s c a l e i n a b o r e a l j a c k p i n e f o r e s t. Journal of Geophysical Research, ( N 2 4 ) : 2 9, , H a r d y, J. P., R. E. D a v i s, R. J o r d a n, W. N i, a n d C. W o o d c o c k ( ) S n o w a b l a t i o n m o d e l l i n g i n a m a t u r e a s p e n s t a n d o f t h e b o r e a l f o r e s t. Hydrological Processes, 1 2 ( 1 0 / 1 1 ) : J o r d a n, R. ( ) A o n e -d i m e n s i o n a l t e m p e r a t u r e m o d e l f o r a s n o w c o v e r : T e c h n i c a l d o c u m e n t a t i o n f o r S N T H E R M U S A C o l d R e g i o n s R e s e a r c h a n d E n g i n e e r i n g L a b o r a t o r y, H a n o v e r, N e w H a m p s h i r e, S p e c i a l R e p o r t L i, X., A. H. S t r a h l e r, a n d C. E. W o o d c o c k ( ) A h y b r i d g e o m e t r i c o p t i c a l -r a d i a t i v e t r a n s f e r a p p r o a c h f o r m o d e l l i n g a l b e d o a n d d i r e c t i o n a l r e f l e c t a n c e o f d i s c o n t i n u o u s c a n o p i e s. IEEE Transactions on Geoscience and Remote Sensing, 3 3 ( 2 ) : L i s t on, G. E. ( ) L o c a l a d v e c t i o n o f m o m e n t u m, h e a t, a n d m o i s t u r e d u r i n g t h e m e l t o f p a t c h y s n o w c o v e r s. Journal of Applied Meteorology, 3 4 ( 7 ) : M a r k s, D. ( ) C l i m a t e, e n e r g y e x c h a n g e, a n d s n o w m e l t i n E m e r a l d L a k e W a t e r s h e d, S i e r r a N e v a d a. P h. D. D i s s e r t a t i o n, U n i v e r s i t y o f C a l i f o r n i a a t S a n t a B a r b a r a. M e l l o h, R., J. P. H a r d y, P. R o b i n s o n, a n d F. P e r r o n ( I n p r e p ) I n t e r a c t i o n o f s o l a r r a d i a t i o n, l i t t e r, a n d a l b e d o i n t h e f o r e s t d u r i n g s n o w m e l t, E R D C-CRREL Technical Report. M e t c a l f e, R. A., a n d J. M. B u t t l e ( ) C o n t r o l s o f c a n o p y s t r u c t u r e o n s n o w m e l t r a t e s i n t h e b o r e a l f o r e s t. I n Proceedings of the 52nd Eastern Snow Conference, T o r o n t o, O n t a r i o, p N a d e a u, C. A., a n d H. G r a n b e r g ( ) V a r i a t i o n s i n n e t r a d i a t i o n o v e r s n o w a t a b o r e a l f o r es t edge. In Proceedings of the 43rd Eastern Snow Conference, p N a k a i, Y., T. S a k a m o t o, T. T e r a j i m a, K. K i t a m u r a, a n d T. S h i r a i ( ) T h e e f f e c t o f c a n o p y- s n o w o n t h e e n e r g y b a l a n c e a b o v e a c o n i f e r o u s f o r e s t. I n Snow Hydrology: The Integration of Physical, Chemical and Biological Systems ( J. P. H a r d y, M. R. A l b e r t, a n d P. M a r s h, E d. ). C h i c h e s t e r : J o h n W i l e y a n d S o n s, L t d., p. N i, W., X. L i, C. E. W o o d c o c k, J. L. R o u j e a n, a n d R. E. D a v i s ( ) T r a n s m i s s i o n o f s o l a r r a d i a t i o n i n b o r e a l c o n i f e r f o r es t s : M e a s u r e m e n t s a n d m o d e l s. Journal of Geophysical Research, ( N 2 4 ) : 2 9, , N i, W., a n d C. E. W o o d c o c k ( I n p r e s s ) T h e e f f e c t o f c a n o p y s t r u c t u r e a n d t h e p r e s e n c e o f s n o w o n t h e a l b e d o o f b o r e a l c o n i f e r f o r e s t s. Journal of Geophysical Research. O k e, T. R. ( ) Boundary Layer Climates, 2nd edition. N e w Y o r k : M e t h u e n & C o. L t d., p. O t t e r m a n, J., K. S t a e n z, K. I t t e n, a n d G. K u k l a ( ) D e p e n d e n c e o f s n o w m e l t i n g a n d s u r f a c e a t m o s p h e r e i n t e r a c t i o n s o n t h e f o r e s t s t r u c t u r e. Boundary-Layer Meteorology, 4 5 : 1 8. P a n g b u r n, T., M. R. A l b e r t, J. P. H a r d y, W. R. M c G i l v a r y, a n d J. B. S h a n l e y ( ) C h a r a c t e r i z a t i o n o f h i l l s l o p e t h e r m a l a n d h y d r o l o g i c p r o c e s s e s a t t h e S l e e p e r s R i v e r R e s e a r c h W a t e r s h e d. I n Proceedings of the 49 th Eastern Snow Conference, 3 4 June 1992, Oswego, New York, USA, p

