SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding

Size: px
Start display at page:

Download "SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding"

Transcription

1 SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding 1

2 Shannon-Fano-Elias Coding We discuss how to encode the symbols {a 1, a 2,..., a m }, knowing their probabilities, by using as code a (truncated) binary representation of the cumulative distribution function. Consider the random variable X taking as values m letters of the alphabet, {a 1, a 2,..., a m }, and for the letter a i the probability mass function is p(x = a i ) = p(a i ) > 0. The (cumulative) distribution function is F(x) = Prob(X x) = a k x p(a k ) where we assumed the lexicographic ordering relation a i < a j if i < j. Note that if one changes the ordering, the cumulative distribution function will be different. y = F(x) is a function having its plot as stairs, with jumps at x = a k (see plot on next page). Even though there is no inverse function x = F 1 (y), we may define a partial inverse as follows: If all p(a i ) > 0, an arbitrary value y [0, 1) uniquely determines a symbol a k, as that symbol that obeys F(a k 1 ) y < F(a k ). We may use the plot of F(x), to identify the value a k for which F(a k 1 ) y < F(a k ). Note that F(a k ) = F(a k 1 ) + p(a k ), which is a fast way to compute F(a k ). 2

3 To avoid dealing with interval boundaries, define F(a i ) = i 1 k=1 p(a k ) p(a i) The values F(a i ) are the midways of the steps in the distribution plot. If F(ai ) is given, one can find a i. The same is true if one gives an approximation of F(ai ), as long as it does not go outside the interval F(a k 1 ) y < F(a k ). Therefore the number F(a i ), or an approximation of it, can be used as a code for a i. Since the real number F(a i ) may happen to have an infinite binary representation, we have to look sometimes for numbers close to it, but having shorter binary representations. From Shannon codes we know that a good code for a i needs to be represented in about log 1 p(a i ) bits, therefore F(x) needs to be represented in about log 1 p(x) bits. 3

4 Probability mass function and cumulative distribution p(a i ) 0.5 F(x) i x 4

5 Probability mass function and cumulative distribution for strings To extend the previous reasoning from symbols to strings of symbols, x, we have to: compute for each of the strings of n symbols the mass probability p(x) (such that x p(x) = 1), define a lexicographic ordering for any two strings (each with n symbols) x and y, and denoted it by the ordering symbol, x < y. define the cumulative probability F(y) = x<y p(x) p(y) The code for x is obtained as follows: We truncate (floor operation) F(x) to l(x) bits to obtain F(x) l(x) where l(x) = log 1 p(x) + 1. Important notation distinction: F(x) k is the binary representation of the sub-unitary number F(x), using k bits for the fractional part. log 1 p(x) denotes as usual the smallest integer larger than log 1 p(x). The codeword to be used for encoding the string x is F(x) l(x). 5

6 Property 1. The code is well defined, i.e. with F(x) l(x) we uniquely identify x. Proof: F(x) F(x) l(x) < 1 2 l(x) F(x) 1 2 l(x) < F(x) l(x) Now we use the fact l(x) = log 1 p(x) + 1 and 2l(x) = 2 2 log 1 p(x) > 2 2 log 1 p(x) = 2 p(x) 1 p(x) < = 2l(x) 2 F(x) F(x 1) F(x 1) < F(x) 1 2 l(x) F(x 1) < F(x) 1 2 l(x) < F(x) l(x) F(x) Finally the uniqueness of x given F(x) l(x) follows from F(x 1) < F(x) l(x) F(x) (i.e. looking at the plot of the cumulative function z = F(x), the value z = F(x) l(x) falls on the step at x, between the basis of the step and the middle of it. 6

