Material parameter identification for the numerical simulation of deep-drawing drawing of aluminium alloys

Size: px
Start display at page:

Download "Material parameter identification for the numerical simulation of deep-drawing drawing of aluminium alloys"

Transcription

1 Material parameter identification for the numerical simulation of deep-drawing drawing of aluminium alloys B.M. Chaparro, J.M. Antunes, A.J. Baptista, D.M. Rodrigues,, J.V. Fernandes, L.F. Menezes M2D'26 - PORTO, JULY University of Coimbra CENTRO DE ENGENHARIA MECÂNICA DA UNIVERSIDADE DE COIMBRA I. Introduction II. III. IV. Constitutive models Inverse Analysis Demeri Test V. Conclusions OUTLOOK 2

2 Multiplicity of constitutive models F ( σ X L ) σ ( σ X M ) Y ( ) ',, = ',, = k k1 k 2 Equivalent stress associated with the yield criteria Equivalent stress associated with the work hardening law In this study, an automatic procedure for the identification of material parameters according to several phenomenological elastoplastic constitutive models was developed. Introduction 3 Hill, 1948 (Hill48) ( ) ( ) ( ) yy zz + zz xx + xx yy + 2 yz + 2 zx + 2 xy = F σ σ G σ σ H σ σ Lτ Mτ Nτ K Barlat, 1991 (YLD91) m m m = 2 S S S S S S K m Plastic surface s = L :σ (Isotropic Equivalent Stress) ( ) c2 + c3 / 3 c3 / 3 c2 / 3 c3 / 3 ( c3 + c1 ) / 3 c1 / 3 c2 / 3 c1 / 3 ( c1 + c2 ) / 3 L = c4 c5 c6 m=6 for BCC materials m=8 for FCC materials Constitutive Models - Yield Criteria 4

3 Isotropic hardening - Voce Law σ = Y + R sat (1 e p n v ε ) Y - Initial yield stress R sat - saturation stress n - constant isotropic hardening Kinematic hardening - Lemaitre & Chaboche model X& = Cx X sat ( σ X ) p σ X & ε C x and X sat are material parameters kinematic hardening Constitutive Models Work hardening law 5 The calculation methodology is based on the best fit between each model and the full set of available experimental results. 2 2 σ r erroryield _ criteria = w1 1 w exp exp σ r σ r exp error exp σ is the yield stress in tension for a specific orientation () with the rolling direction (RD) σ and r denotes the corresponding values obtained from the yield criteria wi exp is the r-ratio obtained in tension performed at a specific angle with the RD are weighting factors work hardening σ = 1 exp σ is the experimental equivalent stress 2 σ denotes the corresponding values obtained from the hardening law. Inverse Analysis 6

4 Materials: EN AW-5182-H111 EN AW-612-T4 Inverse analysis - Results 7 Experimental curves obtained in the tensile, shear and Baushingers shear tests for the EN AW-5182-H111 aluminium alloy Stress [MPa] σ11 / τ Strain ε 11 / γ _T_ 5182_T_ _T_3 5182_T_ _T_6 5182_T_ _T_9 5182_S_ 5182_S_ _S_3 5182_S_ _S_6 5182_S_ _S_9 5182_B_1 5182_B_2 5182_B_3 8

5 Experimental yield stresses and r values for the EN AW-5182-H111 aluminium alloy Angle with RD [º] r values Yield stress [Mpa] σ r erroryield _ criteria = w1 1 w exp exp σ r Hill48 F G N YLD91 c 1 c 2 c 3 c 6 m Material parameters identified for the Hill48 and YLD91 yield criteria 9 Comparison between experimental and numerical results Yield stresses Txy=. Txy=.25 Txy=.433 Txy=.5 EXP Txy=. Txy=.25 Txy=.433 Txy=.5 EXP Sy.6 Sy Sx Sx Hill48 YLD91 1

6 Comparison between experimental and numerical results r-values 1..9 r EXP HILL48 YLD Angle with RD 11 Isotropic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv Von Mises Hill YLD

7 Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and pure isotropic work hardening _T_ 5182_T_ _T_3 5182_T_ _T_6 5182_T_ _T_9 5182_S_ 5182_S_ _S_3 5182_S_ _S_6 5182_S_ _S_9 DD3MAT Voce Iso 13 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and pure isotropic work hardening _T_ 5182_T_ _T_3 5182_T_ _T_6 5182_T_ _T_9 5182_S_ 5182_S_ _S_3 5182_S_ _S_6 5182_S_ _S_9 DD3MAT Voce Iso 14

