FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER

Size: px
Start display at page:

Download "FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER"

Transcription

1 Free Convective Heat Transfer From an Object at Low Rayleigh Number FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER Md. Golam Kader and Khandkar Aftab Hossain * Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9, Bangladesh. * Corresponding aftab@me.kuet,ac.bd Abstract: Free convective heat transfer from a heated object in very large enclosure is investigated in the present work. Numerical investigation is conducted to explore the fluid flow and heat transfer behavior in the very large enclosure with heated object at the bottom. Heat is released from the heated object by natural convection. Entrainment is coming from the The two dimensional Continuity, Navier-Stokes equation and Energy equation have been solved by the finite difference method. Uniform grids are used in the axial direction and non-uniform grids are specified in the vertical direction. The differential equations are discretized using Central difference method and Forward difference method. The discritized equations with proper boundary conditions are sought by SUR method. It has been done on the basis of stream function and vorticity formulation. The flow field is investigated for fluid flowing with Rayleigh numbers in the range of. Ra. and Pr=.7. It is observed that the distortion of flow started at Rayleigh number Ra=. It is observed that the average heat transfer remains constant for higher values of Reyleigh number and heating efficiency varies with Ra upto the value of Ra= and beyond this value heating efficiency remains constant. Keywords: Free convection, enclosure, distortion, Rayliegh no., vorticity. INTRODUCTION Free convection heat transfer from a heated body draws additional attention to the researchers, because it does not require any external energy for transferring heat. Only the variation of density of fluid plays important role to transfer heat from the body. The present work deals with free convection heat transfer from a heated body in a very large enclosure in quiescent atmospheric condition. Buoyancy induced flow and heat transfer is an important phenomenon in engineering systems due to its wide applications in electronic cooling, heat exchangers, double pane windows, molding and casting, nuclear and chemical reactors, flooding protection for buried pipes, solidification processes, growing crystals and solar collectors etc []. Oh et al. [], used a numerical simulation to study natural convection in a vertical square enclosure containing heat generating conducting body, when a temperature difference existed across the enclosure. The streamlines, isotherms and average Nusselt number at the hot and cold walls are presented and discussed. Roychowdhury et al. [], analyzed the natural convective flow and heat transfer features for a heated cylinder kept in a square enclosure with different thermal boundary conditions. Arnab et al. [], performed an extensive analysis of flow pattern and heat transfer from a heated rectangular cylinder enclosed inside an enclosure with three different aspect ratio. The effect of aspect ratio and two kinds of boundary conditions (i.e, constant wall heat flux and constant wall temperature) were studied. They concluded that the uniform wall temperature heating was greatly different from the uniform wall flux heating. Jami et al. [], analyzed natural convection heat transfer in a differentially heated enclosure, within which a centered, circular, heat-conducting body generates heat. They concluded that for a constant Rayleigh number, the average Nusselt number at the hot and cold walls varied linearly with temperaturedifference ratio. Sidik et al. [6], studied numerically, the fluid flow behavior and heat transfer mechanism from a heated square cylinder located at various heights inside a square enclosure by the numerical method in the range of Ra 6. Their computational results proved that the flow pattern, number, size and formation of vorticies and also heat transfer mechanism were critically dependent on Rayleigh number and the position of heated square cylinder in enclosure. Hussain et al. [7], considered the problem of natural convection in a square enclosure which had an isothermal walls and was heated by a concentric internal circular isoflux boundary. They concluded that vorticies down the bottom and up the top of the inner cylinder can be noticed as the inner cylinder moved upward and downward. However, a very little literatures deal with natural convection problem when a conductive circular cylinder with heat generation embedded inside a square enclosure and moves at different locations along the enclosure diagonal. The objective of this study is to simulate two-dimensional free convection heat transfer in a cylinder within a square enclosure in order to investigate the effect of a hot conductive circular cylinder location and its heat generation on the heat transfer and fluid flow in an enclosure. R. T. Bailey et al. [8], investigated the force convective heat transfer relations for atmospheric flow over sparsely Journal of Mechanical Engineering, Vol. ME, No., June