Small-Scale Spatial Variability of Radiant Energy for Snowmelt in a Mid-Latitude Sub-Alpine Forest

Small-Scale Spatial Variability of Radiant Energy for Snowmelt in a Mid-Latitude Sub-Alpine Forest 59th EASTERN SNOW CONFERENCE Stowe, Vermont USA 22 Small-Scale Spatial Variability of Radiant Energy for Snowmelt in a Mid-Latitude Sub-Alpine Forest ALED ROWLANDS 1, JOHN POMEROY 1, JANET HARDY 2, DANNY

More information

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program Snow and ice are critical parts of the hydrologic cycle, especially at

More information

Real Time Snow Water Equivalent (SWE) Simulation March 29, 2015 Sierra Nevada Mountains, California

Real Time Snow Water Equivalent (SWE) Simulation March 29, 2015 Sierra Nevada Mountains, California Real Time Snow Water Equivalent (SWE) Simulation March 29, 2015 Sierra Nevada Mountains, California Introduction We have developed a real-time SWE estimation scheme based on historical SWE reconstructions

More information

Real Time Snow Water Equivalent (SWE) Simulation February 5, 2014 Sierra Nevada Mountains, California

Real Time Snow Water Equivalent (SWE) Simulation February 5, 2014 Sierra Nevada Mountains, California Real Time Snow Water Equivalent (SWE) Simulation February 5, 2014 Sierra Nevada Mountains, California Introduction We have developed a real-time SWE estimation scheme based on historical SWE reconstructions

More information

Energy and Mass Balance Snow Model. Department of Civil and Environmental Engineering University of Washington

Energy and Mass Balance Snow Model. Department of Civil and Environmental Engineering University of Washington SnowSTAR2002 STAR2002 TransectReconstruction ti Ui Using a Multilayered Energy and Mass Balance Snow Model Xiaogang Shi and Dennis P. Lettenmaier Department of Civil and Environmental Engineering University

More information

Development of High Resolution Gridded Dew Point Data from Regional Networks

Development of High Resolution Gridded Dew Point Data from Regional Networks Development of High Resolution Gridded Dew Point Data from Regional Networks North Central Climate Science Center Open Science Conference May 20, 2015 Ruben Behnke Numerical Terradynamic Simulation Group

More information

Experimental and Theoretical Studies of Ice-Albedo Feedback Processes in the Arctic Basin

Experimental and Theoretical Studies of Ice-Albedo Feedback Processes in the Arctic Basin LONG TERM GOALS Experimental and Theoretical Studies of Ice-Albedo Feedback Processes in the Arctic Basin D.K. Perovich J.A. Richter-Menge W.B. Tucker III M. Sturm U. S. Army Cold Regions Research and

More information

Vermont Soil Climate Analysis Network (SCAN) sites at Lye Brook and Mount Mansfield

Vermont Soil Climate Analysis Network (SCAN) sites at Lye Brook and Mount Mansfield Vermont Soil Climate Analysis Network (SCAN) sites at Lye Brook and Mount Mansfield 13 Years of Soil Temperature and Soil Moisture Data Collection September 2000 September 2013 Soil Climate Analysis Network

More information

Multi- Sensor Ground- based Microwave Snow Experiment at Altay, CHINA

Multi- Sensor Ground- based Microwave Snow Experiment at Altay, CHINA Multi- Sensor Ground- based Microwave Snow Experiment at Altay, CHINA Jiancheng Shi 1, Chuan Xiong 1, Jinmei Pan 1, Tao Che 2, Tianjie Zhao 1, Haokui Xu 1, Lu Hu 1, Xiang Ji 1, Shunli Chang 3, Suhong Liu

More information

A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains

A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains WATER RESOURCES RESEARCH, VOL. 39, NO. 8, 1209, doi:10.1029/2002wr001782, 2003 A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains Thomas L. Mote and

More information

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes.

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes. INDICATOR FACT SHEET SSPI: Standardized SnowPack Index Indicator definition The availability of water in rivers, lakes and ground is mainly related to precipitation. However, in the cold climate when precipitation

More information

Lecture 8: Snow Hydrology

Lecture 8: Snow Hydrology GEOG415 Lecture 8: Snow Hydrology 8-1 Snow as water resource Snowfall on the mountain ranges is an important source of water in rivers. monthly pcp (mm) 100 50 0 Calgary L. Louise 1 2 3 4 5 6 7 8 9 10

