EE247 Lecture 17. EECS 247 Lecture 17: Data Converters- ADC Design, Sampling 2009 Page 1. Practical Sampling Summary So Far! v IN

Size: px
Start display at page:

Download "EE247 Lecture 17. EECS 247 Lecture 17: Data Converters- ADC Design, Sampling 2009 Page 1. Practical Sampling Summary So Far! v IN"

Transcription

1 EE247 Lecure 17 ADC Converers Sampling (coninued) Sampling swich consideraions Clock volage boosers Sampling swich charge injecion & clock feedhrough Complemenary swich Use of dummy device Boom-plae swiching Track & hold T/H circuis T/H combined wih summing/difference funcion T/H circui incorporaing gain & offse cancellaion EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 1 kt/c noise 2 C 12kBT VFS 0.72 R << B fc s 2B Finie R sw limied bandwidh g sw = f (n ) disorion 2 Pracical Sampling Summary So Far! v IN M1 v OUT C Vin W gon = go 1 for go μcox ( VDD Vh ) VDD V = h L Allowing long enough seling ime reduce disorion due o sw non-linear behavior EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 2

2 Signal Disorion Due o Sampling Swich Nonlineariy SFDR sensiive o sampling disorion - improve lineariy by: Larger V DD /V FS Higher sampling bandwidh Soluions: Overdesign Larger swiches Issue: Increased swich charge injecion Increased nonlinear S &D juncion cap. Maximize V DD /V FS Decreased dynamic range if V DD cons. Complemenary swich? Consan & max. S f(n )? 10bi ADC T s /τ = 20 V DD V h = 2V V FS = 1V EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 3 Sampling Use of Complemenary Swiches g o g n o g o T =g on + g o p B g o p B Complemenary n & p swich advanages: Increase in he overall conducance lower ime consan Linearize he swich conducance for he range V hp < Vin < Vdd - V hn EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 4

3 Complemenary Swich Issues Supply Volage Evoluion Supply volage has scaled down wih echnology scaling Threshold volages do no scale accordingly Ref: A. Abo e al, A 1.5-V, 10-bi, 14.3-MS/s CMOS Pipeline Analog-o-Digial Converer, JSSC May 1999, pp EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 5 Complemenary Swich Effec of Supply Volage Scaling g effecive g o n g o T =go n + g o p g o p B B As supply volage scales down inpu volage range for consan g o shrinks Complemenary swich no effecive when V DD becomes comparable o 2xV h EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 6

4 Boosed & Consan S Sampling S =cons. OFF ON Gae volage S =low Device off Beware of signal feedhrough due o parasiic capaciors Increase gae overdrive volage as much as possible + keep S consan Swich overdrive volage independen of signal level Error due o finie R ON linear (o 1s order) Lower R on lower ime consan EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 7 Consan S Sampling (= he swich inpu erminal) EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 8

5 Consan S Sampling Circui VDD=3V P_N M1 M2 M3 M8 M6 VP1 100ns P C1 PB C2 C3 M12 P M4 M5 M9 VS1 1.5V 1MHz Va Vg M11 Vb Chold This Example: All device sizes:w/l=10μ/0.35μ All capacior size: 1pF (excep for Chold) Noe: Each criical swich requires a separae clock booser Sampling swich & C Ref: A. Abo e al, A 1.5-V, 10-bi, 14.3-MS/s CMOS Pipeline Analog-o-Digial Converer, JSSC May 1999, pp EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 9 VDD=0 3V M1 0ff C1 PB 0 3V Clock Volage Doubler C2 M2 Sauraion mode 0 3V 0 (3V-V h M2 ) 0 0 M1 Triode VDD=3V M2 off 3V 0 3V (3V-V M2 h ) (6V-V M2 h ) Acquire charge C1 C2 PB 3V 0 0 3V P P VP1 =clock 0 3V VP1 3V 0 a) Sar up b) Nex clock phase EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 10

6 Clock Volage Doubler M1 0ff 3V ~6V VDD=3V C1 PB 0 3V P VP1 M2 0 3V (6V-V M2 h ) (3V-V M2 h ) ~ 3V Acquires C2 charge 3V 0 M2 Triode Boh C1 & C2 charged o VDD afer 1.5 clock cycle Noe ha boom plae of C1 & C2 is eiher 0 or VDD while op plaes are a VDD or 2VDD c) Nex clock phase EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 11 Clock Volage Doubler VDD=3V 2VDD M1 M2 P_Boos R1 C1 PB C2 R2 VDD P 0 VP1 Clock period: 100ns *R1 & R2=1GOhm dummy resisors added for simulaion only EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 12