2 Free Convective Heat Transfer From an Object at Low Rayleigh Number vegetated areas and compared to existing relations for flow in rough ducts. Experimental convection coefficients obtained are compared to the analytical relations. Convection coefficient is directly calculated by measuring the power dissipation and surface temperatures. The experimental heat transfer results are correlated with micrometeorological models from which a soil roughness height is calculated. A simplified heat transfer correlation is presented for desert surfaces. The Grashof no. is calculated from Gr gw / and Prandtl no. is calculated from. The Rayleigh no. Ra = GrPr Pr / = g W /. The Nusselt number, Nu at the hot surface is a measure of convective heat transfer coefficient at the surface. Higher values of Nu indicate higher heat transfer rate from the hot surface. The local Nusselt number from the isothermal top face of the object is computed as, Nu ( Y ) d / and the average Nusselt dx TopFace number is calculated as, Nu / W Nu( Y) dy, where W=l -l is the face width of the top face of the object as in Figure. Similarly, the average Nusselt number of left and right vertical sides of the object are computed. Now, taking the average of three sides will give the average heat transfer from the object. An index of the performance of the overall heating process of fluid is defined in terms of the heating efficiency, [9], which is defined as the ratio of the net heat energy flux through the inlet and outlet to the heat energy influx, i.e., vnda. / vnda. where v is the velocity A in out Ain vector and n is the outward-drawn unit normal vector. Defining the average inlet and outlet temperatures as, in v. nda/ v. nda and A in A in out v. nda/ v. nda and noting that for steady state A out A out l l v. nda v. nda the heating A in A out efficiency is given by [9], / out in. NUMERICAL MODELING The conservation equations for mass, momentum, and energy for the two-dimensional, steady, and laminar flow. All the physical properties of the fluid, μ, k, and C p, are considered constant except density, in the buoyancy term, which follows the Boussinesq approximation. In the energy equation, the effects of compressibility and viscous dissipation is neglected. Continuity equation u v (). x y Navier-Stokes equations u u p u u u v x y x x y v v p v v u v x y y x y g ( T T ) obj Energy equation () () () T T T T u v x y x y The above equations are converted into a nondimensional form considering the following dimensionless quantities: x y X ; Y ; W W T ( x, y) T ( x, y) T T obj uw U ; vw V ; Now, putting this value in equation (), (), () and (), we get the normalized forms of these equations are as follows, u v () x y (6) u u p u u u v Pr x y x x y v v p v v u v Pr x y y x y (7) Ra.Pr and (8) u v x y x y BOUNDARY CONDITIONS Boundary Conditions at the Bottom Wall Since the Velocity Component, u and v both are zero at the wall. We know that the velocity components are: Journal of Mechanical Engineering, Vol. ME, No., June

3 Free Convective Heat Transfer From an Object at Low Rayleigh Number u y v x Applying no-slip conditions, u= and v=, stream function =constant. The vorticity at the bottom wall is prescribed by the constant.re and the bottom wall is assumed to be heated one-third of the heated object, that is, =.. Boundary Conditions at Left and Right Boundaries Gradients of variables are assumed to be zero at the left and right boundaries are as, u v ; ; ; ; ; x x x x x Boundary Conditions at object At the object, for no-slip conditions, u= and v=, Stream function = constant. The vorticity at the object boundary is prescribed by the constant,.re. The object is assumed to be heated. So, the temperature field associated with the object boundary is: =.. Boundary Conditions at Top Boundary: Gradients of variables and u-component of velocity are assumed to be zero at the top boundary as, v u ; ; ; ; ; x x x x RESULT AND DISCUSSION The governing non-dimensional partial differential equations along with proper boundary conditions have been solved to get stream function, vorticies, velocities and temperatures at every nodal points in the computational domain. Computational domain is shown in the Fig.. Figure. Computational Domain The length of the computational domain is L= and height H=. The top face width of the object W=. and the height of the object H obj =.. Uniform grid is specified in the axial direction and non-uniform grid is specified in the vertical direction. Grid independency test has been done, but no improved result is obtained after more fine grids than, which is shown in the Fig.. The maximum error is obtained as -6 based on stream function. Figure. Grid Sensitivity Test Figure shows, the stream function contours at Ra=. It is observed that the fluid is flowing over the heated body and transferring heat from the heated body. Small vorticies are observed at top and adjacent to the heated body Figure. Stream Function at Ra=. Figure shows the velocity vector at Ra=. It is observed that the fluid is flowing over the heated body becomes heated and goes upward. At the same time cold entrainment is added to the main flow stream. Fluid is coming from left and top of the computational domain and going out from right boundary and top boundary. Figure shows the temperature contours at Ra=. It is observed that the cold fluid is coming as entrainment and mixed with the heated fluid flowing towards the heated object and takes heat, becomes lighter and goes upward. Journal of Mechanical Engineering, Vol. ME, No., June