More information

Snow ablation modelling in a mature aspen stand of the boreal forest

Snow ablation modelling in a mature aspen stand of the boreal forest Hydrological Processes Hydrol. Process. 12, 1763±1778 (1998) Snow ablation modelling in a mature aspen stand of the boreal forest J. P. Hardy, 1 * R. E. Davis, 1 R. Jordan, 1 W. Ni 2 and C. E. Woodcock

More information

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Alejandra Stehr 1, Oscar Link 2, Mauricio Aguayo 1 1 Centro

More information

Multifaceted Geocomputation to Support Ecological Modelling in Yellowstone

Multifaceted Geocomputation to Support Ecological Modelling in Yellowstone Multifaceted Geocomputation to Support Ecological Modelling in Yellowstone D. L. McGinnis 1, C. Anderson 2, M. W. Williams 3, D. A. Bennett 4 1 Montana State University-Billings, 1500 University Avenue,

More information

Comparison of a snowpack on a slope and flat land by focusing on the effect of water infiltration

Comparison of a snowpack on a slope and flat land by focusing on the effect of water infiltration Comparison of a snowpack on a slope and flat land by focusing on the effect of water infiltration Shinji Ikeda 1*, Takafumi Katsushima 2, Yasuhiko Ito 1, Hiroki Matsushita 3, Yukari Takeuchi 4, Kazuya

More information

Snow Melt with the Land Climate Boundary Condition

Snow Melt with the Land Climate Boundary Condition Snow Melt with the Land Climate Boundary Condition GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction

More information

P. Marsh and J. Pomeroy National Hydrology Research Institute 11 Innovation Blvd., Saskatoon, Sask. S7N 3H5

P. Marsh and J. Pomeroy National Hydrology Research Institute 11 Innovation Blvd., Saskatoon, Sask. S7N 3H5 WATER AND ENERGY FLUXES DURING THE SNOWMELT PERIOD AT AN ARCTIC TREELINE SITE P. Marsh and J. Pomeroy National Hydrology Research Institute 11 Innovation Blvd., Saskatoon, Sask. S7N 3H5 marshp@nhrisv.nhrc.skdoe.ca

More information

LIFE12 ENV/FIN/ First Data Document 31/05/2015

LIFE12 ENV/FIN/ First Data Document 31/05/2015 LIFE Project Number First Data Document Action B.3 Summary report of albedo data Reporting Date 31/05/2015 LIFE+ PROJECT NAME or Acronym Climate change indicators and vulnerability of boreal zone applying

More information

Why modelling? Glacier mass balance modelling

Why modelling? Glacier mass balance modelling Why modelling? Glacier mass balance modelling GEO 4420 Glaciology 12.10.2006 Thomas V. Schuler t.v.schuler@geo.uio.no global mean temperature Background Glaciers have retreated world-wide during the last

More information

Missouri River Flood Task Force River Management Working Group Improving Accuracy of Runoff Forecasts

Missouri River Flood Task Force River Management Working Group Improving Accuracy of Runoff Forecasts Missouri River Flood Task Force River Management Working Group Improving Accuracy of Runoff Forecasts Kevin Grode, P.E. Reservoir Regulation Team Lead Missouri River Basin Water Management Northwestern

More information

Instructions for Running the FVS-WRENSS Water Yield Post-processor

Instructions for Running the FVS-WRENSS Water Yield Post-processor Instructions for Running the FVS-WRENSS Water Yield Post-processor Overview The FVS-WRENSS post processor uses the stand attributes and vegetative data from the Forest Vegetation Simulator (Dixon, 2002)

More information

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017 Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017 Calendar Year Runoff Forecast Explanation and Purpose of Forecast U.S. Army Corps of Engineers, Northwestern Division

More information

Snowcover accumulation and soil temperature at sites in the western Canadian Arctic

Snowcover accumulation and soil temperature at sites in the western Canadian Arctic Snowcover accumulation and soil temperature at sites in the western Canadian Arctic Philip Marsh 1, C. Cuell 1, S. Endrizzi 1, M. Sturm 2, M. Russell 1, C. Onclin 1, and J. Pomeroy 3 1. National Hydrology

More information

September 2018 Weather Summary West Central Research and Outreach Center Morris, MN

September 2018 Weather Summary West Central Research and Outreach Center Morris, MN September 2018 Weather Summary The mean temperature for September was 60.6 F, which is 1.5 F above the average of 59.1 F (1886-2017). The high temperature for the month was 94 F on September 16 th. The

More information

Land Surface Processes and Their Impact in Weather Forecasting

Land Surface Processes and Their Impact in Weather Forecasting Land Surface Processes and Their Impact in Weather Forecasting Andrea Hahmann NCAR/RAL with thanks to P. Dirmeyer (COLA) and R. Koster (NASA/GSFC) Forecasters Conference Summer 2005 Andrea Hahmann ATEC

More information

Real Time (RT) Snow Water Equivalent (SWE) Simulation May 11, 2014 Sierra Nevada Mountains, California