7 Consan S Sampler: Φ Low VDD=3V ~ 2 VDD (boosed clock) M3 Triode OFF VDD C3 M4 Sampling swich M11 is OFF VDD M12 Triode Inpu volage source OFF M11 OFF VS1 1.5V 1MHz Chold 1pF Device OFF C3 charged o ~VDD EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 13 Consan S Sampler: Φ High VDD C3 1pF M8 C3 previously charged o VDD M8 & M9 are on: C3 across G-S of M11 M9 VS1 1.5V 1MHz M11 Chold M11 on wih consan VGS = VDD Mission accomplished!? EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 14

8 Consan S Sampling Inpu Swich ae Chold Signal Inpu Signal EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 15 Consan S Sampling? EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 16

9 Consan S Sampling? During he ime period: n < V ou S =consan=v DD Larger S -V h compared o no boos S =ce and no a funcion of inpu volage Significan lineariy improvemen IR During he ime period: n >V ou : S = V DD -IR Larger S -V h compared o no boos S is a funcion of IR and hence inpu volage Lineariy improvemen no as pronounced as for n < V ou EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 17 Clock Muliplier M7 & M13 for reliabiliy Remaining issues: -S consan only for n <V ou Boosed Clock Sampling Complee Circui -Nonlineariy due o Vh dependence of M11on bodysource volage Swich Ref: A. Abo e al, A 1.5-V, 10-bi, 14.3-MS/s CMOS Pipeline Analog-o-Digial Converer, JSSC May 1999, pp EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 18

10 Boosed Clock Sampling Design Consideraion Choice of value for C3: C3 oo large large charging curren large dynamic power dissipaion VDD C3 M8 C3 oo small Vgae-Vs= VDD.C3/(C3+Cx) Loss of VGS due o low raio of Cx/C3 Cx includes C GS of M11 plus all oher parasiics caps. M9 Cx Vin M11 Chold Ref: A. Abo e al, A 1.5-V, 10-bi, 14.3-MS/s CMOS Pipeline Analog-o-Digial Converer, JSSC May 1999, pp EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 19 Advanced Clock Boosing Technique Ref: M. Walari e al., "A self-calibraed pipeline ADC wih 200MHz IFsampling fronend," ISSCC 2002, Dig. Tech. Papers, pp. 314 Sampling Swich Two floaing volages sources generaed and conneced o Gae and S & D EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 20

11 Advanced Clock Boosing Technique clk low Sampling Swich clk low Capaciors C1a & C1b charged o VDD MS off Hold mode EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 21 Advanced Clock Boosing Technique clk high Sampling Swich clk high Top plae of C1a & C1b conneced o gae of sampling swich Boom plae of C1a conneced o V IN Boom plae of C1b conneced o V OUT VGS & VGD of MS VDD & ac signal on G of MS average of V IN & V OUT EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 22

12 Advanced Clock Boosing Technique Ref: M. Walari e al., "A self-calibraed pipeline ADC wih 200MHz IFsampling fronend," ISSCC 2002, Dig. Tech. Papers, pp. 314 Sampling Swich Gae racks average of inpu and oupu, reduces effec of I R drop a high frequencies Bulk also racks signal reduced body effec (echnology used allows connecing bulk o S) Repored measured SFDR = 76.5dB a f in =200MHz EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 23 Consan Conducance Swich Ref: H. Pan e al., "A 3.3-V 12-b 50-MS/s A/D converer in 0.6um CMOS wih over 80-dB SFDR," IEEE J. Solid-Sae Circuis, pp , Dec EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 24

13 Consan Conducance Swich OFF Ref: H. Pan e al., "A 3.3-V 12-b 50-MS/s A/D converer in 0.6um CMOS wih over 80-dB SFDR," IEEE J. Solid-Sae Circuis, pp , Dec EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 25 Consan Conducance Swich M2 Consan curren consan g ds ON M1 replica of M2 & same VGS as M2 M1 also consan g ds Noe: Auhors repor requiremen of 280MHz GBW for he opamp for 12bi 50Ms/s ADC Also, opamp common-mode compliance for full inpu range required Ref: H. Pan e al., "A 3.3-V 12-b 50-MS/s A/D converer in 0.6um CMOS wih over 80-dB SFDR," IEEE J. Solid-Sae Circuis, pp , Dec EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 26

14 Swich Off-Mode Feedhrough Cancellaion Ref: M. Walari e al., "A self-calibraed pipeline ADC wih 200MHz IF-sampling fronend," ISSCC 2002, Dig. Techn. Papers, pp. 314 EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 27 Pracical Sampling Issues v IN M1 C v OUT Swich induced noise due o M1 finie channel resisance Clock jier Finie R sw limied bandwidh finie acquisiion ime R sw = f(n ) disorion Swich charge injecion & clock feedhrough EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 28