4 Free Convective Heat Transfer From an Object at Low Rayleigh Number Figure. Velocity vector at Ra= Figure. Contour of Temperature at Ra= Figure 6. Stream Function at Ra=. Figure 6 shows the stream function at Ra=. It is observed that the two separate and distinct vorticies are formed near the heated object. Cold fluid entering into the domain becomes heated and goes upward. In this way heat is transferred to the Figure 7 shows the velocity vector at Ra=. Two distinct vorticies are observed in the flow field. Cold fluid is coming from the surrounding mixed with the heated fluid and goes back to the Figure 8 shows the temperature contours at Ra=. It is observed that the cold fluid region gradually narrow and heated fluid spreads over the flow field. The fluid flowing towards the heated object and takes heat, becomes lighter and goes upward Figure 7. Velocity Vector at Ra= Figure 8. Contour of Temperature at Ra= Figure 9. Stream Function at Ra=. Figure 9 shows the stream function at Ra=. It is observed that the two separate and distinct vorticies are formed near the heated object. Cold fluid entering into the domain becomes heated and goes upward. In this way heat is transferred to the Figure shows the velocity vector at Ra=. Two distinct and sharp vorticies are observed in the flow field. The magnitude of fluid velocities increased, mixed quickly and goes back to the Figure shows the temperature contours at Ra=. It is observed that the cold fluid region becomes more narrow and heated fluid spreads over the flow field. The fluid flowing towards the heated Journal of Mechanical Engineering, Vol. ME, No., June

5 Free Convective Heat Transfer From an Object at Low Rayleigh Number 7 object and takes heat, becomes lighter and goes upward Figure. Velocity Vector at Ra= Figure. Contour of Temperature at Ra=. Figure shows that the average Nusselts number for the range of Ra= to 6. It is observed that the average Nusselt number varies very little that is, almost constant. Deviation is not considerable Figure. Heating Efficiency at different Ra. CONCLUSIONS This investigation led to several conclusions:. The vorticies are formed with the increase of Rayleigh Number and become sharp.. The temperature spreads gradually with the increase of Rayleigh Number.. The average Nusselt Number remains almost constant for the range of Rayleigh Number investigated.. The heating efficiency changes sharply at low Rayleigh Number but Ra= and more the heating efficiency remains almost constant. NOMENCLATURE Symbols Description Figure. Average Nusselts number at different Ra. H L H obj k Nu p Pr of the Domain of the Domain Filament Thermal conductivity of the fluid Nusselt Number Pressure of the flowing fluid Prandtl Number, Pr Figure shows that the heating efficiency for the range of Ra= to 6. It is observed that the heating efficiency sharply varies within the lower values of Rayleigh number but at higher values of Rayleigh number heating efficiency remains almost constant g W Gr Grashof number, Gr T(x,y) Local fluid temperature U, V Dimensionless velocity components, Journal of Mechanical Engineering, Vol. ME, No., June

6 Free Convective Heat Transfer From an Object at Low Rayleigh Number 8 uw vw U, V x, y Cartesian coordinates X, Y Dimensionless Cartesian coordinates, x y, W W Density of fluid Kinematics viscosity of fluid Vorticity * Dimensionless Vorticity, θ ψ ψ o T T obj T T Stream function o Initial value of Stream function ψ* Dimensionless Stream function, W Top face width of the object o REFERENCES [] Salam, S. A. and Ahmed, K. H., Natural Convection Heat Transfer in a Differentially Heated Square Enclosure with a Heat Generating- Conducting Circular Cylinder at Different Diagonal Locations. Proceeding of 6th International Advanced Technologies Symposium (IATS ), 6-8 May, Elazığ, Turkey, pp.-9. [] Oh, J. Ha, M. and Kim, K. Numerical study of heat transfer and flow of natural convection in an enclosure with a heat generating conducting body, Numerical Heat Transfer, Part A,Vol., 997, pp.89-. [] Roychowdhury, D., Das, S. and Sundararajan, T. Numerical simulation of natural convective heat transfer and fluid flow around a heated cylinder inside an enclosure, International Journal of Heat and Mass Transfer, Vol. 8,, pp [] Arnab, K. and Amaresh, D. A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure., International Journal of Heat and Mass Transfer, Vol. 9, 6, pp [] Jami, M., Mezrhab, A., Bouzidi, M. and Lallemand, P. Lattice Boltzmann method applied to the laminar natural convection in an enclosure with a heat-generating cylinder conducting body., Graduate Student Association Research Fair, University of Nevada, Reno, 6, pp.. [6] Sidik, N. and Rahman, M., Mesoscale investigation of natural convection heat transfer from a heated cylinder inside square enclosure., European Journal of Scientific Research, Vol. 8, No., 9, pp.-6. [7] Hussain, S. and Hussein, A. Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations, International Communications in Heat and Mass Transfer, Vol.7,, pp. 6. [8] Bailey, R. T., Mitchell, J. W. and Beckman, W. A. Convective Heat Transfer From a Desert Surface. Journal of Heat Transfer, February 97,Volume 97, Issue, pp.-9. [9] Singh S., and Sharif, M. A. R., Mixed Convective Cooling of a Rectangular Cavity with Inlet and Exit Openings on Differentially Heated Side Walls, Numerical Heat Transfer, Part A, Vol (), pp Journal of Mechanical Engineering, Vol. ME, No., June

