Additional Formula Sheet for Final Exam

Size: px
Start display at page:

Download "Additional Formula Sheet for Final Exam"

Transcription

1 Additional Formula Sheet for Final Exam eading and thoroughly familiarizing yourself with this formula sheet is an important part of, but it is not a substitute for, proper exam preparation. The latter requires, among other things, that you have re-worked all assigned homework problem sets (PS) and the in-class quizzes, studied the posted PS solutions, and worked and studied the assigned conceptual practice (CP) problems, as well as (optionally) some practice test (PT) problems, as posted on the LON-CAPA homework and on the PHYS1112 examples and homework web pages. You should consult the syllabus, and in particular review the Class Schedule on the last syllabus page (posted on the PYS1112 course web site), to find out which topics you should cover in preparing for this exam. Induction (1) Definition of Magnetic Flux: For a flat surface S with area vector A normal to the surface and finite surface area A A, subjected to a uniform magnetic field B, with angle θ ( A, B) enclosed between A and B, the magnetic flux through S is defined as: Φ m AB cos(θ). For surfaces S which are not flat and/or magnetic fields B which are not uniform across S, Φ m must be calculated by: (1) breaking up S into smaller, (approximately) flat pieces, with B being (appproximately) uniform across each such surface piece; and by then: (2) adding up the flux contributions from all these surface pieces. (2) Faraday s Law: Induced voltage (EMF) E in a tightly wound conducting coil of N identical turns, with each turn enclosing the same time-dependent magnetic flux Φ m (t): E = N Φ m Sign Convention. A positive EMF, E > 0, drives an induced current around the coil (or would do so if the open ends of the coil were connected into a closed circuit) in right-hand (H) direction around the A-vector that was used to define the flux Φ m (t). A negative EMF, E < 0, drives an induced current around the coil against H direction around the A-vector. (The H direction around A is the direction of the H 4 fingers when the H thumb points in A-direction.) The sign convention is equivalent to Lenz s ule: the induced current produces a magnetic field which opposes the change of the inducing magnetic field. (3) Motional EMF: Induced EMF E and electric field E in a conducting straight rod or wire of length l moving at speed v perpendicular to the rod/wire, in a uniform magnetic field B with field component B perpendicular to the rod/wire: E El = B vl. 1

2 Current I flowing through, magnetic breaking force F acting on, and mechanical power input P into (=heating power output from), a straight rod/wire with motionally induced EMF, connected into closed circuit of resistance : I = E/ = B vl, F = Il B = B2 vl 2, P = I 2 = F v = B2 v 2 l 2. (4) Generator-Induced EMF: The induced EMF of a coil of N turns, all of same of area A, rotating in uniform B-field at constant angular speed ω is E(t) = NABω sin(ωt) where θ(t) = ωt is the angle between B and the rotating area vector A(t), with A(t) normal to the planar surface enclosed by the turns of the coil. (5) Self-Induction: A time-dependent current I(t) in any wire or coil produces a selfinduced EMF E which opposes the change of the current and is proprtional to the rate of change of the current, E = L I/ I/, where the inductance L E I/ depends only on the shape and size of the wire or coil and is independent of E or I/. Inductance of a Long, Thin Solenoid (LTS). For a LTS of N turns over length l, with cross-sectional area A: L = µ o N 2 A l (6) Magnetic Field Energy: The energy U B required to build up a current I in an inductance L, stored as magnetic field energy, mostly inside the inductance coil, is given by U B = 1 2 LI2 Magnetic Field Energy Density. Energy per volume, u B, stored in a magnetic field is given in terms of the field strength B u B = 1 2µ o B 2 (7) Transformer: The primary (P ) and secondary (S) coil time-dependent currents (I P, I S ), induced voltages (V P, V S ), and number of turns (N P, N S ), are related by: V S V P = N S N P, I S I P = N P N S 2