8 Experimental and numerical equivalent stress-strain curves considering the YLD91 yield criterion and pure isotropic work hardening _T_ 5182_T_ _T_3 5182_T_ _T_6 5182_T_ _T_9 5182_S_ 5182_S_ _S_3 5182_S_ _S_6 5182_S_ _S_9 DD3MAT Voce Iso 15 Isotropic and Kinematic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv C x X sat [MPa] Mises Hill YLD

9 Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and isotropic and kinematic work hardening _T_ 5182_T_ _T_3 5182_T_ _T_6 5182_T_ _T_9 5182_S_ 5182_S_ _S_3 5182_S_ _S_6 5182_S_ _S_9 5182_B_1 5182_B_2 5182_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 17 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and isotropic and kinematic work hardening _T_ 5182_T_ _T_3 5182_T_ _T_6 5182_T_ _T_9 5182_S_ 5182_S_ _S_3 5182_S_ _S_6 5182_S_ _S_9 5182_B_1 5182_B_2 5182_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 18

10 Experimental and numerical equivalent stress-strain curves considering the YLD91 yield criterion and isotropic and kinematic work hardening _T_ 5182_T_ _T_3 5182_T_ _T_6 5182_T_ _T_9 5182_S_ 5182_S_ _S_3 5182_S_ _S_6 5182_S_ _S_9 5182_B_1 5182_B_2 5182_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 19 Experimental curves obtained in the tensile, shear and Baushingers shear tests for the EN AW-612-T4 aluminium alloy Results - EN AW- 612 T4 2

11 Experimental yield stresses and r values for the EN AW-612 T4 aluminium alloy Angle with RD [º] r value Yield stress [MPa] σ r erroryield _ criteria = w1 1 w exp exp σ r Hill48 F G N YLD91 c1 c2 c3 c6 m Material parameters identified for the Hill48 and YLD91 yield criteria Results - EN AW-612 T4 21 Comparison between experimental and numerical results Yield stresses Txy=. Txy=.25 Txy=.433 Txy=.5 EXP Txy=. Txy=.25 Txy=.433 Txy=.5 EXP Sy.6 Sy Sx Sx Hill48 YLD91 Results - EN AW-612 T4 22

12 Comparison between experimental and numerical results r-values 1..9 r EXP HILL48 YLD Angle with RD Results - EN AW-612 T4 23 Isotropic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv Mises Hill YLD Results - EN AW-612 T4 24

13 Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and pure isotropic work hardening _T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 DD3MAT Voce Iso Results - EN AW-612 T4 25 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and pure isotropic work hardening _T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 DD3MAT Voce Iso Results - EN AW-612 T4 26

14 Experimental and numerical equivalent stress-strain curves considering the YLD91 yield criterion and pure isotropic work hardening _T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 DD3MAT Voce Iso Results - EN AW-612 T4 27 Isotropic and Kinematic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv von Mises Hill YLD C x X sat [MPa] Results - EN AW-612 T4 28

15 Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and isotropic and kinematic work hardening _T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 612_B_1 612_B_2 612_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 Results - EN AW-612 T4 29 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and isotropic and kinematic work hardening _T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 612_B 1 612_B 2 612_B 3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 Results - EN AW-612 T4 3

16 Experimental and numerical equivalent stress-strain curves considering the YLD 91 yield criterion and isotropic and kinematic work hardening _T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 612_B 1 612_B 2 612_B 3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 Results - EN AW-612 T4 31 Springback evaluation Demeri Test 1 25 a) Drawn cup b) Ring cutting c) Ring specimen d) Ring springback Difference between the ring diameters, before and after splitting, gives a direct measure of the springback effect Formability Analysis 32

17 Benchmark experimental apparatus Final stage of the stamping operation After the stamping operation Formability Analysis 33 NUMERICAL SIMULATIONS PROCEDURE DD3IMP DD3TRIM Blank discretization Full model used in the simulations Formability Analysis 34

18 Punch force during the stamping operations Force [kn] EXP EN AW-5182-H111 NUM EN AW-5182-H111 2 EXP EN AW-612-T4 1 NUM EN AW-612-T Displacement [mm] Formability Analysis 35 Springback results Difference between the ring diameters, before and after splitting Material Experimental ring opening Numerical ring opening EN AW-5182-H mm 87.4 mm EN AW-612-T mm 47.4 mm Formability Analysis 36