7 Property 2. The code is prefix free. Let associate to each codeword z 1 z 2... z l a closed interval, [0.z 1 z 2... z l ; 0.z 1 z 2...z l l ]. Any number outside the closed interval has at least one bit different in the bits 1 to l, and therefore z 1 z 2... z l is not a prefix of any number outside the closed interval. Extending now the reasoning to all codewords, the code is prefix free if and only if all intervals corresponding to codewords are disjoint. The interval corresponding to any codeword has length 2 l(x). A prefix of the codeword is e.g. z 1 z 2...z l 1. Can that prefix be a codeword itself? If z 1 z 2... z l 1 is a codeword, than it represents the interval [0.z 1 z 2... z l 1 ; 0.z 1 z 2... z l ]. But the number z 2 l 1 1 z 2... z l necessarily belongs to the interval [0.z 1 z 2... z l 1 ; 0.z 1 z 2... z l ], therefore there 2 l 1 is an overlap of the intervals. We already have F(x 1) < F(x) l(x), and similarly: 1 p(x) < = F(x) 2l(x) 2 F(x) F(x) > F(x) > F(x) l(x) l(x) l(x) and therefore the interval [ F(x) l(x), F(x) l(x) + 1 ] is totaly included in the interval 2 l(x) [F(x 1), F(x)]. Now, the overlap of intervals is contradicted by our consideration on the cumulative distribution for symbols. Consequently Shannon-Fano-Elias code is prefix free. 7

8 Average length of Shannon-Fano-Elias Codes We use l(x) = log 1 p(x) + 1 bits to represent x. The expected codelength is L = p(x)l(x) = p(x) log 1 x x p(x) + 1 < H + 2 (1) where the entropy is H = x p(x) log 1 p(x) Example 1. All probabilities are integer powers of 1 2. x p(x) F(x) F(x) F(x) in binary l(x) = log 1 p(x) + 1 Codeword

9 Average length of Shannon-Fano-Elias Codes The average codelength is 2.75 bits, the entropy is 1.75 bits. Since all probabilities are powers of two, the Huffman code attains the entropy. One can remove the last bit in the last two codewords of Shannon-Fano-Elias Code in Example 1! Example 2. All probabilities are not integer powers of 1 2. The Huffman code is in average 1.2 bits shorter than Shannon-Fano-Elias Code in Example 2. x p(x) F(x) F(x) F(x) in binary l(x) = ( log 1 p(x) + 1 Codeword (0011) (0011) (0110)

10 Motivation for using arithmetic codes Huffman codes are optimal codes, for a given probability distribution of the source. However, their average length is longer than the entropy, within 1 bit distance. To reach average codelength closer to the entropy, Huffman is applied to blocks of symbols, instead of individual symbols. The size of the Huffman table needed to store the code increases exponentially with the length of the block. If during encoding we improve our knowledge of the symbol probabilities, we have either to redesign the Huffman table again, or use an adaptive variant of Huffman (but everybody agrees adaptive Huffman is not elegant nor computationally attractive). When encoding binary images, the probability of one symbol may be extremely small, therefore the entropy is close to zero. Without blocking the symbols, Huffman average length is 1 bit! Long blocks are strictly necessary in this application. Whenever somebody needs to encode long blocks of symbols, or wants to change the code to make optimal for the new distribution, the solution is arithmetic coding. Its principle is similar to Shannon-Fano-Elias Coding, i.e. handling the cumulative distribution to find codes. However, arithmetic coding is better engineered, allowing very efficient implementations (as speed and compression ratio) and an easy adaptation mechanism. 10

11 Principle of arithmetic codes Essential idea: efficiently calculate the probability mass function p(x n ) and the cumulative distribution function F(x n ) for the source sequence x n = x 1 x 2... x n. Then, similar to Shannon-Fano-Elias Codes, use a number in the interval [F(x n ) p(x n ); F(x n )] as the code for x n. A sketch: Expressing F(x n ) with an accuracy of log 1 will give a code for the source. So p(x) the codewords for different sequences are different. But it is no guarantee that the codeword are prefix free. As in Shannon-Fano-Elias Codes, we may use log 1 p(x) + 1 bits to round F(x n ), in which case the prefix condition is satisfied. A simplified variant. Consider a binary source alphabet, assume we have a fixed block length n that is known to both the encoder and decoder. We assume we have a simple procedure to calculate p(x 1 x 2..., x n ) for any string x 1 x 2..., x n. We will use the natural lexicographic order on strings: a string x is greater than a string y if x i = 1, y i = 0 for the first i such that x i y i. Equivalently, x > y if i x i 2 i > i y i 2 i, i.e. the binary numbers satisfy 0.x > 0.y. The strings can be arranged as leaves in a tree of depth n (parsing tree, not coding tree!). In the tree, the order x > y of two strings means that x is at right of y. 11