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (24 ) 55 556 th International Conference on Mechanical Engineering, ICME 23 Analysis of heat transfer and flow due to natural

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL Journal of Naval Architecture and Marine Engineering December, 2010 DOI: 10.3329/jname.v7i2.3292 http://www.banglajol.info NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

HEAT TRANSFER IN A RECTANGULAR ENCLOSURE WITH BAFFLES

HEAT TRANSFER IN A RECTANGULAR ENCLOSURE WITH BAFFLES VOL. 6, NO. 4, APRIL ISSN 89-668 6- Asian Research Publishing Network (ARPN). All rights reserved. HEAT TRANSFER IN A RECTANGULAR ENCLOSURE WITH BAFFLES M. R. Asif, M. S. Hossain and K. A. Hossain Department

More information

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 1, 89 99 89 Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle S. Parvin,

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Suranaree J. Sci. Technol. Vol. 17 No. 2; April - June 2010 139 MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Md. Mustafizur Rahman 1 *, M. A. Alim 1 and Sumon Saha

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural

More information

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall Heat Transfer Research, 2011, Vol. 42, No. 3 Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall SAEID JANI, 1* MEYSAM AMINI, 2 and MOSTAFA MAHMOODI

More information

Natural Convection in Parabolic Enclosure Heated from Below

Natural Convection in Parabolic Enclosure Heated from Below www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 3; June 011 Natural Convection in Parabolic Enclosure Heated from Below Dr. Ahmed W. Mustafa (Corresponding auther) University of Tikrit, College

More information

Numerical Study for Free Convection Heat Transfer inside an Inclined Cavity with Cylindrical Obstacles

Numerical Study for Free Convection Heat Transfer inside an Inclined Cavity with Cylindrical Obstacles International ournal of Engineering and Technology Volume 3 No. 5, May, 13 Numerical Study for Free Convection eat Transfer inside an Inclined Cavity with Cylindrical Obstacles Khudheyer S. Mushatat College

More information

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 2, pp. 130-143, July-December 2010 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.2.2010.3.0011

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS Proceedings of the International onference on Mechanical Engineering 0 (IME0 8-0 December 0, Dhaka, Bangladesh IME- NATURAL ONVETION OF AIR IN TILTED SQUARE AVITIES WIT DIFFERENTIALLY EATED OPPOSITE WALLS

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Research Article Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders

Research Article Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders Research Journal of Applied Sciences, Engineering and Technology 7(5): 3069-3074, 04 DOI:0.906/rjaset.7.644 ISSN: 040-7459; e-issn: 040-7467 04 Maxwell Scientific Publication Corp. Submitted: August 7,

More information

PHYSICAL MECHANISM OF NATURAL CONVECTION

PHYSICAL MECHANISM OF NATURAL CONVECTION 1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

More information

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER N. HAMICI a, D. SADAOUI a a. Laboratory of Mechanic, Materials and Energy (L2ME), University

More information

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE Computational Thermal Sciences, 3 (1): 63 72 (2011) SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE M. Zhao, 1, M. Yang, 1 M. Lu, 1 & Y. W. Zhang 2 1

More information

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

More information

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Proceedings of the International Conference on Mechanical Engineering 9 (ICME9) - 8 December 9, Dhaka, Bangladesh ICME9-TH- NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Naheed Ferdous, Md.