3 (1) EM Field Energy Density: Electromagnetic (EM) Waves u = u E + u B = ɛ o 2 E µ o B 2 (2) EM Wave Amplitudes, Intensity, Power and Speed: E- and B-field amplitudes, E max and B max, and time-averaged (TA) wave intensity I av, TA EM wave power P av transported through area A, and TA EM wave energy density u av are related by I av 1 U A 1 A P av = cu av = c ɛ o 2 E2 max = c 1 Bmax 2, B max = 1 2µ o c E max. Here, U is the energy transported through the area A, of a surface oriented perpendicular to EM wave propagation direction, during time. The speed of light c, ɛ o and µ o are related by c = 1 ɛo µ o (3) EM Wave Momentum and adiation Pressure: The momentum p carried by an EM wave packet of energy U is p = 1 c U The radiation pressure Π and average pressure force F av exerted by an EM wave of TA intensity I av, on an object exposed to cross-sectional area A of the EM wave beam, are related by Π 1 A F av 1 p A = α I av c Here, α = 1 for a 100% absorbing and α = 2 for a 100% reflecting object. Also, p is the EM wave momentum transferred through area A onto the object during time internal. (4) EM Wave Polarization: For an unpolarized EM wave beam of TA intensity I o incident upon a polarization filter, the TA intensity I transmitted through the filter is I = 1 2 I o Malus Law. For a polarized EM wave beam of TA intensity I o and electric field vector amplitude E o incident upon a polarization filter of transmission axis T, the TA intensity I and electric field vector amplitude E transmitted through the filter obey I = I o cos 2 (θ), E = E o cos(θ). Here, θ ( E o, T ) = ( E o, E) is the angle between the incident E o and T with E T ; and E o E o and E E. 3

4 Mechanics Memories: Velocity, Acceleration, Force, Energy, Power (1) Velocity (2) Acceleration v = r a = v r if constant; else v = lim 0 v if constant; else a = lim 0 (3) Constant-Acceleration Linear Motion: for r r f r i and v v f v i r = 1 2 ( v i + v f ) t ; r = v i t a t2 ; v = a t. (4) Constant-Speed Circular Motion: for motion at constant speed v v around a circular trajectory of radius r. The velocity vector v is always tangential to trajectory and perpendicular to acceleration vector a: v a. The acceleration vector a always points towards the center of the circular trajectory. Period T and frequency f of revolution, angular velocity ω, and orbital speed v: T = 1 f = 2πr v = 2π ω ω = 2πf = 2π T = v r v = ωr = 2πfr = 2πr T Circular centripetal acceleration: a = v2 r = ω2 r Orbital angle φ and arc of circumference s covered during time interval : φ = ω = v r (5) Newton s 2nd Law: = s r m a = F s = v = ω r = φ r (6) Kinetic Knergy (KE), Work, Work-KE-Theorem: K=kinetic energy of object of mass m moving at speed v; W =work done by force F on an object moving/moved with displacement r, with r pointing at an angle θ from F and 0 o θ 180 o ; K = K f K i = change of kinetic energy due to work done by total force F : K = 1 2 m v2, W = F r cos θ, K = W. (7) Energy Conservation Law for K K f K i and U U f U i : K i + U i = K f + U f or K + U = 0 4

5 (8) Mechanical Power: P =rate of work done by force F on an object moving at speed v, with v pointing at an angle θ from F and 0 o θ 180 o : P = F v cos θ. Algebra and Trigonometry az 2 + bz + c = 0 z = b ± b 2 4ac 2a sin θ = opp hyp, adj cos θ = hyp, opp tan θ = adj = sin θ cos θ For very small angles θ (with θ 90 o ): sin 2 θ + cos 2 θ = 1 sin θ = tan θ = θ (in radians) Numerical Data Acceleration of gravity (on Earth): g = 9.81m/s 2 Speed of light in vacuum: c = m/s Coulomb s constant: k = Nm 2 /C 2 Biot-Savart s constant: k m µo 4π = Tm/A (exact) Permittivity of vacuum: ɛ o 1/(4πk) = C 2 /Nm 2 Permeability of Vacuum: µ o 4πk m = 4π 10 7 Tm/A (exact) Elementary charge: e = C Electron mass: Proton mass: m e = kg m p = kg Other numerical inputs will be provided with each problem statement. SI numerical prefixes: y = yocto =10 24, z = zepto =10 21, a = atto =10 18, f = femto =10 15, p = pico =10 12, n = nano =10 9, µ= micro =10 6, m = milli =10 3, c = centi =10 2, d = deci =10 1, da = deca =10 +1, h = hecto =10 +2, k = kilo =10 +3, M = Mega =10 +6, G = Giga =10 +9, T = Tera =10 +12, P = Peta =10 +15, E = Exa =10 +18, Z = Zetta =10 +21, Y = Yotta =