12 We need to compute the cumulative distribution F(x n ) for a string x n, i.e. to add all p(y n ) for which y n < x n. However, there is a much smarter way to perform the sum, described next. Let T x1 x 2...x k 1 0 the subtree starting with x 1 x 2... x k 1 0. The probability of the subtree is P(T x1 x 2...x k 0) = p(x 1 x 2... x k 1 0z k+1... z n ) = p(x 1 x 2... x k 1 0) z k+1...z n The cumulative probability can therefore be computed as F(x n ) = p(yn ) = p(t) y n x n T:T is to the left of x n p(x 1 x 2... x k 1 0) (2) = k:x k =1 Example: (See Fig.2 in the file Lectures4Figures.pdf) For a Bernoulli source with θ = p(1) we have F(01110) = p(t 1 ) + p(t 2 ) + P(T 3 ) = p(00) + p(010) + p(0110) = (1 θ) 2 + θ(1 θ) 2 + θ 2 (1 θ) 2 To encode the next bit of the source sequence, we need to calculate p(x i x i+1 ) and update F(x i x i+1 ). To decode the sequence, we use the same procedure to calculate p(x i x i+1 ) and update F(x i x i+1 ) for various x i+1, and check when the cumulative distribution exceeds the value corresponding to the codeword. 12

13 The most used mechanisms for computing the probabilities are i.i.d. sources and Markov sources. For i.i.d. sources For Markov sources of first order p(x n ) = n i=1 p(x i ) p(x n ) = p(x 1 ) n i=2 p(x i x i 1 ) Encoding is efficient if the distribution used by the arithmetic coder is close to the true distributions. The adaptation of the probability distribution will be discussed in a separate lecture. The implementation issues are related to the computational accuracy, buffer sizes, speed. 13

14 Statistical modelling + Arithmetic coding = Modern data compression Statistical modeller Next Symbol Arithmetic encoder Cumulative Distribution of Symbols Input image Stream of bits 14

15 Arithmetic coding message: BILL GATES Character Probability Range SPACE 1/ A 1/ B 1/ E 1/ G 1/ I 1/ L 2/ S 1/ T 1/ New Character Low value High Value B I L L SPACE G A T E S BILL GATES ( , ) = ( 41D8F565H 2 32, 41D8F567H 2 32 ) 32 bits H = 10 i=1 p i log 2 (p i ) = 3.12 bits / character Shannon: To encode BILL GATES we need at least 31.2 bits 15

16 Encoding principle Set low to 0.0 Set high to 1.0 While there are still input symbols do get an input symbol code range = high - low. high = low + range high range(symbol) low = low + range low range(symbol) End of While output low 16

17 Arithmetic coding: Decoding Principle get encoded number Do find symbol whose range straddles the encoded number output the symbol range = symbol high value - symbol low value subtract symbol low value from encoded number divide encoded number by range until no more symbols Encoded Number Output Low High Range Symbol B I L L SPACE G A T E S

18 References on practical implementations of Arithmetic coding 0 Moffat, Neal and Witten (1998) Source code ftp : //munnari.oz.au/pub/arith coder/ 1 Witten, Neal and Cleary(1987) Source code f tp : //f tp.cpsc.ucalgary.ca/pub/projects/ar.cod/cacm 87.shar 18

19 Statistical modeller Next Symbol Arithmetic encoder Cumulative Distribution of Symbols Input image Stream of bits

20 T3 T1 T2 FIG. 2

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

Motivation for Arithmetic Coding

Motivation for Arithmetic Coding Motivation for Arithmetic Coding Motivations for arithmetic coding: 1) Huffman coding algorithm can generate prefix codes with a minimum average codeword length. But this length is usually strictly greater

More information

Shannon-Fano-Elias coding

Shannon-Fano-Elias coding Shannon-Fano-Elias coding Suppose that we have a memoryless source X t taking values in the alphabet {1, 2,..., L}. Suppose that the probabilities for all symbols are strictly positive: p(i) > 0, i. The

More information

SIGNAL COMPRESSION Lecture 7. Variable to Fix Encoding

SIGNAL COMPRESSION Lecture 7. Variable to Fix Encoding SIGNAL COMPRESSION Lecture 7 Variable to Fix Encoding 1. Tunstall codes 2. Petry codes 3. Generalized Tunstall codes for Markov sources (a presentation of the paper by I. Tabus, G. Korodi, J. Rissanen.