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder American Journal of Computational Mathematics, 2015, 5, 41-54 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis

More information

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10 HEFAT5 4 th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 9- September 5, Cairo, Egypt AA Numerical Study of Natural Convection Heat Transfer in Enclosures with Conducting

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Combined Natural Convection and Thermal Radiation in an Inclined Cubical Cavity with a Rectangular Pins Attached to Its Active Wall

Combined Natural Convection and Thermal Radiation in an Inclined Cubical Cavity with a Rectangular Pins Attached to Its Active Wall Periodicals of Engineering and Natural Sciences ISSN 2303-4521 Vol.5, No.3, November 2017, pp. 347~354 Available online at:http://pen.ius.edu.ba Combined Natural Convection and Thermal Radiation in an

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 418 424 10th International Conference on Mechanical Engineering, ICME 2013 Effect of Lewis Number on Unsteady Double

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2413-2424 2413 EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY by Hicham DOGHMI *, Btissam ABOURIDA, Lahoucin BELARCHE, Mohamed

More information

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below International Journal of Discrete Mathematics 017; (): 43-47 http://www.sciencepublishinggroup.com/j/dmath doi: 10.11648/j.dmath.01700.13 Effect of Buoyancy Force on the Flow Field in a Square Cavity with

More information

NUMERICAL SIMULATION OF UNSTEADY NATURAL CONVECTION FROM HEATED HORIZONTAL CIRCULAR CYLINDERS IN A SQUARE ENCLOSURE

NUMERICAL SIMULATION OF UNSTEADY NATURAL CONVECTION FROM HEATED HORIZONTAL CIRCULAR CYLINDERS IN A SQUARE ENCLOSURE Numerical Heat Transfer, Part A, 65: 715 731, 2014 Copyright # Taylor & Francis Group, LLC ISSN: 1040-7782 print=1521-0634 online DOI: 10.1080/10407782.2013.846607 NUMERICAL SIMULATION OF UNSTEADY NATURAL

More information

Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders

Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders Research Journal of Applied Sciences, Engineering and Technology 7(5): 3069-3074, 04 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 04 Submitted: August 7, 03 Accepted: September 0,

More information

RAYLEIGH-BÉNARD CONVECTION IN A CYLINDER WITH AN ASPECT RATIO OF 8

RAYLEIGH-BÉNARD CONVECTION IN A CYLINDER WITH AN ASPECT RATIO OF 8 HEFAT01 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 01 Malta RAYLEIGH-BÉNARD CONVECTION IN A CYLINDER WITH AN ASPECT RATIO OF 8 Leong S.S. School of Mechanical

More information

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA.

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA. NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING Adel LAARABA. Department of physics. University of BATNA. (05000) Batna, Algeria Ccorresponding

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side Applied Mathematical Sciences, Vol., 2012, no. 97, 801-812 Visualization of Natural Convection in Enclosure Filled with Porous Medium by Sinusoidally Temperature on the One Side Paweena Khansila Department

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer Thermal Engineering and Environment Athens Greece August 5-7 007 49 Laminar Mixed Convection in the Entrance Region of Horizontal Quarter

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 5 NATURAL CONVECTION HEAT TRANSFER BASIC CONCEPTS MECHANISM OF NATURAL

More information

Indian Journal of Engineering & Materials Sciences Yol. I, August 1994,pp

Indian Journal of Engineering & Materials Sciences Yol. I, August 1994,pp Indian Journal of Engineering & Materials Sciences Yol. I, August 1994,pp.181-188 Finite element analysis of laminar convection heat transfer and flow of the fluid bounded by V-corrugated vertical plates

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN ENCLOSURES CONTAINING AN INTERNAL LOCAL HEAT SOURCE

NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN ENCLOSURES CONTAINING AN INTERNAL LOCAL HEAT SOURCE Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 24, No. 03, pp. 375-388, July - September, 2007 NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN

More information

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 4, 541 552 Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus M. Sankar

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES

A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES http://doi.org/10.4867/jpe-017-01-11 JPE (017) Vol.0 (1) Mohapatra, C. R. Preliminary Note A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES Received: 3 February 017 / Accepted: 01 April

More information

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE Suranaree J. Sci. Technol. Vol. 20 No. 4; October - December 2013 257 COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

More information

Finite Element Analysis of Convective Heat and Mass Transfer Through a Parallel Plate Reactor with Heat of Reaction Effect