15 Sampling Swich Charge Injecion & Clock Feedhrough Swiching from Track o Hold V H +V h M1 VO V L V O ΔV C s off Firs assume is a DC volage When swich urns off offse volage induced on C s Why? EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 29 Sampling Swich Charge Injecion MOS xor operaing in riode region Cross secion view L D Disribued channel resisance & gae & juncion capaciances G C ov C ov L S C j sb B C j db D C HOLD Channel disribued RC nework formed beween G,S, and D Channel o subsrae juncion capaciance disribued & volage dependan Drain/Source juncion capaciors o subsrae volage dependan Over-lap capaciance C ov = L D xwxc ox associaed wih G-S & G-D overlap EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 30

16 Swich Charge Injecion Slow Clock V H Device sill conducing +V h V L - off Slow clock clock fall ime >> device speed During he period (- o off ) curren in channel discharges channel charge ino low impedance signal source Only source of error Clock feedhrough from C ov o C s EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 31 Swich Clock Feedhrough Slow Clock VG V H C ov +V h D C Δ = + ( ε ) ( ) ov V Vi Vh VL Cov + Cs Cov ( V h V L) Cs o = i+δ + C s V L V O V V V C C C V V V V V V 1 V V V = V 1+ + V ( ) ( ) ov ov ov o = i i+ h L = i h L C s C s Cs o i os - off ΔV Cov C where ε = ; V = V V C s ( ) ov os h L Cs EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 32

17 Swich Charge Injecion & Clock Feedhrough Slow Clock- Example M1 10μ/0.18μ VO C s =1pF V H +V h ' 2 ov μ ox μ h L C = 0.1fF / C = 9fF / V = 0.4V V = 0 Cov 10μx0.1fF / μ ε = = =.1% Cs 1pF Allowing ε = 1/ 2LSB ADCresoluion < ~9bi C V = V V = 0.4mV ( ) ov os h L Cs V L V O - off ΔV EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 33 Swich Charge Injecion & Clock Feedhrough Fas Clock Q ch nqch n+m=1 M1 VO mq ch C s =1pF V H +V h V L V O ΔV off Sudden gae volage drop no gae volage o esablish curren in channel channel charge has no choice bu o escape ou owards S & D EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 34

18 Swich Charge Injecion & Clock Feedhrough Fas Clock Clock Fall-Time << Device Speed: C 1 Q Δ V = V V ( ) ov ch o H L Cov + Cs 2 Cs ov ( VH VL) + ( ε ) 1 WCoxL ε = (( )) C 1 WC L V V V C C 2 C V V 1 V ox H i h ov s s o = i + + os where 2 Cs C 1 WC L V V = ( V V ) C 2 C ov os H L s ( V ) ox H h s For simpliciy i is assumed channel charge divided equally beween S & D Source of error channel charge ransfer + clock feedhrough via C ov o C s V H V L V O off +V h ΔV EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 35 Swich Charge Injecion & Clock Feedhrough Fas Clock- Example M1 10μ /0.18μ V H VO +V h C s =1pF ff ff Cov = 0.1, Cox = 9,V 2 h = 0.4V,VDD = 1.8V, VL = 0 μ μ WLCox 10μx0.18μx9fF / μ ε = 1/ 2 = = 1.6% ~5 bi C 1pF ov os H L s s 2 ( V ) C 1 WCoxL VH h V = ( V V ) = 1.8mV 14.6mV = 16.4mV C 2 C s V L V O off ΔV EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 36

19 Swich Charge Injecion & Clock Feedhrough Example-Summary ε V OS 1.6% 16mV.1% 0.4mV Clock fall ime Clock fall ime Error funcion of: Clock fall ime Inpu volage level Source impedance Sampling capaciance size Swich size Clock fall/rise should be conrolled no o be faser (sharper) han necessary EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 37 Swich Charge Injecion Error Reducion How do we reduce he error? Reduce swich size o reduce channel charge? 1Qch Δ Vo = 2Cs Cs Ts τ = RONC s = (noe: = kτ ) W μcox ( VGS Vh) 2 L Consider he figure of meri (FOM): W μcox ( VGS Vh) 1 L Cs FOM = 2 τ ΔV C WC L V V V FOM μ L (( )) o s ox H i h 2 Reducing swich size increases τ increased disorion no a viable soluion Small τ and small ΔV use minimum chanel lengh (mandaed by echnology) For a given echnology τ x ΔV ~ consan EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 38

20 Sampling Swich Charge Injecion & Clock Feedhrough Summary Exra charge injeced ono sampling swich device urn-off Channel charge injecion Clock feedhrough o C s via C ov Issues due o charge injecion & clock feedhrough: DC offse induced on hold C Inpu dependan error volage disorion Soluions: Slowing down clock edges as much as possible Complemenary swich? Addiion of dummy swiches? Boom-plae sampling? EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 39 Swich Charge Injecion & Clock Feedhrough Complemenary Swich V H B B B V L In slow clock case if area of n & p devices & widhs are equal (W n =W p ) effec of overlap capacior for n & p devices o firs order cancel (cancellaion accuracy depends on maching of n & p widh and overlap lengh L D ) Since in CMOS echnologies μ n ~2.5μ p choice of W n =W p no opimal from lineariy perspecive (W p >W n preferable) EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 40