More information

Lecture 3 : Algorithms for source coding. September 30, 2016

Lecture 3 : Algorithms for source coding. September 30, 2016 Lecture 3 : Algorithms for source coding September 30, 2016 Outline 1. Huffman code ; proof of optimality ; 2. Coding with intervals : Shannon-Fano-Elias code and Shannon code ; 3. Arithmetic coding. 1/39

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

Chapter 5: Data Compression

Chapter 5: Data Compression Chapter 5: Data Compression Definition. A source code C for a random variable X is a mapping from the range of X to the set of finite length strings of symbols from a D-ary alphabet. ˆX: source alphabet,

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

Sample solutions to Homework 4, Information-Theoretic Modeling (Fall 2014)

Sample solutions to Homework 4, Information-Theoretic Modeling (Fall 2014) Sample solutions to Homework 4, Information-Theoretic Modeling (Fall 204) Jussi Määttä October 2, 204 Question [First, note that we use the symbol! as an end-of-message symbol. When we see it, we know

More information

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet)

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Compression Motivation Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Storage: Store large & complex 3D models (e.g. 3D scanner

More information

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Lecture 16 Agenda for the lecture Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Variable-length source codes with error 16.1 Error-free coding schemes 16.1.1 The Shannon-Fano-Elias

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2011, 28 November 2011 Memoryless Sources Arithmetic Coding Sources with Memory 2 / 19 Summary of last lecture Prefix-free

More information

COMM901 Source Coding and Compression. Quiz 1

COMM901 Source Coding and Compression. Quiz 1 German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Winter Semester 2013/2014 Students Name: Students ID: COMM901 Source Coding

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE General e Image Coder Structure Motion Video x(s 1,s 2,t) or x(s 1,s 2 ) Natural Image Sampling A form of data compression; usually lossless, but can be lossy Redundancy Removal Lossless compression: predictive

More information

Entropy as a measure of surprise

Entropy as a measure of surprise Entropy as a measure of surprise Lecture 5: Sam Roweis September 26, 25 What does information do? It removes uncertainty. Information Conveyed = Uncertainty Removed = Surprise Yielded. How should we quantify

More information

U Logo Use Guidelines

U Logo Use Guidelines COMP2610/6261 - Information Theory Lecture 15: Arithmetic Coding U Logo Use Guidelines Mark Reid and Aditya Menon logo is a contemporary n of our heritage. presents our name, d and our motto: arn the nature

More information

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols.

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols. Universal Lossless coding Lempel-Ziv Coding Basic principles of lossless compression Historical review Variable-length-to-block coding Lempel-Ziv coding 1 Basic Principles of Lossless Coding 1. Exploit

More information

CSEP 590 Data Compression Autumn Arithmetic Coding

CSEP 590 Data Compression Autumn Arithmetic Coding CSEP 590 Data Compression Autumn 2007 Arithmetic Coding Reals in Binary Any real number x in the interval [0,1) can be represented in binary as.b 1 b 2... where b i is a bit. x 0 0 1 0 1... binary representation

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

Coding of memoryless sources 1/35

Coding of memoryless sources 1/35 Coding of memoryless sources 1/35 Outline 1. Morse coding ; 2. Definitions : encoding, encoding efficiency ; 3. fixed length codes, encoding integers ; 4. prefix condition ; 5. Kraft and Mac Millan theorems

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information

Source Coding Techniques

Source Coding Techniques Source Coding Techniques. Huffman Code. 2. Two-pass Huffman Code. 3. Lemple-Ziv Code. 4. Fano code. 5. Shannon Code. 6. Arithmetic Code. Source Coding Techniques. Huffman Code. 2. Two-path Huffman Code.