Real Time (RT) Snow Water Equivalent (SWE) Simulation May 11, 2014 Sierra Nevada Mountains, California Real Time (RT) Snow Water Equivalent (SWE) Simulation May 11, 2014 Sierra Nevada Mountains, California Abstract On May 11 th, percent of average SWE values for this date have shown an increase (see note

More information

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Christian Mätzler (Retired from University of Bern) Now consultant for Gamma Remote Sensing, Switzerland matzler@iap.unibe.ch TERENO

More information

Land Surface: Snow Emanuel Dutra

Land Surface: Snow Emanuel Dutra Land Surface: Snow Emanuel Dutra emanuel.dutra@ecmwf.int Slide 1 Parameterizations training course 2015, Land-surface: Snow ECMWF Outline Snow in the climate system, an overview: Observations; Modeling;

More information

1. GLACIER METEOROLOGY - ENERGY BALANCE

1. GLACIER METEOROLOGY - ENERGY BALANCE Summer School in Glaciology McCarthy, Alaska, 5-15 June 2018 Regine Hock Geophysical Institute, University of Alaska, Fairbanks 1. GLACIER METEOROLOGY - ENERGY BALANCE Ice and snow melt at 0 C, but this

More information

November 2018 Weather Summary West Central Research and Outreach Center Morris, MN

November 2018 Weather Summary West Central Research and Outreach Center Morris, MN November 2018 Weather Summary Lower than normal temperatures occurred for the second month. The mean temperature for November was 22.7 F, which is 7.2 F below the average of 29.9 F (1886-2017). This November

More information

Effects of forest cover and environmental variables on snow accumulation and melt

Effects of forest cover and environmental variables on snow accumulation and melt Effects of forest cover and environmental variables on snow accumulation and melt Mariana Dobre, William J. Elliot, Joan Q. Wu, Timothy E. Link, Ina S. Miller Abstract The goal of this study was to assess

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION INTER- AND INTRA-ANNUAL VARIABILITY IN SNOW ALBEDO, GRAIN SIZE, AND SNOW COVERED AREA FROM THE AIRBORNE SNOW OBSERVATORY DURING LOW SNOW YEARS (2013-2015), TUOLUMNE RIVER BASIN, CA S. McKenzie Skiles 1,

More information

Snow Modeling and Observations at NOAA S National Operational Hydrologic Remote Sensing Center

Snow Modeling and Observations at NOAA S National Operational Hydrologic Remote Sensing Center Snow Modeling and Observations at NOAA S National Operational Hydrologic Remote Sensing Center Thomas R. Carroll National Operational Hydrologic Remote Sensing Center, National Weather Service, National

More information

Snow II: Snowmelt and energy balance

Snow II: Snowmelt and energy balance Snow II: Snowmelt and energy balance The are three basic snowmelt phases 1) Warming phase: Absorbed energy raises the average snowpack temperature to a point at which the snowpack is isothermal (no vertical

More information

SEA ICE MICROWAVE EMISSION MODELLING APPLICATIONS

SEA ICE MICROWAVE EMISSION MODELLING APPLICATIONS SEA ICE MICROWAVE EMISSION MODELLING APPLICATIONS R. T. Tonboe, S. Andersen, R. S. Gill Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen Ø, Denmark Tel.:+45 39 15 73 49, e-mail: rtt@dmi.dk

More information

Land surface insulation response to snow depth variability

Land surface insulation response to snow depth variability Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd012798, 2010 Land surface insulation response to snow depth variability Yan Ge 1 and Gavin Gong 1 Received 7 July

More information

Proxy-based reconstructions of Arctic paleoclimate

Proxy-based reconstructions of Arctic paleoclimate Proxy-based reconstructions of Arctic paleoclimate TODAY THE PAST Boothia Peninsula, Nunavut Prof. Sarah Finkelstein Earth Sciences, University of Toronto Finkelstein@es.utoronto.ca Outline Why does climate

More information

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # *Cooperative Institute for Meteorological Satellite Studies, University of

More information

A Review of the 2007 Water Year in Colorado

A Review of the 2007 Water Year in Colorado A Review of the 2007 Water Year in Colorado Nolan Doesken Colorado Climate Center, CSU Mike Gillespie Snow Survey Division, USDA, NRCS Presented at the 28 th Annual AGU Hydrology Days, March 26, 2008,

More information

Water Year Day 2010

Water Year Day 2010 mm mm SCA, % Storage, mm Sto, 1 mm Sat def, 1 mm 25 2 15 1 5 4 3 2 1 2 5 25 2 Saturation deficit depth (water table) Saturation deficit volume Root zone storage Unsaturated soil storage Groundwater storage

More information

MODIS True Color Terra image from from NASA WorldView (worldview.earthdata.nasa.gov)

MODIS True Color Terra image from from NASA WorldView (worldview.earthdata.nasa.gov) Estimating the snowpack with remote sensing MODIS True Color Terra image from 2016-09-07 from NASA WorldView (worldview.earthdata.nasa.gov) Edward (Ned) Bair, Ph.D. Earth Research Institute, University