19 Independently of the constitutive model considered, the material parameter identification error reported was always less than 5%. For the EN AW-5182 alloy, the YLD91 criteria enable an accurate description of the plastic behaviour of this alloy for all the testing directions. For the EN AW-612 alloy, none of the plasticity criteria enables the correct description of the entire range of stress-strain curves. This can be related with the strong variation of the plastic anisotropy coefficients in the sheet plane. A more flexible criterion is needed to improve the description of the plastic behaviour of this material. The numerical program developed for the material parameter identification tasks proved to be an efficient tool that can be used to select the best phenomenological model. Conclusions 37

Formability assessment of a cup drawing under complex nonlinear strain paths

Formability assessment of a cup drawing under complex nonlinear strain paths Formability assessment of a cup drawing under complex nonlinear strain paths P.D. Barros 1, R.R. Amaral 2, M.C. Oliveira 1, A.D. Santos 2,3, J.L. Alves 4 and L.F. Menezes 1 1 CEMMPRE, Centre for Mechanical

More information

Characterizations of Aluminum Alloy Sheet Materials Numisheet 2005

Characterizations of Aluminum Alloy Sheet Materials Numisheet 2005 Characterizations of Aluminum Alloy Sheet Materials Numisheet 25 John C. Brem, Frederic Barlat, Robert E. Dick, and Jeong-Whan Yoon Alcoa Technical Center, PA, 1569-1, USA Abstract. This report reproduces

More information

THE HYDRAULIC BULGE TEST AND ITS IMPORTANCE FOR THE VEGTER YIELD CRITERION

THE HYDRAULIC BULGE TEST AND ITS IMPORTANCE FOR THE VEGTER YIELD CRITERION THE HYDRAULIC BULGE TEST AND ITS IMPORTANCE FOR THE VEGTER YIELD CRITERION Jiří SOBOTKA a, Pavel SOLFRONK a, Pavel DOUBEK a, Lukáš ZUZÁNEK a a TECHNICAL UNIVERSITY OF LIBEREC, Studentská, 461 17 Liberec

More information

Benchmark Simulation Results: Channel Draw/Cylindrical Cup 2-Stage Test (Benchmark 3)

Benchmark Simulation Results: Channel Draw/Cylindrical Cup 2-Stage Test (Benchmark 3) Benchmark Simulation Results: Channel Draw/Cylindrical Cup 2-Stage Test (Benchmark 3) Thaweepat Buranathiti and Jian Cao * Department of Mechanical Engineering, Northwestern University, Evanston, Illinois

More information

Bone Tissue Mechanics

Bone Tissue Mechanics Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue

More information

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM 1 INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM Influence of anisotropy Daniel Riemensperger, Adam Opel AG Paul Du Bois, PDB 2 www.opel.com CONTENT Introduction/motivation Isotropic & anisotropic material

More information

Anisotropic plasticity, anisotropic failure and their application to the simulation of aluminium extrusions under crash loads

Anisotropic plasticity, anisotropic failure and their application to the simulation of aluminium extrusions under crash loads Anisotropic plasticity, anisotropic failure and their application to the simulation of aluminium extrusions under crash loads Paul Du Bois, Consulting engineer Oasys LS-DYNA Users Meeting 28th January

More information

IDENTIFICATION OF SHEET METAL PLASTIC ANISOTROPY, AND OPTIMIZATION OF INITIAL BLANK SHAPE IN DEEP DRAWING

IDENTIFICATION OF SHEET METAL PLASTIC ANISOTROPY, AND OPTIMIZATION OF INITIAL BLANK SHAPE IN DEEP DRAWING THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN - 66, 9 IDENTIFICATION OF SHEET METAL PLASTIC ANISOTROPY, AND OPTIMIZATION OF INITIAL BLANK SHAPE IN

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

MATERIAL MODELS FOR THE

MATERIAL MODELS FOR THE Project work report MATERIAL MODELS FOR THE DEFORMATION AND FAILURE OF HIGH STRENGTH STEEL Katia BONI August 2008 to January 2009 Supervisor: Larsgunnar NILSSON 2 Contents 1 Introduction 6 1.1 Background.........................................