Formula Sheet for Exam #2

Formula Sheet for Exam #2 Formula Sheet for Exam #2 Reading and thoroughly familiarizing yourself with this formula sheet is an important part of, but it is not a substitute for, proper exam preparation. The latter requires, among

More information

PHY Tables & Formulas. You may refer to this handout on quizzes & exams. Do not add additional information. m

PHY Tables & Formulas. You may refer to this handout on quizzes & exams. Do not add additional information. m PHY 132 - Tables & Formulas You may refer to this handout on quizzes & exams. Do not add additional information. m Things you should know from PHY 131 and other prerequisites. (If you don t, learn them

More information

PHYS 3313 Section 001 Lecture #12

PHYS 3313 Section 001 Lecture #12 PHYS 3313 Section 001 Lecture #12 Monday, Feb. 24, 2014 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model The Bohr Model of the Hydrogen Atom 1 Quiz 2 results Class

More information

INDUSTRIAL ELECTRICITY

INDUSTRIAL ELECTRICITY INDUSTRIAL ELECTRICITY TODAY S TOPICS: Introduction (cont) Scientific Notation DUE Mon 1/13 11:00am HOMEWORK 1 Reading quizzes 1 & 2 Worksheet 1 QUESTIONS?? Scantron Use for reading quizzes only Don t

More information

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the General Physics II Exam 2 - Chs. 18B 21 - Circuits, Magnetism, EM Induction - Oct. 3, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

More information

Lesson 1.1 MEASUREMENT, UNITS, SCIENTIFIC NOTATION, AND PRECISION

Lesson 1.1 MEASUREMENT, UNITS, SCIENTIFIC NOTATION, AND PRECISION Lesson 1.1 MEASUREMENT, UNITS, SCIENTIFIC NOTATION, AND PRECISION I. Measurements Measurements can be either Qualitative or Quantitative Qualitiative Quality, like a color or smell, are simple observations

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

SI base units. SI : Système International d'unités (International System of Units)

SI base units. SI : Système International d'unités (International System of Units) 2 Units SI base units SI : Système International d'unités (International System of Units) Unite name (symbol) Definition established mass kilogram (kg) The mass of the International Prototype of the Kilogram

More information

GCE AS/A level 1321/01 PHYSICS PH1 Motion, Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1 Motion, Energy and Charge Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1321/01 PHYSICS PH1 Motion, Energy and Charge S15-1321-01 A.M. TUESDAY, 19 May 2015 1 hour 30 minutes For s use Question Maximum Mark

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

ASSESSMENT UNIT PH5: FIELDS, FORCES AND NUCLEI. A.M. WEDNESDAY, 11 June hours

ASSESSMENT UNIT PH5: FIELDS, FORCES AND NUCLEI. A.M. WEDNESDAY, 11 June hours Candidate Name Centre Number 2 Candidate Number GCE A level 545/0 PHYSICS ASSESSMENT UNIT PH5: FIELDS, FORCES AND NUCLEI A.M. WEDNESDAY, June 2008 2 hours ADDITIONAL MATERIALS In addition to this paper,

More information

GCE AS/A level 1321/01 PHYSICS PH1 Motion, Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1 Motion, Energy and Charge Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1321/01 PHYSICS PH1 Motion, Energy and Charge A.M. WEDNESDAY, 15 January 2014 1 hour 30 minutes For s use Question Maximum Mark Mark

More information

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying

More information

Table of Information and Equation Tables for AP Physics Exams

Table of Information and Equation Tables for AP Physics Exams Table of Information and Equation Tables for AP Physics Exams The accompanying Table of Information and Equation Tables will be provided to students when they take the AP Physics Exams. Therefore, students

More information

Application Of Faraday s Law

Application Of Faraday s Law Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions

More information

GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge Surname Other Names Centre Number 2 Candidate Number GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge ADDITIONAL MATERIALS P.M. MONDAY, 20 May 2013 1½ hours For s use Question Maximum Mark 1.