More information

Summary of Last Lectures

Summary of Last Lectures Lossless Coding IV a k p k b k a 0.16 111 b 0.04 0001 c 0.04 0000 d 0.16 110 e 0.23 01 f 0.07 1001 g 0.06 1000 h 0.09 001 i 0.15 101 100 root 1 60 1 0 0 1 40 0 32 28 23 e 17 1 0 1 0 1 0 16 a 16 d 15 i

More information

Lecture 3. Mathematical methods in communication I. REMINDER. A. Convex Set. A set R is a convex set iff, x 1,x 2 R, θ, 0 θ 1, θx 1 + θx 2 R, (1)

Lecture 3. Mathematical methods in communication I. REMINDER. A. Convex Set. A set R is a convex set iff, x 1,x 2 R, θ, 0 θ 1, θx 1 + θx 2 R, (1) 3- Mathematical methods in communication Lecture 3 Lecturer: Haim Permuter Scribe: Yuval Carmel, Dima Khaykin, Ziv Goldfeld I. REMINDER A. Convex Set A set R is a convex set iff, x,x 2 R, θ, θ, θx + θx

More information

Information Theory and Statistics Lecture 2: Source coding

Information Theory and Statistics Lecture 2: Source coding Information Theory and Statistics Lecture 2: Source coding Łukasz Dębowski ldebowsk@ipipan.waw.pl Ph. D. Programme 2013/2014 Injections and codes Definition (injection) Function f is called an injection

More information

Chapter 2: Source coding

Chapter 2: Source coding Chapter 2: meghdadi@ensil.unilim.fr University of Limoges Chapter 2: Entropy of Markov Source Chapter 2: Entropy of Markov Source Markov model for information sources Given the present, the future is independent

More information

EE5585 Data Compression January 29, Lecture 3. x X x X. 2 l(x) 1 (1)

EE5585 Data Compression January 29, Lecture 3. x X x X. 2 l(x) 1 (1) EE5585 Data Compression January 29, 2013 Lecture 3 Instructor: Arya Mazumdar Scribe: Katie Moenkhaus Uniquely Decodable Codes Recall that for a uniquely decodable code with source set X, if l(x) is the

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 AEP Asymptotic Equipartition Property AEP In information theory, the analog of

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 1: Entropy Coding Lecture 4: Asymmetric Numeral Systems Juha Kärkkäinen 08.11.2017 1 / 19 Asymmetric Numeral Systems Asymmetric numeral systems (ANS) is a recent entropy

More information

Data Compression. Limit of Information Compression. October, Examples of codes 1

Data Compression. Limit of Information Compression. October, Examples of codes 1 Data Compression Limit of Information Compression Radu Trîmbiţaş October, 202 Outline Contents Eamples of codes 2 Kraft Inequality 4 2. Kraft Inequality............................ 4 2.2 Kraft inequality

More information

Lec 05 Arithmetic Coding

Lec 05 Arithmetic Coding ECE 5578 Multimedia Communication Lec 05 Arithmetic Coding Zhu Li Dept of CSEE, UMKC web: http://l.web.umkc.edu/lizhu phone: x2346 Z. Li, Multimedia Communciation, 208 p. Outline Lecture 04 ReCap Arithmetic

More information

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria Source Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Asymptotic Equipartition Property Optimal Codes (Huffman Coding) Universal

More information

CSE 421 Greedy: Huffman Codes

CSE 421 Greedy: Huffman Codes CSE 421 Greedy: Huffman Codes Yin Tat Lee 1 Compression Example 100k file, 6 letter alphabet: File Size: ASCII, 8 bits/char: 800kbits 2 3 > 6; 3 bits/char: 300kbits better: 2.52 bits/char 74%*2 +26%*4:

More information

Kolmogorov complexity ; induction, prediction and compression

Kolmogorov complexity ; induction, prediction and compression Kolmogorov complexity ; induction, prediction and compression Contents 1 Motivation for Kolmogorov complexity 1 2 Formal Definition 2 3 Trying to compute Kolmogorov complexity 3 4 Standard upper bounds

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 2

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 2 582487 Data Compression Techniques (Spring 22) Model Solutions for Exercise 2 If you have any feedback or corrections, please contact nvalimak at cs.helsinki.fi.. Problem: Construct a canonical prefix

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

1 Introduction to information theory

1 Introduction to information theory 1 Introduction to information theory 1.1 Introduction In this chapter we present some of the basic concepts of information theory. The situations we have in mind involve the exchange of information through

More information

Optimal codes - I. A code is optimal if it has the shortest codeword length L. i i. This can be seen as an optimization problem. min.