More information

Climatic Change Implications for Hydrologic Systems in the Sierra Nevada

Climatic Change Implications for Hydrologic Systems in the Sierra Nevada Climatic Change Implications for Hydrologic Systems in the Sierra Nevada Part Two: The HSPF Model: Basis For Watershed Yield Calculator Part two presents an an overview of why the hydrologic yield calculator

More information

Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016

Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016 CHARACTERISTICS OF AVALANCHE RELEASE AND AN APPROACH OF AVALANCHE FORECAST- ING SYSTEM USING SNOWPACK MODEL IN THE TIANSHAN MOUNTAINS, CHINA Osamu ABE 1*, Lanhai LI 2, Lei BAI 2, Jiansheng HAO 2, Hiroyuki

More information

SNOW COVER DURATION MAPS IN ALPINE REGIONS FROM REMOTE SENSING DATA

SNOW COVER DURATION MAPS IN ALPINE REGIONS FROM REMOTE SENSING DATA SNOW COVER DURATION MAPS IN ALPINE REGIONS FROM REMOTE SENSING DATA D. Brander, K. Seidel, M. Zurflüh and Ch. Huggel Computer Vision Group, Communication Technology Laboratory, ETH, Zurich, Switzerland,

More information

Lecture 3A: Interception

Lecture 3A: Interception 3-1 GEOG415 Lecture 3A: Interception What is interception? Canopy interception (C) Litter interception (L) Interception ( I = C + L ) Precipitation (P) Throughfall (T) Stemflow (S) Net precipitation (R)

More information

Lake Tahoe Watershed Model. Lessons Learned through the Model Development Process

Lake Tahoe Watershed Model. Lessons Learned through the Model Development Process Lake Tahoe Watershed Model Lessons Learned through the Model Development Process Presentation Outline Discussion of Project Objectives Model Configuration/Special Considerations Data and Research Integration

More information

Highlights of the 2006 Water Year in Colorado

Highlights of the 2006 Water Year in Colorado Highlights of the 2006 Water Year in Colorado Nolan Doesken, State Climatologist Atmospheric Science Department Colorado State University http://ccc.atmos.colostate.edu Presented to 61 st Annual Meeting

More information

How complex should a snow model be?

How complex should a snow model be? How complex should a snow model be? Xu Liang 1 and Seongeun Jeong 2 1 Department of Civil and Environmental Engineering University of Pittsburgh 2 Department of Civil and Environmental Engineering University

More information

Oregon Water Conditions Report April 17, 2017

Oregon Water Conditions Report April 17, 2017 Oregon Water Conditions Report April 17, 2017 Mountain snowpack continues to maintain significant levels for mid-april. By late March, statewide snowpack had declined to 118 percent of normal after starting

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Inter-linkage case study in Pakistan

Inter-linkage case study in Pakistan 7 th GEOSS Asia Pacific Symposium GEOSS AWCI Parallel Session: 26-28 May, 2014, Tokyo, Japan Inter-linkage case study in Pakistan Snow and glaciermelt runoff modeling in Upper Indus Basin of Pakistan Maheswor

More information

2002 Drought History in Colorado A Brief Summary

2002 Drought History in Colorado A Brief Summary 1 2002 Drought History in Colorado A Brief Summary Colorado Climate Center Roger Pielke, Sr, Director and Nolan Doesken, Research Associate Prepared by Odie Bliss & Tara Green http://climate.atmos.colostate.edu

More information

The Climate of Bryan County

The Climate of Bryan County The Climate of Bryan County Bryan County is part of the Crosstimbers throughout most of the county. The extreme eastern portions of Bryan County are part of the Cypress Swamp and Forest. Average annual

More information

Bugs in JRA-55 snow depth analysis

Bugs in JRA-55 snow depth analysis 14 December 2015 Climate Prediction Division, Japan Meteorological Agency Bugs in JRA-55 snow depth analysis Bugs were recently found in the snow depth analysis (i.e., the snow depth data generation process)

More information

Figure 2. April 8, 2011 spatial SWE shown for the Weber, UT watershed.

Figure 2. April 8, 2011 spatial SWE shown for the Weber, UT watershed. Real-Time Snow Water Equivalent (SWE) Simulation April 8, 2011 Intermountain West Noah Molotch, Dominik Schneider and Leanne Lestak University of Colorado, Institute of Arctic and Alpine Research Noah.Molotch@colorado.edu,

More information

Snow depths and solar radiation before and after partial logging at the Mt. Tom Adaptive Management Trial

Snow depths and solar radiation before and after partial logging at the Mt. Tom Adaptive Management Trial Snow depths and solar radiation before and after partial logging at the Mt. Tom Adaptive Management Trial File Report by Pat Teti, M.Sc. Research Hydrologist B.C. Ministry of Forests and Range Williams