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

Physics data booklet. First assessment 2016

Physics data booklet. First assessment 2016 First assessment 2016 Diploma Programme Published February 2014 Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES Surname Centre Number Candidate Number Other Names 2 GCE AS/A Level 1321/01 LEGACY S16-1321-01 PHYSICS PH1 Motion, Energy and Charge A.M. TUESDAY, 24 May 2016 1 hour 30 minutes For s use Question Maximum

More information

GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge A.M. TUESDAY, 20 May 2014 1 hour 30 minutes For s use Question Maximum Mark Mark Awarded

More information

AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR AP PHYSICS 1 STUDENTS

AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR AP PHYSICS 1 STUDENTS AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR 2014-2015 AP PHYSICS 1 STUDENTS 1. Read Chapter 1 of Textbook (Giancoli pp.1-17). Make a list of questions about any topics you would like clarified on

More information

SI units are divided into 2 classes: base units (7) and derived units. Athens Programme Course CTU 1 - Metrology of Electrical Quantities.

SI units are divided into 2 classes: base units (7) and derived units. Athens Programme Course CTU 1 - Metrology of Electrical Quantities. Athens Programme Course CTU 1 - Metrology of Electrical Quantities The 11th CGPM (1960) adopted the name Système International d'unités (International System of Units, abbreviation SI), for the recommended

More information

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical

More information

Chapter 1: The Science of Physics. Physics 1-2 Mr. Chumbley

Chapter 1: The Science of Physics. Physics 1-2 Mr. Chumbley Chapter 1: The Science of Physics Physics 1-2 Mr. Chumbley The Topics of Physics The origin of the word physics comes from the ancient Greek word phusika meaning natural things The types of fields of

More information

Physics 208 Exam 3 Nov. 28, 2006

Physics 208 Exam 3 Nov. 28, 2006 Name: Student ID: Section #: Physics 208 Exam 3 Nov. 28, 2006 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed in

More information

Physics 42 Exam 3 Spring 2016 Name: M T W

Physics 42 Exam 3 Spring 2016 Name: M T W Physics 42 Exam 3 Spring 2016 Name: M T W Conceptual Questions & Shorty (2 points each) 1. Which magnetic field causes the observed force? 2. If released from rest, the current loop will move a. upward

More information

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the B-field.

More information

Exam 2 Fall 2014

Exam 2 Fall 2014 1 95.144 Exam 2 Fall 2014 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.

More information

SI UNITS AND SOME CONVERSION FACTORS. A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE

SI UNITS AND SOME CONVERSION FACTORS. A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE SI UNITS AND SOME CONVERSION FACTORS A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE Keywords : SI units, Dynamic viscosity, Surface tension,

More information

Precision, Accuracy Measurements, Units, Scientific Notation

Precision, Accuracy Measurements, Units, Scientific Notation Precision, Accuracy Measurements, Units, Scientific Notation DIMENSIONAL ANALYSIS It is a technique used in chemistry to give precise and accurate values. I. Accuracy and Precision Accuracy how close a

More information

Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

More information

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism Harold s AP Physics Cheat Sheet 23 February 206 Kinematics Position (m) (rad) Translation Horizontal: x = x 0 + v x0 t + 2 at2 Vertical: y = y 0 + v y0 t 2 gt2 x = x 0 + vt s = rθ x = v / Rotational Motion

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION 1 P a g e Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called

More information

Physics 208 Final Exam December 15, 2008

Physics 208 Final Exam December 15, 2008 Page 1 Name: Student ID: Section #: Physics 208 Final Exam December 15, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must

More information

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by PHY049 Spring 008 Prof. Darin Acosta Prof. Selman Hershfield April 9, 008. A metal rod is forced to move with constant velocity of 60 cm/s [or 90 cm/s] along two parallel metal rails, which are connected

More information

GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge Surname Other Names Centre Number 2 Candidate Number GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge P.M. THURSDAY, 12 January 2012 1½ hours ADDITIONAL MATERIALS In addition to this examination

More information

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in

More information

REVIEW SESSION. Midterm 2

REVIEW SESSION. Midterm 2 REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field