Optimal codes - I. A code is optimal if it has the shortest codeword length L. i i. This can be seen as an optimization problem. min. Huffman coding Optimal codes - I A code is optimal if it has the shortest codeword length L L m = i= pl i i This can be seen as an optimization problem min i= li subject to D m m i= lp Gabriele Monfardini

More information

Lecture 1: Shannon s Theorem

Lecture 1: Shannon s Theorem Lecture 1: Shannon s Theorem Lecturer: Travis Gagie January 13th, 2015 Welcome to Data Compression! I m Travis and I ll be your instructor this week. If you haven t registered yet, don t worry, we ll work

More information

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9.

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9. ( c ) E p s t e i n, C a r t e r, B o l l i n g e r, A u r i s p a C h a p t e r 17: I n f o r m a t i o n S c i e n c e P a g e 1 CHAPTER 17: Information Science 17.1 Binary Codes Normal numbers we use

More information

EE376A - Information Theory Midterm, Tuesday February 10th. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Midterm, Tuesday February 10th. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Midterm, Tuesday February 10th Instructions: You have two hours, 7PM - 9PM The exam has 3 questions, totaling 100 points. Please start answering each question on a new page

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

ELEC 515 Information Theory. Distortionless Source Coding

ELEC 515 Information Theory. Distortionless Source Coding ELEC 515 Information Theory Distortionless Source Coding 1 Source Coding Output Alphabet Y={y 1,,y J } Source Encoder Lengths 2 Source Coding Two coding requirements The source sequence can be recovered

More information

Lecture 4 : Adaptive source coding algorithms

Lecture 4 : Adaptive source coding algorithms Lecture 4 : Adaptive source coding algorithms February 2, 28 Information Theory Outline 1. Motivation ; 2. adaptive Huffman encoding ; 3. Gallager and Knuth s method ; 4. Dictionary methods : Lempel-Ziv

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 2: Text Compression Lecture 5: Context-Based Compression Juha Kärkkäinen 14.11.2017 1 / 19 Text Compression We will now look at techniques for text compression. These techniques

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 2017 Author: Galen Reeves Last Modified: October 18, 2017 Outline of lecture: 5.1 Introduction to Lossless Source

More information

Lecture 1 : Data Compression and Entropy

Lecture 1 : Data Compression and Entropy CPS290: Algorithmic Foundations of Data Science January 8, 207 Lecture : Data Compression and Entropy Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will study a simple model for

More information

Solutions to Set #2 Data Compression, Huffman code and AEP

Solutions to Set #2 Data Compression, Huffman code and AEP Solutions to Set #2 Data Compression, Huffman code and AEP. Huffman coding. Consider the random variable ( ) x x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0. 0.04 0.04 0.03 0.02 (a) Find a binary Huffman code

More information

lossless, optimal compressor

lossless, optimal compressor 6. Variable-length Lossless Compression The principal engineering goal of compression is to represent a given sequence a, a 2,..., a n produced by a source as a sequence of bits of minimal possible length.

More information

Introduction to information theory and coding

Introduction to information theory and coding Introduction to information theory and coding Louis WEHENKEL Set of slides No 5 State of the art in data compression Stochastic processes and models for information sources First Shannon theorem : data

More information

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Please submit the solutions on Gradescope. Some definitions that may be useful: EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Definition 1: A sequence of random variables X

More information

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 28 Author: Galen Reeves Last Modified: September 27, 28 Outline of lecture: 5. Introduction to Lossless Source

More information

Information Theory. Week 4 Compressing streams. Iain Murray,

Information Theory. Week 4 Compressing streams. Iain Murray, Information Theory http://www.inf.ed.ac.uk/teaching/courses/it/ Week 4 Compressing streams Iain Murray, 2014 School of Informatics, University of Edinburgh Jensen s inequality For convex functions: E[f(x)]

More information

COS597D: Information Theory in Computer Science October 19, Lecture 10

COS597D: Information Theory in Computer Science October 19, Lecture 10 COS597D: Information Theory in Computer Science October 9, 20 Lecture 0 Lecturer: Mark Braverman Scribe: Andrej Risteski Kolmogorov Complexity In the previous lectures, we became acquainted with the concept

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Information Theory John E Savage What is Information Theory Introduced by Claude Shannon. See Wikipedia Two foci: a) data compression and b) reliable communication

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

Exercises with solutions (Set B)

Exercises with solutions (Set B) Exercises with solutions (Set B) 3. A fair coin is tossed an infinite number of times. Let Y n be a random variable, with n Z, that describes the outcome of the n-th coin toss. If the outcome of the n-th