More information

Drought in Southeast Colorado

Drought in Southeast Colorado Drought in Southeast Colorado Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu 1 Historical Perspective on Drought Tourism

More information

Gateway Trail Project

Gateway Trail Project Gateway Trail Project Debris Flow Hazard Assessment By: Juan de la Fuente April 30, 2010 Background- On April 22, 2010, the Shasta-Trinity National Forest (Mt. Shasta-McCloud Unit) requested a geologic

More information

Snow Model Intercomparison Projects

Snow Model Intercomparison Projects Lessons from Snow Model Intercomparisons and Ensembles Richard Essery, School of GeoSciences, University of Edinburgh Samuel Morin, CNRM-GAME, Centre d Etudes de la Neige Danny Marks, USDA-ARS Northwest

More information

Southern Sierra Critical Zone Observatory (CZO): hydrochemical characteristics, science & measurement strategy

Southern Sierra Critical Zone Observatory (CZO): hydrochemical characteristics, science & measurement strategy Southern Sierra Critical Zone Observatory (CZO): hydrochemical characteristics, science & measurement strategy R. Bales, C. Hunsaker, M. Conklin, J. Kirchner, B. Boyer, P. Kirchner underlying hypothesis:

More information

APPENDIX B Hydrologic Model Spring Event

APPENDIX B Hydrologic Model Spring Event Jock River Flood Risk Mapping (within the City of Ottawa) Hydrology Report July 2004 PageB1 APPENDIX B Hydrologic Model Spring Event Snowmelt+Rainfall Calibration and Validation Results Design Events Explanation

More information

Evaluation of a MODIS Triangle-based Algorithm for Improving ET Estimates in the Northern Sierra Nevada Mountain Range

Evaluation of a MODIS Triangle-based Algorithm for Improving ET Estimates in the Northern Sierra Nevada Mountain Range Evaluation of a MODIS Triangle-based Algorithm for Improving ET Estimates in the Northern Sierra Nevada Mountain Range Kyle R. Knipper 1, Alicia M. Kinoshita 2, and Terri S. Hogue 1 January 5 th, 2015

More information

Discritnination of a wet snow cover using passive tnicrowa ve satellite data

Discritnination of a wet snow cover using passive tnicrowa ve satellite data Annals of Glaciology 17 1993 International Glaciological Society Discritnination of a wet snow cover using passive tnicrowa ve satellite data A. E. WALKER AND B. E. GOODISON Canadian Climate Centre, 4905

More information

Snow ablation in an open field and larch forest of the southern mountainous region of eastern Siberia

Snow ablation in an open field and larch forest of the southern mountainous region of eastern Siberia Hydrological Sciences Journal ISSN: 0262-6667 (Print) 2150-3435 (Online) Journal homepage: http://www.tandfonline.com/loi/thsj20 Snow ablation in an open field and larch forest of the southern mountainous

More information

The Colorado Drought : 2003: A Growing Concern. Roger Pielke, Sr. Colorado Climate Center.

The Colorado Drought : 2003: A Growing Concern. Roger Pielke, Sr. Colorado Climate Center. The Colorado Drought 2001-2003: 2003: A Growing Concern Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu 2 2002 Drought History in Colorado

More information

regime on Juncal Norte glacier, dry Andes of central Chile, using melt models of A study of the energy-balance and melt different complexity

regime on Juncal Norte glacier, dry Andes of central Chile, using melt models of A study of the energy-balance and melt different complexity A study of the energy-balance and melt regime on Juncal Norte glacier, dry Andes of central Chile, using melt models of different complexity Francesca Pellicciotti 1 Jakob Helbing 2, Vincent Favier 3,

More information

Snowcover interaction with climate, topography & vegetation in mountain catchments

Snowcover interaction with climate, topography & vegetation in mountain catchments Snowcover interaction with climate, topography & vegetation in mountain catchments DANNY MARKS Northwest Watershed Research Center USDA-Agricultural Agricultural Research Service Boise, Idaho USA RCEW

More information

CHANGES IN RADIATION PROPERTIES AND HEAT BALANCE WITH SEA ICE GROWTH IN SAROMA LAGOON AND THE GULF OF FINLAND

CHANGES IN RADIATION PROPERTIES AND HEAT BALANCE WITH SEA ICE GROWTH IN SAROMA LAGOON AND THE GULF OF FINLAND Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 22 International Association of Hydraulic Engineering and Research CHANGES IN

More information

Missouri River Basin Water Management

Missouri River Basin Water Management Missouri River Basin Water Management US Army Corps of Engineers Missouri River Navigator s Meeting February 12, 2014 Bill Doan, P.E. Missouri River Basin Water Management US Army Corps of Engineers BUILDING

More information

National Climatic Data Center DATA DOCUMENTATION FOR DATA SET 6406 (DSI-6406) ASOS SURFACE 1-MINUTE, PAGE 2 DATA. July 12, 2006

National Climatic Data Center DATA DOCUMENTATION FOR DATA SET 6406 (DSI-6406) ASOS SURFACE 1-MINUTE, PAGE 2 DATA. July 12, 2006 DATA DOCUMENTATION FOR DATA SET 6406 (DSI-6406) ASOS SURFACE 1-MINUTE, PAGE 2 DATA July 12, 2006 151 Patton Ave. Asheville, NC 28801-5001 USA Table of Contents Topic Page Number 1. Abstract... 3 2. Element

More information

EMPORIUM H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R.