21 Swich Charge Injecion Complemenary Swich Fas Clock ( ) Q = W C L V V V ch n n ox n H i h n ch p p ox p i L ( Vh p ) Q = W C L V V 1 Qch n Q ΔVo 2 Cs C ch p s V H V L ( ) Vo= Vi 1+ ε + Vos 1 WnCoxLn+ WpCoxLp ε 2 Cs In fas clock case To 1 s order, offse due o overlap caps cancelled for equal device widh Inpu volage dependan error worse! B EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 41 Swich Charge Injecion Dummy Swich M1 B M2 V O C s V H B Q 1 Q 2 W M2 =1/2W M1 1 Q Q Q 2 M1 M1 1 ch + ov V L M2 M2 2 ch + ov Q Q 2Q 1 For W W Q Q & Q 2Q 2 M 1 M2 M 2 = M1 2 = 1 ov = ov EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 42

22 M1 Swich Charge Injecion Dummy Swich B M2 V O C s V H B Q 1 Q 2 W M2 =1/2W M1 V L Dummy swich same L as main swich bu half W Main device clock goes low, dummy device gae goes high dummy swich acquires same amoun of channel charge main swich needs o lose Effecive only if exacly half of he charge sored in M1 is ransferred o M2 (depends on inpu/oupu node impedance) and requires good maching beween clock fall/rise EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 43 Swich Charge Injecion Dummy Swich R M1 B M2 W M2 =1/2W M1 VO C s C s To guaranee half of charge goes o each side creae he same environmen on boh sides Add capacior equal o sampling capacior o he oher side of he swich + add fixed resisor o emulae inpu resisance of following circui Issues: Degrades sampling bandwidh EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 44

23 Dummy Swich Effeciveness Tes Dummy swich W=1/2W main As Vin is increased Vc1-Vin is decreased channel charge decreased less charge injecion Noe large Ls good device area maching Ref: L. A. Biensman e al, An Eigh-Channel 8 13i Microprocessor Compaible NMOS D/A Converer wih Programmable Scaling, IEEE JSSC, VOL. SC-15, NO. 6, DECEMBER 1980 EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 45 φ + V O+ Swich Charge Injecion Differenial Sampling Cs V V = V V V = V o+ o od i+ i id V + V V + V Voc = = 2 2 Vo+ = Vi Vos1 V = V 1+ + V o+ o i+ i Vic ( ε ) ( ε ) ( ε + ε ) o i 2 os2 ( ε ε ) V = V + V + V + V V od id id 1 2 ic os1 os2 - Cs To 1 s order, offse erms cancel V O- Noe gain error ε sill abou he same Has he advanage of beer immuniy o noise coupling and cancellaion of even order harmonics EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 46

24 Avoiding Swich Charge Injecion Boom Plae Sampling D M1 V H Cs V O V L D M2 Swiches M2 opened slighly earlier compared o M1 Injeced charge by he opening of M2 is consan since is GS volage is consan & eliminaed when used differenially Since C s boom plae is already open when M1 is opened No signal dependan charge injeced on C s EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 47 Flip-Around Track & Hold φ 2 S2A D D φ 2 v IN D C φ 2 S3 S1A S2 v OUT S1 Concep based on boomplae sampling v CM EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 48

25 Flip-Around T/H-Basic Operaion high φ 2 S2A D D φ 2 v IN D S1A C φ 2 S2 S3 Charging C vout Q φ1 =V IN xc S1 v CM Noe: Opamp has o be sable in uniy-gain configuraion EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 49 Flip-Around T/H-Basic Operaion φ 2 high φ 2 S2A D D φ 2 D C φ 2 S3 Holding v IN S1A S2 v OUT S1 v CM Q φ2 =V OUT xc V OUT = V IN EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 50

26 Flip-Around T/H - Timing φ 2 S2A D D v IN D C φ 2 S3 φ 2 S1A S1 S2 v CM vout S1 opens earlier han S1A No resisive pah from C boom plae o Gnd charge can no change "Boom Plae Sampling" EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 51 Charge Injecion A he insan of ransiioning from rack o hold mode, some of he charge sored in sampling swich S1 is dumped ono C Wih "Boom Plae Sampling", only charge injecion componen due o opening of S1 and is o firs-order independen of v IN Only a dc offse is added. This dc offse can be removed wih a differenial archiecure EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 52