More information

Entropy Coding. Connectivity coding. Entropy coding. Definitions. Lossles coder. Input: a set of symbols Output: bitstream. Idea

Entropy Coding. Connectivity coding. Entropy coding. Definitions. Lossles coder. Input: a set of symbols Output: bitstream. Idea Connectivity coding Entropy Coding dd 7, dd 6, dd 7, dd 5,... TG output... CRRRLSLECRRE Entropy coder output Connectivity data Edgebreaker output Digital Geometry Processing - Spring 8, Technion Digital

More information

Using an innovative coding algorithm for data encryption

Using an innovative coding algorithm for data encryption Using an innovative coding algorithm for data encryption Xiaoyu Ruan and Rajendra S. Katti Abstract This paper discusses the problem of using data compression for encryption. We first propose an algorithm

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

Coding for Discrete Source

Coding for Discrete Source EGR 544 Communication Theory 3. Coding for Discrete Sources Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona Coding for Discrete Source Coding Represent source data effectively

More information

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction to Information Theory By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction [B.P. Lathi] Almost in all the means of communication, none produces error-free communication.

More information

DCSP-3: Minimal Length Coding. Jianfeng Feng

DCSP-3: Minimal Length Coding. Jianfeng Feng DCSP-3: Minimal Length Coding Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Automatic Image Caption (better than

More information

Huffman Coding. C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University

Huffman Coding. C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University Huffman Coding C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University http://www.csie.nctu.edu.tw/~cmliu/courses/compression/ Office: EC538 (03)573877 cmliu@cs.nctu.edu.tw

More information

EE5585 Data Compression May 2, Lecture 27

EE5585 Data Compression May 2, Lecture 27 EE5585 Data Compression May 2, 2013 Lecture 27 Instructor: Arya Mazumdar Scribe: Fangying Zhang Distributed Data Compression/Source Coding In the previous class we used a H-W table as a simple example,

More information

Information & Correlation

Information & Correlation Information & Correlation Jilles Vreeken 11 June 2014 (TADA) Questions of the day What is information? How can we measure correlation? and what do talking drums have to do with this? Bits and Pieces What

More information

Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory

Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory 1 The intuitive meaning of entropy Modern information theory was born in Shannon s 1948 paper A Mathematical Theory of

More information

1 Ex. 1 Verify that the function H(p 1,..., p n ) = k p k log 2 p k satisfies all 8 axioms on H.

1 Ex. 1 Verify that the function H(p 1,..., p n ) = k p k log 2 p k satisfies all 8 axioms on H. Problem sheet Ex. Verify that the function H(p,..., p n ) = k p k log p k satisfies all 8 axioms on H. Ex. (Not to be handed in). looking at the notes). List as many of the 8 axioms as you can, (without

More information

Stream Codes. 6.1 The guessing game

Stream Codes. 6.1 The guessing game About Chapter 6 Before reading Chapter 6, you should have read the previous chapter and worked on most of the exercises in it. We ll also make use of some Bayesian modelling ideas that arrived in the vicinity

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Intro to Information Theory

Intro to Information Theory Intro to Information Theory Math Circle February 11, 2018 1. Random variables Let us review discrete random variables and some notation. A random variable X takes value a A with probability P (a) 0. Here

More information

Lecture 6: Kraft-McMillan Inequality and Huffman Coding

Lecture 6: Kraft-McMillan Inequality and Huffman Coding EE376A/STATS376A Information Theory Lecture 6-0/25/208 Lecture 6: Kraft-McMillan Inequality and Huffman Coding Lecturer: Tsachy Weissman Scribe: Akhil Prakash, Kai Yee Wan In this lecture, we begin with

More information

Lecture 1: September 25, A quick reminder about random variables and convexity

Lecture 1: September 25, A quick reminder about random variables and convexity Information and Coding Theory Autumn 207 Lecturer: Madhur Tulsiani Lecture : September 25, 207 Administrivia This course will cover some basic concepts in information and coding theory, and their applications

More information

Chapter 5. Data Compression

Chapter 5. Data Compression Chapter 5 Data Compression Peng-Hua Wang Graduate Inst. of Comm. Engineering National Taipei University Chapter Outline Chap. 5 Data Compression 5.1 Example of Codes 5.2 Kraft Inequality 5.3 Optimal Codes