Finite Element Analysis of Convective Heat and Mass Transfer Through a Parallel Plate Reactor with Heat of Reaction Effect International Journal of Modern Physics and Applications Vol. 1, No. 4, 2015, pp. 152-158 http://www.aiscience.org/journal/ijmpa Finite Element Analysis of Convective Heat and Mass Transfer Through a Parallel

More information

Experimental Analysis for Natural Convection Heat Transfer through Vertical Cylinder

Experimental Analysis for Natural Convection Heat Transfer through Vertical Cylinder Experimental Analysis for Natural Convection Heat Transfer through Vertical Cylinder 1 Shyam S. Kanwar, 2 Manoj K. Yadav, Saurabh Sharma 3 1,2,3 Assistant Professor 1 Department of Mechanical Engg. 1 Institute

More information

Abstract: This paper numerically investigates the physical mechanism of flow instability

Abstract: This paper numerically investigates the physical mechanism of flow instability Hua-Shu Dou*, Gang Jiang, Numerical simulation of flow instability and heat transfer of natural convection in a differentially heated cavity, International Journal of Heat and Mass Transfer, 103 (2016)

More information

PARAMETRIC STUDIES ON HEAT TRANSFER BY NATURAL CONVECTION IN VERTICAL CHANNEL USING INCLINED V-SLOT PLATE AN OVERVIEW

PARAMETRIC STUDIES ON HEAT TRANSFER BY NATURAL CONVECTION IN VERTICAL CHANNEL USING INCLINED V-SLOT PLATE AN OVERVIEW PARAMETRIC STUDIES ON HEAT TRANSFER BY NATURAL CONVECTION IN VERTICAL CHANNEL USING INCLINED V-SLOT PLATE AN OVERVIEW M.P Nimkar 1, Prateek Patil 2, Shubham Pattiwar 2, Prathamesh Pawar 2, Vijayanshu Game

More information

THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY. Corresponding author;

THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY. Corresponding author; THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY Hicham DOGHMI 1 *, Btissam ABOURIDA 1, Lahoucin BELARCHE 1, Mohamed SANNAD 1, Meriem OUZAOUIT 1 1 National School

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Effect of an adiabatic fin on natural convection heat transfer in a triangular enclosure

Effect of an adiabatic fin on natural convection heat transfer in a triangular enclosure American Journal of Applied Mathematics 2013; 1(4): 78-83 Published online November 10, 2013 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20130104.16 Effect of an adiabatic fin on

More information

Finite Element Analysis of Mixed Convection in a Rectangular Cavity with a Heat-Conducting Horizontal Circular Cylinder

Finite Element Analysis of Mixed Convection in a Rectangular Cavity with a Heat-Conducting Horizontal Circular Cylinder Nonlinear nalysis: Modelling and Control, 2009, Vol. 14, No. 2, 217 247 Finite Element nalysis of Mixed Convection in a Rectangular Cavity with a Heat-Conducting Horizontal Circular Cylinder Md. M. Rahman

More information

Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block

Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block Abdul Halim Bhuiyan, M. A. Alim, Md. Nasir Uddin Abstract This paper is concerned with

More information

EFFECT OF INLET AND OUTLET LOCATIONS ON TRANSVERSE MIXED CONVECTION INSIDE A VENTED ENCLOSURE

EFFECT OF INLET AND OUTLET LOCATIONS ON TRANSVERSE MIXED CONVECTION INSIDE A VENTED ENCLOSURE Effect of Inlet and Outlet Locations on Transverse Mixed Convection 7 EFFECT OF INLET AND OUTLET LOCATIONS ON TRANSVERSE MIXED CONVECTION INSIDE A VENTED ENCLOSURE Sumon Saha *, Md. Tofiqul Islam, Mohammad

More information

Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles

Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles O. A. SHAHRUL Faculty of Mechanical & Manufacturing Engineering Universiti

More information

Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with a Solid Adiabatic Fin Attached to the Hot Vertical Wall

Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with a Solid Adiabatic Fin Attached to the Hot Vertical Wall Journal of Applied Fluid Mechanics, Vol., No., pp. 01-10, 2013. Available online at www.jafmonline.net, ISSN 13-32, EISSN 13-3. Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with

More information

Enhancement of Natural Convection Heat Transfer in a Square Enclosure with Localized Heating from Below