More information

A modified Burzynski criterion for anisotropic pressure-dependent materials

A modified Burzynski criterion for anisotropic pressure-dependent materials Sādhanā Vol. 4, No., January 7, pp. 95 9 DOI.7/s46-6-576-6 Indian Academy of Sciences A modified Burzynski criterion for anisotropic pressure-dependent materials FARZAD MOAYYEDIAN and MEHRAN KADKHODAYAN,

More information

Inverse identification of plastic material behavior using. multi-scale virtual experiments

Inverse identification of plastic material behavior using. multi-scale virtual experiments Inverse identification of plastic material behavior using multi-scale virtual experiments Debruyne 1 D., Coppieters 1 S., Wang 1 Y., Eyckens 2 P., Kuwabara 3 T., Van Bael 2 A. and Van Houtte 2 P. 1 Department

More information

ScienceDirect. Bauschinger effect during unloading of cold-rolled copper alloy sheet and its influence on springback deformation after U-bending

ScienceDirect. Bauschinger effect during unloading of cold-rolled copper alloy sheet and its influence on springback deformation after U-bending Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 969 974 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

Chapter 6: Plastic Theory

Chapter 6: Plastic Theory OHP Mechanical Properties of Materials Chapter 6: Plastic Theory Prof. Wenjea J. Tseng 曾文甲 Department of Materials Engineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W. F.

More information

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY

STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY Mohsen Safaei 1, a, Wim De Waele 1,b 1 Laboratorium Soete, Department of Mechanical Construction and Production, Ghent University, Technologiepark

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

EFFECT OF ANISOTROPIC YIELD CRITERION ON THE SPRINGBACK IN PLANE STRAIN PURE BENDING

EFFECT OF ANISOTROPIC YIELD CRITERION ON THE SPRINGBACK IN PLANE STRAIN PURE BENDING EFFECT OF ANISOTROPIC YIELD CRITERION ON THE SPRINGBACK IN PLANE STRAIN PURE BENDING F.V. Grechnikov 1,, Ya.A. Erisov 1, S.E. Alexandrov 3 1 Samara National Research University, Samara, Russia Samara Scientific

More information

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07) Tensor Transformations and the Maximum Shear Stress (Draft 1, 1/28/07) Introduction The order of a tensor is the number of subscripts it has. For each subscript it is multiplied by a direction cosine array

More information

w w w. a u t o s t e e l. o r g

w w w. a u t o s t e e l. o r g Great Designs in Steel is Sponsored by: ArcelorMittal Dofasco, ArcelorMittal USA, Nucor Corporation, Severstal North w w America, w. a u t o Inc. s t and e e l United. o r g States Steel Corporation Center

More information

Numerical simulation of sheet metal forming processes using a new yield criterion

Numerical simulation of sheet metal forming processes using a new yield criterion Key Engineering Materials Vol. 344 (007) pp. 833-840 online at http://www.scientific.net (007) Trans Tech Publications, Switzerland Numerical simulation of sheet metal forming processes using a new yield

More information

Experience from using recently implemented enhancements for Material 36 in LS-DYNA 971 performing a virtual tensile test. Authors: Correspondence:

Experience from using recently implemented enhancements for Material 36 in LS-DYNA 971 performing a virtual tensile test. Authors: Correspondence: Experience from using recently implemented enhancements for Material 36 in LS-DYNA 971 performing a virtual tensile test Authors: Michael Fleischer BMW Group Thomas Borrvall Engineering Research Nordic

More information

INVERSE METHOD FOR FLOW STRESS PARAMETERS IDENTIFICATION OF TUBE BULGE HYDROFORMING CONSIDERING ANISOTROPY

INVERSE METHOD FOR FLOW STRESS PARAMETERS IDENTIFICATION OF TUBE BULGE HYDROFORMING CONSIDERING ANISOTROPY 7 th EUROMECH Solid Mechanics Conference J. Ambrósio et.al. (eds.) Lisbon, Portugal, September 7-11, 2009 INVERSE METHOD FOR FLOW STRESS PARAMETERS IDENTIFICATION OF TUBE BULGE HYDROFORMING CONSIDERING

More information

Modelling the behaviour of plastics for design under impact

Modelling the behaviour of plastics for design under impact Modelling the behaviour of plastics for design under impact G. Dean and L. Crocker MPP IAG Meeting 6 October 24 Land Rover door trim Loading stages and selected regions Project MPP7.9 Main tasks Tests

More information

Sheet metal forming with six components of strain

Sheet metal forming with six components of strain Sheet metal forming with six components of strain Julian Allwood Micromechanics Seminar Friday 8 May 2009 Department of Engineering University of Cambridge jma42@cam.ac.uk 1 A question from the 1960 s

More information

Numerical simulation of tensile tests of prestrained sheets

Numerical simulation of tensile tests of prestrained sheets Materials Science and Engineering A264 (1999) 130 138 Numerical simulation of tensile tests of prestrained sheets L.F. Menezes *, J.V. Fernandes, D.M. Rodrigues Departamento de Engenharia Mecânica, CEMUC,