More information

CMPT 365 Multimedia Systems. Lossless Compression

CMPT 365 Multimedia Systems. Lossless Compression CMPT 365 Multimedia Systems Lossless Compression Spring 2017 Edited from slides by Dr. Jiangchuan Liu CMPT365 Multimedia Systems 1 Outline Why compression? Entropy Variable Length Coding Shannon-Fano Coding

More information

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd 4.8 Huffman Codes These lecture slides are supplied by Mathijs de Weerd Data Compression Q. Given a text that uses 32 symbols (26 different letters, space, and some punctuation characters), how can we

More information

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE)

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) ECE 74 - Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) 1. A Huffman code finds the optimal codeword to assign to a given block of source symbols. (a) Show that cannot be a Huffman

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling TTIC 31230, Fundamentals of Deep Learning David McAllester, April 2017 Information Theory and Distribution Modeling Why do we model distributions and conditional distributions using the following objective

More information

Multimedia. Multimedia Data Compression (Lossless Compression Algorithms)

Multimedia. Multimedia Data Compression (Lossless Compression Algorithms) Course Code 005636 (Fall 2017) Multimedia Multimedia Data Compression (Lossless Compression Algorithms) Prof. S. M. Riazul Islam, Dept. of Computer Engineering, Sejong University, Korea E-mail: riaz@sejong.ac.kr

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1

( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1 ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2 0 1 6 C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1 CHAPTER 17: Information Science In this chapter, we learn how data can

More information

Compression and Coding

Compression and Coding Compression and Coding Theory and Applications Part 1: Fundamentals Gloria Menegaz 1 Transmitter (Encoder) What is the problem? Receiver (Decoder) Transformation information unit Channel Ordering (significance)

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

On the Cost of Worst-Case Coding Length Constraints

On the Cost of Worst-Case Coding Length Constraints On the Cost of Worst-Case Coding Length Constraints Dror Baron and Andrew C. Singer Abstract We investigate the redundancy that arises from adding a worst-case length-constraint to uniquely decodable fixed

More information

An Approximation Algorithm for Constructing Error Detecting Prefix Codes

An Approximation Algorithm for Constructing Error Detecting Prefix Codes An Approximation Algorithm for Constructing Error Detecting Prefix Codes Artur Alves Pessoa artur@producao.uff.br Production Engineering Department Universidade Federal Fluminense, Brazil September 2,

More information

Digital communication system. Shannon s separation principle

Digital communication system. Shannon s separation principle Digital communication system Representation of the source signal by a stream of (binary) symbols Adaptation to the properties of the transmission channel information source source coder channel coder modulation

More information

1. Basics of Information

1. Basics of Information 1. Basics of Information 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L1: Basics of Information, Slide #1 What is Information? Information,

More information

Compressing Tabular Data via Pairwise Dependencies

Compressing Tabular Data via Pairwise Dependencies Compressing Tabular Data via Pairwise Dependencies Amir Ingber, Yahoo! Research TCE Conference, June 22, 2017 Joint work with Dmitri Pavlichin, Tsachy Weissman (Stanford) Huge datasets: everywhere - Internet

More information

3 Greedy Algorithms. 3.1 An activity-selection problem

3 Greedy Algorithms. 3.1 An activity-selection problem 3 Greedy Algorithms [BB chapter 6] with different examples or [Par chapter 2.3] with different examples or [CLR2 chapter 16] with different approach to greedy algorithms 3.1 An activity-selection problem

More information

Sets. We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth

Sets. We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth Sets We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth century. Most students have seen sets before. This is intended

More information

Information and Entropy

Information and Entropy Information and Entropy Shannon s Separation Principle Source Coding Principles Entropy Variable Length Codes Huffman Codes Joint Sources Arithmetic Codes Adaptive Codes Thomas Wiegand: Digital Image Communication

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] 575 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Approximation 576 Let ε (0, 1) given. Let I opt an optimal selection. No try to find a valid selection

More information

CISC 876: Kolmogorov Complexity

CISC 876: Kolmogorov Complexity March 27, 2007 Outline 1 Introduction 2 Definition Incompressibility and Randomness 3 Prefix Complexity Resource-Bounded K-Complexity 4 Incompressibility Method Gödel s Incompleteness Theorem 5 Outline

More information