27 Flip-Around T/H Consan swich S o minimize disorion φ 2 S2A D D φ 2 v IN D S1A C φ 2 S2 S3 v OUT S1 v CM Noe: Among all swiches only S1A & S2A experience full inpu volage swing EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 53 Flip-Around T/H S1 is chosen o be an n-channel MOSFET Since i always swiches he same volage, i s onresisance, R S1, is signal-independen (o firs order) Choosing R S1 >> R S1A minimizes he non-linear componen of R = R S1A + R S1 Typically, S1A is a wide (much lower resisance han S1) & consan S swich In pracice size of S1A is limied by he (nonlinear) S/D capaciance ha also adds disorion If S1A s resisance is negligible delay depends only on S1 resisance S1 resisance is independen of V IN error due o finie ime-consan independen of V IN EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 54

28 Differenial Flip-Around T/H Choice of Sampling Swich Size C s =7pF THD simulaed w/o sampling swich boosed clock -45dB THD simulaed wih sampling swich boosed clock (see graph) Ref: K. Vleugels e al, A 2.5-V Sigma Dela Modulaor for Broadband Communicaions Applicaions IEEE JSSC, VOL. 36, NO. 12, DECEMBER 2001, pp EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 55 Differenial Flip-Around T/H S11 S12 Offse volage associaed wih charge injecion of S11 & S12 cancelled by differenial naure of he circui During inpu sampling phase amp oupus shored ogeher Ref: W. Yang, e al. A 3-V 340-mW 14-b 75-Msample/s CMOS ADC Wih 85-dB SFDR a Nyquis Inpu, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 56

29 Differenial Flip-Around T/H Gain=1 Feedback facor=1 φ2 EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 57 Differenial Flip-Around T/H Issues: Inpu Common-Mode Range 1.7V VCM=1.5V 1V 1V 1V 0.5V 1.2V 1.3V 0.8V Δn-cm =1-1.5= - 0.5V Δn-cm =V ou_com -V sig_com Amplifier needs o have large inpu common-mode compliance EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 58

30 Inpu Common-Mode Cancellaion Noe: Shoring swich M3 added Ref: R. Yen, e al. A MOS Swiched-Capacior Insrumenaion Amplifier, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-17, NO. 6,, DECEMBER EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 59 Inpu Common-Mode Cancellaion 1V+0.2V V-0.2V Track mode (φ high) V C1 =V I1, V C2 =V I2 V o1 =V o2 =0 Hold mode (φ low) V o1 +V o2 =0 V o1 -V o2 = -(V I1 -V I2 )(C 1 /(C 1 +C 3 )) Inpu common-mode level removed EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 60

31 Swiched-Capacior Techniques Combining Track & Hold wih Oher Funcions T/H + Charge redisribuion amplifier T/H & Inpu difference amplifier T/H & summing amplifier Differenial T/H combined wih gain sage Differenial T/H including offse cancellaion EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 61 T/H + Charge Redisribuion Amplifier Track mode: (S1, S3 on S2 off) V C1 =V os V IN, V C2 =0 V o =V os EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 62

32 T/H + Charge Redisribuion Amplifier Hold Mode 2 1 Hold/amplify mode (S1, S3 off S2 on) Offse NOT cancelled, bu no amplified Inpu-referred offse =(C 2 /C 1 ) x V OS, & ofen C 2 <C 1 EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 63 T/H & Inpu Difference Amplifier Sample mode: (S1, S3 on S2 off) V C1 =V os V I1, V C2 =0 V o =V os EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 64

33 Inpu Difference Amplifier Con d Subrac/Amplify mode (S1, S3 off S2 on) During previous phase: V C1 =V os V I1, V C2 =0 V o =V os 1 Offse NOT cancelled, bu no amplified Inpu-referred offse =(C 2 /C 1 )xv OS, & C 2 <C 1 EECS 247 Lecure 17: Daa Converers- ADC Design, Sampling 2009 Page 65

EE247 Lecture 18. EECS 247 Lecture 18: Data Converters 2005 H.K. Page 1. Sampling Distortion Effect of Supply Voltage

EE247 Lecture 18. EECS 247 Lecture 18: Data Converters 2005 H.K. Page 1. Sampling Distortion Effect of Supply Voltage EE247 Lecure 18 ADC Converers Sampling Sampling swich induced disorion Sampling swich conducance dependence on inpu volage Sampling swich charge injecion Complemenary swich Use of dummy device Boom-plae

More information

EE247 Lecture 18. Practical Sampling Issues

EE247 Lecture 18. Practical Sampling Issues EE247 Lecure 18 ADC Converers Sampling (coninued) Sampling swich charge injecion & clock feedhrough Complemenary swich Use of dummy device Boom-plae swiching Track & hold T/H circuis T/H combined wih summing/difference

More information

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture EE247 Lecture 19 ADC Converters Sampling (continued) Clock boosters (continued) Sampling switch charge injection & clock feedthrough Complementary switch Use of dummy device Bottom-plate switching Track

More information

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 16. Serial Charge Redistribution DAC EE47 Lecture 16 D/A Converters D/A examples Serial charge redistribution DAC Practical aspects of current-switch DACs Segmented current-switch DACs DAC self calibration techniques Current copiers Dynamic