More information

Simulation of the effect of DIE Radius on Deep Drawing Process

Simulation of the effect of DIE Radius on Deep Drawing Process Simulation the effect DIE Radius on Deep Drawing Process Kopanathi Gowtham, K.V.N.S. Srikanth & K.L.N. Murty CAD-CAM, Dept. Mechanical Engineering, Godavari Institute Engg. & Tech., Rajahmundry, India

More information

On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models

On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models Ming F. Shi and Alex A. Konieczny United States Steel Corporation Introduction Origin of Springback AHSS Springback

More information

Research Article Process of Identifying Stress Fields from Strain Fields in the Specimen with a Hole

Research Article Process of Identifying Stress Fields from Strain Fields in the Specimen with a Hole ISRN Materials Science Volume 213, Article ID 53669, 8 pages http://dx.doi.org/1.1155/213/53669 Research Article Process of Identifying Stress Fields from Strain Fields in the Specimen with a Hole Michaela

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

SPRING-BACK PREDICTION FOR STAMPINGS FROM THE THIN STAINLESS SHEETS

SPRING-BACK PREDICTION FOR STAMPINGS FROM THE THIN STAINLESS SHEETS SPRING-BACK PREDICTION FOR STAMPINGS FROM THE THIN STAINLESS SHEETS PAVEL SOLFRONK, JIRI SOBOTKA, MICHAELA KOLNEROVA, LUKAS ZUZANEK Technical University of Liberec Faculty of Mechanical Engineering Department

More information

Anisotropy for Metals in Non-Associated Flow Plasticity

Anisotropy for Metals in Non-Associated Flow Plasticity Anisotropy for Metals in Non-Associated Flow Plasticity by Mariana Paulino Santos MEng Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Deakin University August, 2015

More information

Anisotropy and Failure Modeling for Nonlinear Strain. Paths and Its Application to Rigid Packaging. Robert Earl Dick (B.S.C.E, M.S.C.

Anisotropy and Failure Modeling for Nonlinear Strain. Paths and Its Application to Rigid Packaging. Robert Earl Dick (B.S.C.E, M.S.C. Anisotropy and Failure Modeling for Nonlinear Strain Paths and Its Application to Rigid Packaging by Robert Earl Dick (B.S.C.E, M.S.C.E) Advisor: Jeong Whan Yoon Submitted in fulfillment of the requirements

More information

COMPARISON OF THE TESTS CHOSEN FOR MATERIAL PARAMETER IDENTIFICATION TO PREDICT SINGLE POINT INCREMENTAL FORMING FORCES

COMPARISON OF THE TESTS CHOSEN FOR MATERIAL PARAMETER IDENTIFICATION TO PREDICT SINGLE POINT INCREMENTAL FORMING FORCES International Deep Drawing Research Group IDDRG 28 International Conference 16-18 June 28, Olofström, Sweden COMPARISON OF THE TESTS CHOSEN FOR MATERIAL PARAMETER IDENTIFICATION TO PREDICT SINGLE POINT

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

ON THE USE OF HOMOGENEOUS POLYNOMIALS TO DEVELOP ANISOTROPIC YIELD FUNCTIONS WITH APPLICATIONS TO SHEET FORMING

ON THE USE OF HOMOGENEOUS POLYNOMIALS TO DEVELOP ANISOTROPIC YIELD FUNCTIONS WITH APPLICATIONS TO SHEET FORMING ON THE USE OF HOMOGENEOUS POLYNOMIALS TO DEVELOP ANISOTROPIC YIELD FUNCTIONS WITH APPLICATIONS TO SHEET FORMING By STEFAN C. SOARE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA

More information

Back Analysis and optimization methods with LAGAMINE

Back Analysis and optimization methods with LAGAMINE Back Analysis and optimization methods with LAGAMINE Séverine Levasseur Chantal Bouffioux Université de Liège First International Workshop on the Finite Element Code LAGAMINE LAGASHOP 2013, Liège, 9 12

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

PLASTICITY AND VISCOPLASTICITY UNDER CYCLIC LOADINGS

PLASTICITY AND VISCOPLASTICITY UNDER CYCLIC LOADINGS ATHENS Course MP06 Nonlinear Computational Mechanics March 16 to 20, 2009 PLASTICITY AND VISCOPLASTICITY UNDER CYCLIC LOADINGS Jean-Louis Chaboche ONERA, 29 av. de la Division Leclerc 92320 Châtillon,