EMPORIUM H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R. H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R I n o r d e r t o b u y a n y i t e m s, y o u w i l l n e e d t o r e g i s t e r o n t h e s i t e. T h i s i s

More information

Water information system advances American River basin. Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS

Water information system advances American River basin. Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS Water information system advances American River basin Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS Opportunities Unprecedented level of information from low-cost

More information

Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model

Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model HYDROLOGICAL PROCESSES Hydrol. Process. 16, 1583 1591 (22) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 1.12/hyp.122 Operational snowmelt runoff forecasting in the Spanish

More information

Validation of the SNOWPACK model in five different snow zones in Finland

Validation of the SNOWPACK model in five different snow zones in Finland Boreal Environment Research 12: 467 488 issn 1239-6095 Helsinki 27 August 2007 2007 Validation of the SNOWPACK model in five different snow zones in Finland Sirpa Rasmus 1), Tiia Grönholm 2), Michael Lehning

More information

Spectral surface albedo derived from GOME-2/Metop measurements

Spectral surface albedo derived from GOME-2/Metop measurements Spectral surface albedo derived from GOME-2/Metop measurements Bringfried Pflug* a, Diego Loyola b a DLR, Remote Sensing Technology Institute, Rutherfordstr. 2, 12489 Berlin, Germany; b DLR, Remote Sensing

More information

Great Lakes Update. Volume 199: 2017 Annual Summary. Background

Great Lakes Update. Volume 199: 2017 Annual Summary. Background Great Lakes Update Volume 199: 2017 Annual Summary Background The U.S. Army Corps of Engineers (USACE) tracks and forecasts the water levels of each of the Great Lakes. This report is primarily focused

More information

THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING

THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING Miia Eskelinen, Sari Metsämäki The Finnish Environment Institute Geoinformatics and Land use division P.O.Box 140, FI 00251 Helsinki, Finland

More information

1. Evaluation of Flow Regime in the Upper Reaches of Streams Using the Stochastic Flow Duration Curve

1. Evaluation of Flow Regime in the Upper Reaches of Streams Using the Stochastic Flow Duration Curve 1. Evaluation of Flow Regime in the Upper Reaches of Streams Using the Stochastic Flow Duration Curve Hironobu SUGIYAMA 1 ABSTRACT A stochastic estimation of drought evaluation in the upper reaches of

More information

Accessing and Using National Long Term Ecological Research (LTER) Climate and Hydrology Data from ClimDB and HydroDB: A Tutorial

Accessing and Using National Long Term Ecological Research (LTER) Climate and Hydrology Data from ClimDB and HydroDB: A Tutorial Accessing and Using National Long Term Ecological Research (LTER) Climate and Hydrology Data from ClimDB and HydroDB: A Tutorial Gordon M. Heisler USDA Forest Service, Syracuse, NY Gary Fisher U.S. Geological

More information

The National Operational Hydrologic Remote Sensing Center Operational Snow Analysis

The National Operational Hydrologic Remote Sensing Center Operational Snow Analysis The National Operational Hydrologic Remote Sensing Center Operational Snow Analysis World Meteorological Organization Global Cryosphere Watch Snow-Watch Workshop Session 3: Snow Analysis Products Andrew

More information

The Importance of Snowmelt Runoff Modeling for Sustainable Development and Disaster Prevention

The Importance of Snowmelt Runoff Modeling for Sustainable Development and Disaster Prevention The Importance of Snowmelt Runoff Modeling for Sustainable Development and Disaster Prevention Muzafar Malikov Space Research Centre Academy of Sciences Republic of Uzbekistan Water H 2 O Gas - Water Vapor

More information

Flash Droughts: Their Characteristics and A Proposed Definition

Flash Droughts: Their Characteristics and A Proposed Definition Flash Droughts: Their Characteristics and A Proposed Definition Jason Otkin University of Wisconsin-Madison, Cooperative Institute for Meteorological Satellite Studies Jeff Basara and Jordan Christian

More information

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS Anna Kontu 1 and Jouni Pulliainen 1 1. Finnish Meteorological Institute, Arctic Research,

More information

Great Lakes Update. Volume 194: 2015 Annual Summary

Great Lakes Update. Volume 194: 2015 Annual Summary Great Lakes Update Volume 194: 2015 Annual Summary Background The U.S. Army Corps of Engineers (USACE) tracks and forecasts the water levels of each of the Great Lakes. This report summarizes the hydrologic