Enhancement of Natural Convection Heat Transfer in a Square Enclosure with Localized Heating from Below Enhancement of Natural Convection Heat Transfer in a Square Enclosure with Localized Heating from Below Onyango. O. M 1 ; Sigey. J. K 2 ; Okelo. J. A 3, Okwoyo. J. M 4 1, 2, 3 Department of Pure and Applied

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Laminar external natural convection on vertical and horizontal flat plates, over horizontal and vertical cylinders and sphere, as well as plumes, wakes and other types of free flow will be discussed in

More information

Y. L. He and W. Q. Tao Xi an Jiaotong University, Xi an, China. T. S. Zhao Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

Y. L. He and W. Q. Tao Xi an Jiaotong University, Xi an, China. T. S. Zhao Hong Kong University of Science and Technology, Kowloon, Hong Kong, China Numerical Heat Transfer, Part A, 44: 399 431, 2003 Copyright # Taylor & Francis Inc. ISSN: 1040-7782 print=1521-0634 online DOI: 10.1080/10407780390206625 STEADY NATURAL CONVECTION IN A TILTED LONG CYLINDRICAL

More information

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid E. Tejaswini 1*, B. Sreenivasulu 2, B. Srinivas 3 1,2,3 Gayatri Vidya Parishad College of Engineering

More information

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES Mechanical and Industrial Engineering University of Massachusetts, Amherst AMINAR NATURA CONVECTION IN VERTICA 2D GAZING CAVITIES Bhaskar Adusumalli ABSTRACT Finite element predictions of natural convection

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Entropy 011, 13, 100-1033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir

More information

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate Nonlinear Analysis: Modelling and Control, 27, Vol. 12, No. 3, 37 316 Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate M. A. Alim

More information

Laminar natural convection in inclined open shallow cavities

Laminar natural convection in inclined open shallow cavities Int. J. Therm. Sci. 41 (2002) 360 368 www.elsevier.com/locate/ijts Laminar natural convection in inclined open shallow cavities O. Polat, E. Bilgen 1, École Polytechnique Box 6079, City Center, Montréal,

More information

Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection

Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Ahmed Waheed Mustafa 1 Mays Munir Ismael 2 AL-Nahrain University College of Engineering Mechanical Engineering Department ahmedwah@eng.nahrainuniv.edu.iq

More information

Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field

Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field Y.Bakhshan and H.Ashoori Abstract In this research, a 2-D computational analysis of steady state free convection

More information

This file contains the author's copy of:

This file contains the author's copy of: This file contains the author's copy of: Tasnim, S.H., and Collins, M.R., "Suppressing Natural Convection in a Differentially Heated Square Cavity with an Arc Shaped Baffle", International Communications

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers

Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers Abstract Mutuguta John Wanau 1* 1. School of Pure and Applied Sciences, Murang a University of Technology, P.O box 75-10200,

More information

The Natural Convective Heat Transfer in Rectangular Enclosure Containing Two Inclined Partitions

The Natural Convective Heat Transfer in Rectangular Enclosure Containing Two Inclined Partitions AASCIT Journal of Energy 2015; 2(3): 36-43 Published online June 10, 2015 (http://www.aascit.org/journal/energy) The Natural Convective Heat Transfer in Rectangular Enclosure Containing Two Inclined Partitions

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls Avestia Publishing Journal of Fluid Flow, Heat and Mass Transfer Volume 1, Year 14 Journal ISSN: 368-6111 DOI: 1.11159/jffhmt.14.4 Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal

More information

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate

More information

Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature

Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature EPJ Web of Conferences 114, 02077 (2016) DOI: 10.1051/ epjconf/ 2016114 02077 C Owned by the authors, published by EDP Sciences, 2016 Numerical simulation heat transfer by natural convection in liquid

More information

Sigma J Eng & Nat Sci 36 (1), 2018, Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi

Sigma J Eng & Nat Sci 36 (1), 2018, Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi Sigma J Eng & Nat Sci 36 (1), 2018, 49-62 Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi Research Article THE ENERGY EFFICIENT CONFIGURATIONS OF NATURAL CONVECTION

More information

A Numerical Study of Mixed Convection in Square Lid-Driven with Internal Elliptic Body and Constant Flux Heat Source on the Bottom Wall

A Numerical Study of Mixed Convection in Square Lid-Driven with Internal Elliptic Body and Constant Flux Heat Source on the Bottom Wall International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 394-3661, Volume-3, Issue-6, June 016 A Numerical Study of Mixed Convection in Square Lid-Driven with Internal Elliptic Body and