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

NUMERICAL SIMULATIONS OF NAKAZIMA FORMABILITY TESTS WITH PREDICTION OF FAILURE

NUMERICAL SIMULATIONS OF NAKAZIMA FORMABILITY TESTS WITH PREDICTION OF FAILURE NUMERICAL SIMULATIONS OF NAKAZIMA FORMABILITY TESTS WITH PREDICTION OF FAILURE DMYTRO LUMELSKYJ 1, JERZY ROJEK 1, MAREK TKOCZ 2 Abstract. This paper presents results of numerical simulations of the Nakazima

More information

Cracks Jacques Besson

Cracks Jacques Besson Jacques Besson Centre des Matériaux UMR 7633 Mines ParisTech PSL Research University Institut Mines Télécom Aγνωστ oς Θεoς Outline 1 Some definitions 2 in a linear elastic material 3 in a plastic material

More information

Bulk Metal Forming II

Bulk Metal Forming II Bulk Metal Forming II Simulation Techniques in Manufacturing Technology Lecture 2 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technology Prof. Dr.-Ing. Dr.-Ing. E.h.

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

ENGN 2290: Plasticity Computational plasticity in Abaqus

ENGN 2290: Plasticity Computational plasticity in Abaqus ENGN 229: Plasticity Computational plasticity in Abaqus The purpose of these exercises is to build a familiarity with using user-material subroutines (UMATs) in Abaqus/Standard. Abaqus/Standard is a finite-element

More information

THERMO-MECHANICAL MODELING OF DRAW-BEND FORMABILITY TESTS

THERMO-MECHANICAL MODELING OF DRAW-BEND FORMABILITY TESTS International Deep Drawing Research Group IDDRG 2009 International Conference -3 June 2009, Golden, CO, USA ABSTRACT THRMO-MCHANICAL MODLING OF DRAW-BND FORMABILITY TSTS Ji Hoon Kim I, Ji Hyun Sung 2,

More information

DD3MAT - a code for yield criteria anisotropy parameters identification.

DD3MAT - a code for yield criteria anisotropy parameters identification. Journal of Physics: onference Series PAPER OPEN AESS DD3MA - a code for yield criteria anisotropy parameters identification. o cite this article: P D Barros et al 216 J. Phys.: onf. Ser. 734 3253 View

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

INFLUENCE OF CONSTITUTIVE EQUATIONS ON THE ACCURACY OF PREDICTION IN SHEET METAL FORMING SIMULATION

INFLUENCE OF CONSTITUTIVE EQUATIONS ON THE ACCURACY OF PREDICTION IN SHEET METAL FORMING SIMULATION Septemer 1-5, 008 Interlaken, Switzerland INFLUENCE OF CONSTITUTIVE EQUATIONS ON THE ACCURACY OF PREDICTION IN SHEET METAL FORMING SIMULATION Dorel Banaic 1*, Dan Sorin Comsa 1, Matthias Sester, Mike Selig,

More information

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress Crack Tip Plastic Zone under Mode Loading and the Non-singular T -stress Yu.G. Matvienko Mechanical Engineering Research nstitute of the Russian Academy of Sciences Email: ygmatvienko@gmail.com Abstract:

More information

Geometric and Material Property Effects on the Strength of Rubber-Toughened Adhesive Joints

Geometric and Material Property Effects on the Strength of Rubber-Toughened Adhesive Joints Geometric and Material Property Effects on the Strength of Rubber-Toughened Adhesive Joints Altering the geometry of a bonded joint will invariably cause changes to occur in the stress and strain distribution

More information

Pedro André Dias Prates

Pedro André Dias Prates Imagem Pedro André Dias Prates INVERSE METHODOLOGIES FOR IDENTIFYING CONSTITUTIVE PARAMETERS OF METAL SHEETS Doctoral Thesis in Mechanical Engineering, specialisation in Production Technologies, supervised

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

Modelling of ductile failure in metal forming

Modelling of ductile failure in metal forming Modelling of ductile failure in metal forming H.H. Wisselink, J. Huetink Materials Innovation Institute (M2i) / University of Twente, Enschede, The Netherlands Summary: Damage and fracture are important

More information

Lecture #8: Ductile Fracture (Theory & Experiments)

Lecture #8: Ductile Fracture (Theory & Experiments) Lecture #8: Ductile Fracture (Theory & Experiments) by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Ductile

More information

Constitutive models: Incremental plasticity Drücker s postulate

Constitutive models: Incremental plasticity Drücker s postulate Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity - plastic flow law associated with the limit (loading) surface Prager