More information

PHYSICS. Complete Study Material and 1000 Objective bits Useful for all SSC, RRB & Group Exams METRE

PHYSICS. Complete Study Material and 1000 Objective bits Useful for all SSC, RRB & Group Exams METRE PHYSICS Complete Study Material and 1000 Objective bits Useful for all SSC, RRB & Group Exams PHYSICAL QUANTITIES The quantities like length, mass, time, temperature, area, volume and density, etc. which

More information

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a Final on December11. 2007 - Physics 106 R. Schad YOUR NAME STUDENT NUMBER 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a 1. 2. 3. 4. This is to identify the exam version you have IMPORTANT

More information

Standard physical units

Standard physical units Standard physical units SI base units (SI = Système International d Unités) Basic quantity SI base unit Name Symbol Length metre m Mass kilogram kg Time second s Electric current ampere A Temperature (thermodynamic

More information

Lecture notes on * Measurement and Error * Least Square Fitting

Lecture notes on * Measurement and Error * Least Square Fitting Lecture notes on * Measurement and Error * Least Square Fitting Department of Optical Engineering University of Gaziantep Oct 2016 Sayfa 1 PART I Measurement and Error Sayfa 2 System of Units Physics is

More information

Physics 112. Study Notes for Exam II

Physics 112. Study Notes for Exam II Chapter 20 Electric Forces and Fields Physics 112 Study Notes for Exam II 4. Electric Field Fields of + and point charges 5. Both fields and forces obey (vector) superposition Example 20.5; Figure 20.29

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are posted at http://www.physics.ohio-state.edu/~humanic/ Information for Physics 1201 Midterm I Wednesday, February 20 1) Format: 10 multiple choice questions (each worth 5 points) and

More information

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction?

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction? General Physics II Exam 2 - Chs. 19 21 - Circuits, Magnetism, EM Induction - Sep. 29, 2016 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge Surname Other Names Centre Number 2 Candidate Number GCE AS/A level 1321/01 PHYSICS PH1 Motion Energy and Charge P.M. FRIDAY, 11 January 2013 1½ hours ADDITIONAL MATERIALS In addition to this examination

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

What is Physics? It is a Science

What is Physics? It is a Science It is a Science What is Physics? (What is science?) Physics is a physical science (as compared to earth or life science). Physics is the study of motion and energy. Science is a study Science How is science

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

PHYS 3313 Section 001 Lecture #11

PHYS 3313 Section 001 Lecture #11 PHYS 3313 Section 001 Lecture #11 Monday, March 2, 2015 Compton Effect Pair production/pair annihilation Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model The Bohr Model

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

MET 487 Instrumentation and Automatic Control. Lecture 3

MET 487 Instrumentation and Automatic Control. Lecture 3 MET 487 Instrumentation and Automatic Control Lecture 3 Electrical Circuits and Components http://www.etcs.ipfw.edu/~lin Lecture 2 - By P. Lin 1 Electrical Circuits and Components Basic Electrical Elements

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

SPH3U Measurement and Analysis Mr. LoRusso Introduction

SPH3U Measurement and Analysis Mr. LoRusso Introduction Introduction Standard Unit: Metric is the preferred unit of measure in science. Metric is often referred to as S.I for Systèm Internatianale. Historically, S.I. has been referred to as MKS system for meters,

More information

PHYSICS 9646/02. NANYANG JUNIOR COLLEGE Science Department JC 2 PRELIMINARY EXAMINATION Higher 2. Candidate Name. Tutor Name.

PHYSICS 9646/02. NANYANG JUNIOR COLLEGE Science Department JC 2 PRELIMINARY EXAMINATION Higher 2. Candidate Name. Tutor Name. NANYANG JUNIOR COLLEGE Science Department JC PRELIMINARY EXAMINATION Higher Candidate Name Class Tutor Name PHYSICS 9646/0 Paper Structured Questions 4 September 013 1 hour 45 minutes Candidates answer

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

Downloaded from

Downloaded from Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge A.M. THURSDAY, 17 May 2012 1½ hours For s use ADDITIONAL MATERIALS In addition to this

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 8 Electricity and Magnetism 1. Magnetism Application of magnetic forces Ampere s law 2. Induced voltages and induction Magnetic flux http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Physics 11. Unit 1 Mathematical Toolkits