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 19 ADC Converters Sampling (continued) Sampling switch charge injection & clock feedthrough Complementary switch Use of dummy device Bottom-plate switching Track & hold T/H circuits T/H combined

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Chapter 6 MOSFET in the On-state

Chapter 6 MOSFET in the On-state Chaper 6 MOSFET in he On-sae The MOSFET (MOS Field-Effec Transisor) is he building block of Gb memory chips, GHz microprocessors, analog, and RF circuis. Mach he following MOSFET characerisics wih heir

More information

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling EE 330 Lecure 23 Small Signal Analysis Small Signal Modelling Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00 p.m. on Thursday March 8 in Room Sweeney 1116 Review from Las

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description PI53157 OINY M Low Volage PD nalog wich 2:1 Mux/Demux Bus wich Feaures CMO echnology for Bus and nalog pplicaions Low ON Resisance: 8-ohms a 3.0V Wide Range: 1.65V o 5.5V Rail-o-Rail ignal Range Conrol

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations Overview Embedding A/D Conversion in SoC applicaions Marin Anderson Dep. of Elecrical and Informaion Technology Lund Universiy, Sweden Fundamenal limiaions: Sampling and Quanizaion Pracical limiaions:

More information

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS C gsp V DD C sbp C gd, C gs, C gb -> Oxide Caps C db, C sb -> Juncion Caps 2 S C in -> Ineconnec Cap G B D C dbp V in C gdp V ou C gdn D C dbn G B S C in

More information

Analog Multiplexer Demultiplexer High-Performance Silicon-Gate CMOS

Analog Multiplexer Demultiplexer High-Performance Silicon-Gate CMOS TECHNICAL DATA IW0B Analog Muliplexer Demuliplexer HighPerformance SiliconGae CMOS The IW0B analog muliplexer/demuliplexer is digially conrolled analog swiches having low ON impedance and very low OFF

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6 Semiconducor Devices C. Hu: Modern Semiconducor Devices for Inegraed Circuis Chaper 6 For hose of you who are sudying a bachelor level and need he old course S-69.2111 Mikro- ja nanoelekroniikan perusee

More information

Introduction to Digital Circuits

Introduction to Digital Circuits The NMOS nerer The NMOS Depleion oad 50 [ D ] µ A GS.0 + 40 30 0 0 Resisance characerisic of Q 3 4 5 6 GS 0.5 GS 0 GS 0.5 GS.0 GS.5 [ ] DS GS i 0 Q Q Depleion load Enhancemen drier Drain characerisic of

More information

Chapter 4. Circuit Characterization and Performance Estimation

Chapter 4. Circuit Characterization and Performance Estimation VLSI Design Chaper 4 Circui Characerizaion and Performance Esimaion Jin-Fu Li Chaper 4 Circui Characerizaion and Performance Esimaion Resisance & Capaciance Esimaion Swiching Characerisics Transisor Sizing

More information

EE 435 Lecture 42. Phased Locked Loops and VCOs

EE 435 Lecture 42. Phased Locked Loops and VCOs EE 435 Lecure 42 d Locked Loops and VCOs Basis PLL Archiecure Loop Filer (LF) Volage Conrolled Oscillaor (VCO) Frequency Divider N Applicaions include: Frequency Demodulaion Frequency Synhesis Clock Synchronizaion

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class -Spring 006 Digial Inegraed Circuis Lecure Design Merics Adminisraive Suff Labs and discussions sar in week Homework # is due nex hursday Everyone should have an EECS insrucional accoun hp://wwwins.eecs.berkeley.edu/~ins/newusers.hml

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

Non Linear Op Amp Circuits.

Non Linear Op Amp Circuits. Non Linear Op Amp ircuis. omparaors wih 0 and non zero reference volage. omparaors wih hyseresis. The Schmid Trigger. Window comparaors. The inegraor. Waveform conversion. Sine o ecangular. ecangular o

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 41 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time The Reference Inverer Reference Inverer V DD R =R PD PU = IN= 4OX WMIN LMIN V IN M 2 M 1 L VTn.2VDD

More information

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 35 Absolue and Relaive Accuracy DAC Design The Sring DAC Makekup Lecures Rm 6 Sweeney 5:00 Rm 06 Coover 6:00 o 8:00 . Review from las lecure. Summary of ime and ampliude quanizaion assessmen

More information

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 0 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time Propagaion Delay in Saic MOS Family F Propagaion hrough k levels of logic + + + + HL HLn LH(n-1)

More information

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition . Assuming he passive sign convenion, dv i= C. d (a) i = (dc) 9 9 (b) (22)( 9)(6.2) i= e = 32.8e A 9 3 (c) i (22 = )(8 )(.) sin. = 7.6sin. pa 9 (d) i= (22 )(9)(.8) cos.8 = 58.4 cos.8 na 2. (a) C = 3 pf,