More information

Loading σ Stress. Strain

Loading σ Stress. Strain hapter 2 Material Non-linearity In this chapter an overview of material non-linearity with regard to solid mechanics is presented. Initially, a general description of the constitutive relationships associated

More information

6.37 Determine the modulus of resilience for each of the following alloys:

6.37 Determine the modulus of resilience for each of the following alloys: 6.37 Determine the modulus of resilience for each of the following alloys: Yield Strength Material MPa psi Steel alloy 550 80,000 Brass alloy 350 50,750 Aluminum alloy 50 36,50 Titanium alloy 800 116,000

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS Mohsen Safaei, Wim De Waele Ghent University, Laboratory Soete, Belgium Abstract The present work relates to the

More information

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS INTERNATIONAL ESIGN CONFERENCE - ESIGN ubrovnik, May 14-17,. APPLICATION OF AMAGE MOEL FOR NUMERICAL ETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS Robert Kunc, Ivan Prebil, Tomaž Rodic and

More information

A Comparative Analysis of Linear and Nonlinear Kinematic Hardening Rules in Computational Elastoplasticity

A Comparative Analysis of Linear and Nonlinear Kinematic Hardening Rules in Computational Elastoplasticity TECHNISCHE MECHANIK, 32, 2-5, (212), 164 173 submitted: October 2, 211 A Comparative Analysis of Linear and Nonlinear Kinematic Hardening Rules in Computational Elastoplasticity Fabio De Angelis In this

More information

A Simple and Accurate Elastoplastic Model Dependent on the Third Invariant and Applied to a Wide Range of Stress Triaxiality

A Simple and Accurate Elastoplastic Model Dependent on the Third Invariant and Applied to a Wide Range of Stress Triaxiality A Simple and Accurate Elastoplastic Model Dependent on the Third Invariant and Applied to a Wide Range of Stress Triaxiality Lucival Malcher Department of Mechanical Engineering Faculty of Tecnology, University

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks

Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks Pavel Hora 1,a, Longchang Tong 1, Maysam Gorji, Niko Manopulo 1 and Bekim Berisha

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

Recent Developments in Damage and Failure Modeling with LS-DYNA

Recent Developments in Damage and Failure Modeling with LS-DYNA Recent evelopments in amage and Failure Modeling with LS-YNA r. André Haufe ynamore GmbH Frieder Neukamm, r. Markus Feucht aimler AG Paul ubois Consultant r. Thomas Borvall ERAB 1 Technological challenges

More information

Deterministic and stochastic analysis of failure in sheet metal forming operations

Deterministic and stochastic analysis of failure in sheet metal forming operations Jerzy Rojek, Michal Kleiber, Antoni Piela, Rafal Stocki and Jaroslaw Knabel: Deterministic and stochastic analysis of failure in sheet metal forming operations Numerical simulation can be successfully

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Optimization of blank dimensions to reduce springback in the flexforming process

Optimization of blank dimensions to reduce springback in the flexforming process Journal of Materials Processing Technology 146 (2004) 28 34 Optimization of blank dimensions to reduce springback in the flexforming process Hariharasudhan Palaniswamy, Gracious Ngaile, Taylan Altan ERC

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Investigation of advanced strain-path dependent material models for sheet metal forming simulations

Investigation of advanced strain-path dependent material models for sheet metal forming simulations Investigation of advanced strain-path dependent material models for sheet metal forming simulations Badis Haddag, Tudor Balan, Farid Abed-Meraim To cite this version: Badis Haddag, Tudor Balan, Farid Abed-Meraim.

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 51 Module 4: Lecture 2 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-coulomb failure

More information

PRINCIPLES OF THE DRAW-BEND SPRINGBACK TEST

PRINCIPLES OF THE DRAW-BEND SPRINGBACK TEST PRINCIPLES OF THE DRAW-BEND SPRINGBACK TEST DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

Characterization of Anisotropic Plasticity in Material Systems Using Modified Indentation-Based Techniques

Characterization of Anisotropic Plasticity in Material Systems Using Modified Indentation-Based Techniques Characterization of Anisotropic Plasticity in Material Systems Using Modified Indentation-Based Techniques A Dissertation Presented by Salmon Masbooghi Kalkhoran to The Department of Mechanical & Industrial

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

Inverse method for flow stress parameters identification of tube bulge hydroforming considering anisotropy

Inverse method for flow stress parameters identification of tube bulge hydroforming considering anisotropy Int. J. Mechatronics and Manufacturing Systems, Vol. 4, No. 5, 2011 441 Inverse method for flow stress parameters identification of tube bulge hydroforming considering anisotropy T. Zribi, A. Khalfallah*