Physics 11. Unit 1 Mathematical Toolkits Physics 11 Unit 1 Mathematical Toolkits 1 1.1 Measurement and scientific notations Système International d Unités (SI Units) The base units for measurement of fundamental quantities. Other units can be

More information

1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will

More information

1 - Astronomical Tools

1 - Astronomical Tools ASTR 110L 1 - Astronomical Tools Purpose: To learn fundamental tools astronomers use on a daily basis. Turn in all 13 problems on a separate sheet. Due in one week at the start of class. Units All physical

More information

Problem Set 6: Magnetism

Problem Set 6: Magnetism University of Alabama Department of Physics and Astronomy PH 10- / LeClair Spring 008 Problem Set 6: Magnetism 1. 10 points. A wire with a weight per unit length of 0.10 N/m is suspended directly above

More information

Electrical polarization. Figure 19-5 [1]

Electrical polarization. Figure 19-5 [1] Electrical polarization Figure 19-5 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron

More information

Final Exam Concept Map

Final Exam Concept Map Final Exam Concept Map Rule of thumb to study for any comprehensive final exam - start with what you know - look at the quiz problems. If you did not do well on the quizzes, you should certainly learn

More information

Magnetic Fields Part 2: Sources of Magnetic Fields

Magnetic Fields Part 2: Sources of Magnetic Fields Magnetic Fields Part 2: Sources of Magnetic Fields Last modified: 08/01/2018 Contents Links What Causes a Magnetic Field? Moving Charges Right Hand Grip Rule Permanent Magnets Biot-Savart Law Magnetic

More information

Tute UV1 : MEASUREMENT 1

Tute UV1 : MEASUREMENT 1 Tute UV1 : MEASUREMENT 1 We measure physical quantities. To achieve this we firstly define the quantity, then secondly we define units in terms of which that quantity can be measured. Definition of a Quantity:

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Instructor: Welcome to

Instructor: Welcome to Instructor: Welcome to Physics 105 Summer 2006 Prof. Andrei Sirenko http://web.njit.edu/~sirenko 423E Tiernan Office hours: After the classes M. R. or by appointment 973-596-5342 Lecture 1 Andrei Sirenko,

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 2016

Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 2016 Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 016 Multiple choice conceptual questions 1. An infinitely long, straight wire carrying current passes through the center of a

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

PY1007: Physics for Engineers I

PY1007: Physics for Engineers I PY1007: Physics for Engineers I LECTURES: TUESDAY 12-13 Kane Building G1 THURSDAY 13-14 Lecturers Dr. Richard Green (me!) r.green@ucc.ie 1 st Floor, Kane (Science) Building Dr. Síle Nic Chormaic (Module

More information

P.M. THURSDAY, 27 May hours. The number of marks is given in brackets at the end of each question or part question.

P.M. THURSDAY, 27 May hours. The number of marks is given in brackets at the end of each question or part question. Candidate Name Centre Number 2 Candidate Number GCE AS/A level 1321/01 PHYSICS PH1: MOTION ENERGY AND CHARGE P.M. THURSDAY, 27 May 2010 1 1 2 hours 1321 01 01 ADDITIONAL MATERIALS In addition to this examination

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

Physics 208 Final Exam December 15, 2008

Physics 208 Final Exam December 15, 2008 Page 1 Name: Solutions Student ID: Section #: Physics 208 Final Exam December 15, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

Chemistry 11. Unit 2 : Introduction to Chemistry

Chemistry 11. Unit 2 : Introduction to Chemistry Chemistry 11 Unit 2 : Introduction to Chemistry 1 2 1. Unit conversion In Chemistry 11 and 12, a mathematical method called Unit Conversions will be used extensively. This method uses CONVERSION FACTORS

More information

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation, Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field MAGNETIC FIELD DUE TO A CURRENT ELEMENT The relation between current and the magnetic field, produced by it is magnetic effect of currents. The magnetic fields that we know are due to currents or moving

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Andrew Rinzler, Paul Avery, Selman Hershfield PHYSICS DEPARTMENT PHY 049 Exam 3 April 7, 00 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.

More information