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

Midwest and Great Plains Climate- Drought Outlook 16 April 2015

Midwest and Great Plains Climate- Drought Outlook 16 April 2015 Midwest and Great Plains Climate- Drought Outlook 16 April 2015 Dr. Dennis Todey State Climatologist South Dakota State Univ. dennis.todey@sdstate.edu 605-688-5141 Photo taken Feb 19, 2013 Wildfire Wind

More information

THE EFFECT OF VEGETATION COVER ON SNOW COVER MAPPING FROM PASSIVE MICROWAVE DATA INTRODUCTION

THE EFFECT OF VEGETATION COVER ON SNOW COVER MAPPING FROM PASSIVE MICROWAVE DATA INTRODUCTION THE EFFECT OF VEGETATION COVER ON NOW COVER MAPPING FROM PAIVE MICROWAVE DATA Hosni Ghedira Juan Carlos Arevalo Tarendra Lakhankar Reza Khanbilvardi NOAA-CRET, City University of New York Convent Ave at

More information

Scaling snow observations from the point to the grid element: Implications for observation network design

Scaling snow observations from the point to the grid element: Implications for observation network design WATER RESOURCES RESEARCH, VOL. 41, W11421, doi:10.1029/2005wr004229, 2005 Scaling snow observations from the point to the grid element: Implications for observation network design Noah P. Molotch Cooperative

More information

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE Proceedings of the Second IASTED International Conference WATER RESOURCE MANAGEMENT August 20-22, 2007, Honolulu, Hawaii, USA ISGN Hardcopy: 978-0-88986-679-9 CD: 978-0-88-986-680-5 RELATIVE IMPORTANCE

More information

NOAA s NATIONAL SNOW ANALYSES. Tom Carroll and Don Cline

NOAA s NATIONAL SNOW ANALYSES. Tom Carroll and Don Cline NOAA s NATIONAL SNOW ANALYSES Tom Carroll and Don Cline National Operational Hydrologic Remote Sensing Center National Weather Service, NOAA 1735 Lake Drive West, Chanhassen, Minnesota Phone: 952-361-6610

More information

Weather to Climate Investigation: Snow

Weather to Climate Investigation: Snow Name: Date: Weather to Climate Investigation: Snow Guiding Questions: What are the historical and current weather patterns or events for a location in the United States? What are the long-term weather

More information

View angle effects on MODIS snow mapping in forests

View angle effects on MODIS snow mapping in forests University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2012 View angle effects

More information

Surface energy balance of seasonal snow cover for snow-melt estimation in N W Himalaya

Surface energy balance of seasonal snow cover for snow-melt estimation in N W Himalaya Surface energy balance of seasonal snow cover for snow-melt estimation in N W Himalaya Prem Datt, P K Srivastava, PSNegiand P K Satyawali Snow and Avalanche Study Establishment (SASE), Research & Development

More information

Comparative analysis of data collected by installed automated meteorological stations and manual data in Central Asia.

Comparative analysis of data collected by installed automated meteorological stations and manual data in Central Asia. Comparative analysis of data collected by installed automated meteorological stations and manual data in Central Asia. Merkushkin Aleksandr Uzhydromet 71 K. Makhsumov str., 100052 Tashkent, Uzbekistan

More information

THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY

THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY Johansson, M., Brown, I.A. and Lundén, B. Department of Physical Geography, Stockholm University, S-106 91 Stockholm, Sweden

More information

Proceedings, International Snow Science Workshop, Banff, 2014

Proceedings, International Snow Science Workshop, Banff, 2014 CHANGES IN DESIGN STANDARDS AND REGIONAL CHARACTERISTICS OF AVALANCHE SUPPORTING STRUCTURES IN JAPAN Yusuke Harada 1 *, Hiroki Matsushita and Masaru Matsuzawa 1 1 Civil Engineering Research Institute for

More information

2017/18 WINTER BALANCES OF GLACIERS IN LOMBARDY REGION (CENTRAL ITALIAN ALPS)

2017/18 WINTER BALANCES OF GLACIERS IN LOMBARDY REGION (CENTRAL ITALIAN ALPS) 2017/18 WINTER BALANCES OF GLACIERS IN LOMBARDY REGION (CENTRAL ITALIAN ALPS) Data from the Glaciological Service of Lombardy (SGL) network R. Scotti 1,2, B. Di Mauro 3 1 Department of Biological, Geological

More information

Climate Dataset: Aitik Closure Project. November 28 th & 29 th, 2018

Climate Dataset: Aitik Closure Project. November 28 th & 29 th, 2018 1 Climate Dataset: Aitik Closure Project November 28 th & 29 th, 2018 Climate Dataset: Aitik Closure Project 2 Early in the Closure Project, consensus was reached to assemble a long-term daily climate

More information

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013 Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013 John Pomeroy, Xing Fang, Kevin Shook, Tom Brown Centre for Hydrology, University of Saskatchewan, Saskatoon

More information