More information

Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria

Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria Michael Brünig, Steffen Gerke and Daniel Brenner Abstract The paper deals with a series of new experiments and

More information

End forming of thin-walled tubes

End forming of thin-walled tubes Journal of Materials Processing Technology 177 (2006) 183 187 End forming of thin-walled tubes M.L. Alves a, B.P.P. Almeida b, P.A.R. Rosa b, P.A.F. Martins b, a Escola Superior de Tecnologia e Gestão

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional

More information

MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD

MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD Andrzej Skrzat, Rzeszow University of Technology, Powst. Warszawy 8, Rzeszow, Poland Abstract: User-defined material models which can be used

More information

A critical analysis of the Mises stress criterion used in frequency domain fatigue life prediction

A critical analysis of the Mises stress criterion used in frequency domain fatigue life prediction Focussed on Multiaxial Fatigue and Fracture A critical analysis of the Mises stress criterion used in frequency domain fatigue life prediction Adam Niesłony Opole University of Technology, Poland a.nieslony@po.opole.pl,

More information

MODELLING OF THE CYCLIC AND VISCOPLASTIC BEHAVIOR OF A COPPER-BASE ALLOY USING CHABOCHE MODEL

MODELLING OF THE CYCLIC AND VISCOPLASTIC BEHAVIOR OF A COPPER-BASE ALLOY USING CHABOCHE MODEL SP2016_3124805 MODELLING OF THE CYCLIC AND VISCOPLASTIC BEHAVIOR OF A COPPER-BASE ALLOY USING CHABOCHE MODEL Wissam BOUAJILA (1), Jörg RICCIUS (1) (1) German Aerospace Centre DLR Lampoldshausen, Langer

More information

Finite Element Simulation of Bar-Plate Friction Welded Joints Steel Product Subjected to Impact Loading

Finite Element Simulation of Bar-Plate Friction Welded Joints Steel Product Subjected to Impact Loading Finite Element Simulation of Bar-Plate Friction Welded Joints Steel Product Subjected to Impact Loading Yohanes, a,* Muftil Badri, a Panji Adino, a Dodi Sofyan Arief, a and Musthafa Akbar, a a) Department

More information

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6. Delft University of Technology Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your name and study number at the top right-hand of your work. Exam CT4143 Shell Analysis

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

Available online at ScienceDirect. 20th European Conference on Fracture (ECF20) Yu.G. Matvienko*

Available online at  ScienceDirect. 20th European Conference on Fracture (ECF20) Yu.G. Matvienko* Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 3 ( 014 ) 141 146 0th European Conference on Fracture (ECF0) The Effect of the non-singular T-stress components on crack

More information

An improved analytical description of orthotropy in metallic sheets

An improved analytical description of orthotropy in metallic sheets International Journal of Plasticity 2 (2005) 493 52 www.elsevier.com/locate/ijplas An improved analytical description of orthotropy in metallic sheets D. Banabic a,c, *, H. Aretz b, D.S. Comsa a, L. Paraianu

More information

Plastic Anisotropy: Relaxed Constraints, Theoretical Textures

Plastic Anisotropy: Relaxed Constraints, Theoretical Textures 1 Plastic Anisotropy: Relaxed Constraints, Theoretical Textures Texture, Microstructure & Anisotropy Last revised: 11 th Oct. 2016 A.D. Rollett 2 The objective of this lecture is to complete the description

More information

Mechanical analysis of timber connection using 3D finite element model

Mechanical analysis of timber connection using 3D finite element model Mechanical analysis of timber connection using 3D finite element model Bohan XU Ph.D Student Civil Engineering Laboratory (CUST) Clermont-Ferrand, France Mustapha TAAZOUNT Dr-Ing Civil Engineering Laboratory

More information

Fatigue and Fracture

Fatigue and Fracture Fatigue and Fracture Multiaxial Fatigue Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois 2004-2013 Darrell Socie, All Rights Reserved When is Multiaxial Fatigue Important?

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Hydro-mechanical forming of aluminium tubes - on constitutive modelling and process design. Mikael Jansson

Hydro-mechanical forming of aluminium tubes - on constitutive modelling and process design. Mikael Jansson Linköping Studies in Science and Technology Dissertations No. 1048 Hydro-mechanical forming of aluminium tubes - on constitutive modelling and process design Mikael Jansson Division of Solid Mechanics

More information

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

More information

ANSYS Mechanical Basic Structural Nonlinearities

ANSYS Mechanical Basic Structural Nonlinearities Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

More information