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

AO V Complementary Enhancement Mode Field Effect Transistor

AO V Complementary Enhancement Mode Field Effect Transistor AO46 6V Complemenary Enhancemen Mode Field Effec Transisor General Descripion The AO46 uses advanced rench echnology MOSFETs o provide excellen and low gae charge. The complemenary MOSFETs may be used

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits esigning Sequenial Logic Circuis Adaped from Chaper 7 of igial egraed Circuis A esign Perspecive Jan M. Rabaey e al. Copyrigh 23 Prenice Hall/Pearson Sequenial Logic pus Curren Sae COMBINATIONAL LOGIC

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Chapter 5-4 Operational amplifier Department of Mechanical Engineering

Chapter 5-4 Operational amplifier Department of Mechanical Engineering MEMS08 Chaper 5-4 Operaional amplifier Deparmen of Mechanical Engineering Insrumenaion amplifier Very high inpu impedance Large common mode rejecion raio (CMRR) Capabiliy o amplify low leel signals Consisen

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

Top View. Top View S2 G2 S1 G1

Top View. Top View S2 G2 S1 G1 AO49 3V Complemenary MOSFET General Descripion AO49 uses advanced rench echnology o provide excellen R DS(ON) and low gae charge. This complemenary N and P channel MOSFET configuraion is ideal for low

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

Top View. Top View. V DS Gate-Source Voltage ±8 ±8 Continuous Drain Current Pulsed Drain Current C V GS I D -2.5 I DM P D 0.

Top View. Top View. V DS Gate-Source Voltage ±8 ±8 Continuous Drain Current Pulsed Drain Current C V GS I D -2.5 I DM P D 0. V Complemenary MOSFET General Descripion The AO664 combines advanced rench MOSFET echnology wih a low resisance package o provide exremely low R DS(ON). This device is ideal for load swich and baery proecion

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect H513 8-Channel Serial o Parallel Converer wih High olage Push-Pull s, POL, Hi-Z, and Shor Circui Deec Feaures HCMOS echnology Operaing oupu volage of 250 Low power level shifing from 5 o 250 Shif regiser

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

EEC 118 Lecture #15: Interconnect. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #15: Interconnect. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecure #15: Inerconnec Rajeevan Amiraraja Universiy of California, Davis Ouline Review and Finis: Low Power Design Inerconnec Effecs: Rabaey C. 4 and C. 9 (Kang & Leblebici, 6.5-6.6) Amiraraja,

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

ELG 2135 ELECTRONICS I SIXTH CHAPTER: DIGITAL CIRCUITS

ELG 2135 ELECTRONICS I SIXTH CHAPTER: DIGITAL CIRCUITS ELG 35 ELECTRONICS I SIXTH CHAPTER: DIGITAL CIRCUITS Session WINTER 003 Dr. M. YAGOUB Sixh Chaper: Digial Circuis VI - _ This las chaper is devoed o digial circuis and paricularly o MOS digial inegraed

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

S G V DS V GS Pulsed Drain Current B -15 Schottky reverse voltage Continuous Forward Current A F I DM V KA

S G V DS V GS Pulsed Drain Current B -15 Schottky reverse voltage Continuous Forward Current A F I DM V KA ON473 2V PChannel MOSFET wih Schoky Diode General Descripion The ON473 uses advanced rench echnology o provide excellen R DS(ON) and low gae charge. Schoky diode is provided o faciliae he implemenaion

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS of 8 Decoder/ Demuliplexer High Performance Silicon Gae CMOS The is idenical in pinou o he LS8. The device inpus are compaible wih sandard CMOS oupus; wih pullup resisors, hey are compaible wih LSTTL oupus.

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits Firs Order R and RL Transien ircuis Objecives To inroduce he ransiens phenomena. To analyze sep and naural responses of firs order R circuis. To analyze sep and naural responses of firs order RL circuis.

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

ECEN 610 Mixed-Signal Interfaces

ECEN 610 Mixed-Signal Interfaces ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 014 S. Hoyos-ECEN-610 1 Sample-and-Hold Spring 014 S. Hoyos-ECEN-610 ZOH vs. Track-and-Hold V(t)

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder Fundamenals of Power Elecronics Second ediion Rober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder Chaper 1: Inroducion 1.1. Inroducion o power processing 1.2. Some applicaions of power elecronics

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive

More information

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS A FAMIY OF THREE-EVE DC-DC CONVERTERS Anonio José Beno Boion, Ivo Barbi Federal Universiy of Sana Caarina - UFSC, Power Elecronics Insiue - INEP PO box 5119, ZIP code 88040-970, Florianópolis, SC, BRAZI