More information

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI THERMAL SCIENCE: Year 014, Vol. 18, No., pp. 479-49 479 NUMERICAL INVESTIGATION OF ENTROPY GENERATION IN LAMINAR FORCED CONVECTION FLOW OVER INCLINED BACKWARD AND FORWARD FACING STEPS IN A DUCT UNDER BLEEDING

More information

Natural Convection in Porous Triangular Enclosure with a Circular Obstacle in Presence of Heat Generation

Natural Convection in Porous Triangular Enclosure with a Circular Obstacle in Presence of Heat Generation American Journal of Applied Mathematics 2015; 3(2): 51-58 Published online March 20, 2015 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20150302.14 ISSN: 2330-0043 (Print); ISSN:

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE Thamer Khalif Salem Mechanical Engineering, College of Engineering, Tikrit University, IRAQ. thamer_khalif@yahoo.com

More information

Numerical simulation of transient forced convection in a square enclosure containing two heated circular cylinders

Numerical simulation of transient forced convection in a square enclosure containing two heated circular cylinders Numerical simulation of transient forced convection in a square enclosure containing two heated circular cylinders Fariborz Karimi a, Hongtao Xu a, Zhiyun Wang a, Mo Yang a, *, Yuwen Zhang b a School of

More information

AN EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN AN INCLINED RECTANGULAR DUCT EXPOSED TO UNIFORM HEAT FLUX FROM UPPER SURFACE

AN EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN AN INCLINED RECTANGULAR DUCT EXPOSED TO UNIFORM HEAT FLUX FROM UPPER SURFACE AN EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN AN INCLINED RECTANGULAR DUCT EXPOSED TO UNIFORM HEAT FLUX FROM UPPER SURFACE Dr. Ahmed F. Khudheyer Ali Jawad Obaid Mazin Y. Abdul-Kareem ahyaja@yahoo.com

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 25-27, 2008

5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 25-27, 2008 Numerical Determination of Temperature and Velocity Profiles for Forced and Mixed Convection Flow through Narrow Vertical Rectangular Channels ABDALLA S. HANAFI Mechanical power department Cairo university

More information

MECHANISM BEHIND FREE /NATURAL CONVECTION

MECHANISM BEHIND FREE /NATURAL CONVECTION CONVECTIVE HEAT TRANSFER By: Prof K. M. Joshi, Assi. Professor, MED, SSAS Institute of Technology, Surat. MECHANISM BEHIND FREE /NATURAL CONVECTION The stagnate layer of fluid in immediate vicinity of

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Online publication date: 28 January 2011 PLEASE SCROLL DOWN FOR ARTICLE

Online publication date: 28 January 2011 PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Chamkha, Ali] On: 30 April 2011 Access details: Access Details: [subscription number 932901935] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

Coupling of Lattice Boltzmann Equation and Finite Volume Method to Simulate Heat Transfer in a Square Cavity

Coupling of Lattice Boltzmann Equation and Finite Volume Method to Simulate Heat Transfer in a Square Cavity Copyright 2009 Tech Science Press FDMP, vol.5, no.3, pp.283-295, 2009 Coupling of Lattice Boltzmann Equation and Finite Volume Method to Simulate Heat Transfer in a Square Cavity Ahmed Mezrhab 1 and Hassan

More information

UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS

UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS THERMAL SCIENCE, Year 2015, Vol. 19, No. 5, pp. 1761-1768 1761 UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS by Md Mustafizur RAHMAN a,c, Hakan

More information

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Frontiers in Heat and Mass Transfer Available at www.thermalfluidscentral.org NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Manoj Kr. Triveni *, Dipak Sen, RajSekhar

More information

ANALYSIS OF LAMINAR FORCED CONVECTION INSIDE A SQUARE VENTILATED CAVITY USING THE OPENFOAM

ANALYSIS OF LAMINAR FORCED CONVECTION INSIDE A SQUARE VENTILATED CAVITY USING THE OPENFOAM ANALYSIS OF LAMINAR FORCED CONVECTION INSIDE A SQUARE VENTILATED CAVITY USING THE OPENFOAM P. C. Mioralli a, V. L. Scalon b, E. Avallone a, and S. A. Verdério Júnior c a,c Instituto Federal de São Paulo

More information

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption International Journal of Fluid Mechanics & Thermal Sciences 217; 3(5): 52-61 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.21735.12 ISSN: 2469-815 (Print); ISSN: 2469-8113 (Online)

More information