More information

Cosmic Feb 06, 2007 by Raja Reddy P

Cosmic Feb 06, 2007 by Raja Reddy P osmic ircuis@iisc, Feb 6, 7 by aja eddy P. ou() i() alculae ou(s)/(s). plo o(). calculae ime consan and pole frequency. ou ( e τ ) ou (s) ( s) Time consan (/) Pole frequency : ω p. i() n he above circui

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies Modeling he Overshooing Effec for CMOS Inverer in Nanomeer Technologies Zhangcai Huang, Hong Yu, Asushi Kurokawa and Yasuaki Inoue Graduae School of Informaion, Producion and Sysems, Waseda Universiy,

More information

Pattern Classification and NNet applications with memristive crossbar circuits. Fabien ALIBART D. Strukov s group, ECE-UCSB Now at IEMN-CNRS, France

Pattern Classification and NNet applications with memristive crossbar circuits. Fabien ALIBART D. Strukov s group, ECE-UCSB Now at IEMN-CNRS, France Paern Classificaion and NNe applicaions wih memrisive crossbar circuis Fabien ALIBART D. Srukov s group, ECE-UCSB Now a IEMN-CNRS, France Ouline Inroducion: Neural Nework wih memrisive devices Engineering

More information

SOTiny TM LVDS High-Speed Differential Line Receiver. Features. Description. Applications. Pinout. Logic Diagram. Function Table

SOTiny TM LVDS High-Speed Differential Line Receiver. Features. Description. Applications. Pinout. Logic Diagram. Function Table 67890678906789067890678906789067890678906789067890678906789067890 SOTiny TM LVDS High-Speed Differenial Line Receiver Feaures Mees or Exceeds he Requiremens of NSI TI/EI-6-99 Sandard Signaling raes up

More information

MC74HC165A. 8 Bit Serial or Parallel Input/ Serial Output Shift Register. High Performance Silicon Gate CMOS

MC74HC165A. 8 Bit Serial or Parallel Input/ Serial Output Shift Register. High Performance Silicon Gate CMOS MC74CA 8 Bi Serial or Parallel Inpu/ Serial Oupu Shif Regiser igh Performance Silicon Gae CMOS The MC74CA is idenical in pinou o he S. The device inpus are compaible wih sandard CMOS oupus; wih pullup

More information

Unified Control Strategy Covering CCM and DCM for a Synchronous Buck Converter

Unified Control Strategy Covering CCM and DCM for a Synchronous Buck Converter Unified Conrol Sraegy Covering CCM and DCM for a Synchronous Buck Converer Dirk Hirschmann, Sebasian Richer, Chrisian Dick, Rik W. De Doncker Insiue for Power Elecronics and Elecrical Drives RWTH Aachen

More information

V DS. 100% UIS Tested 100% R g Tested. Top View. Top View S2 G2

V DS. 100% UIS Tested 100% R g Tested. Top View. Top View S2 G2 3V Dual PChannel MOSFET General Descripion The AO483 uses advanced rench echnology o provide excellen R DS(ON) wih low gae charge. This device is suiable for use as a load swich or in PWM applicaions.

More information

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial

More information

Pulse Generators. Any of the following calculations may be asked in the midterms/exam.

Pulse Generators. Any of the following calculations may be asked in the midterms/exam. ulse Generaors ny of he following calculaions may be asked in he miderms/exam.. a) capacior of wha capaciance forms an RC circui of s ime consan wih a 0 MΩ resisor? b) Wha percenage of he iniial volage

More information

Phase Noise in CMOS Differential LC Oscillators

Phase Noise in CMOS Differential LC Oscillators Phase Noise in CMOS Differenial LC Oscillaors Ali Hajimiri Thomas H. Lee Sanford Universiy, Sanford, CA 94305 Ouline Inroducion and Definiions Tank Volage Noise Sources Effec of Tail Curren Source Measuremen

More information

7. Capacitors and Inductors

7. Capacitors and Inductors 7. Capaciors and Inducors 7. The Capacior The ideal capacior is a passive elemen wih circui symbol The curren-volage relaion is i=c dv where v and i saisfy he convenions for a passive elemen The capacior

More information

Optimized Stage Ratio of Tapered CMOS Inverters for Minimum Power and Mismatch Jitter Product

Optimized Stage Ratio of Tapered CMOS Inverters for Minimum Power and Mismatch Jitter Product 010 3rd Inernaional Conference on VLSI Design Opimized Sage Raio of Tapered CMOS Inverers for Minimum Power and Mismach Jier Produc R. Dua*, T. K Bhaacharyya*, X. Gao and E. A. M. Klumperink *E & ECE Deparmen,

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

Charge Steering: A Low-Power Design Paradigm

Charge Steering: A Low-Power Design Paradigm Charge Seering: A Low-Power esign Paradigm Behzad Razavi Elecrical Engineering eparmen Universiy of California, Los Angeles Absrac iscree-ime charge-seering circuis consume less power han heir coninuous-ime

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information