SECTION 3.1 SIMPLE LINEAR REGRESSION

Size: px
Start display at page:

Download "SECTION 3.1 SIMPLE LINEAR REGRESSION"

Transcription

1 ow that your calculus concepts are more or less fresh in your head, we start with a simple machine learning algorithm: linear regression. Those who ve used Microsoft Excel to build plots have certainly used linear regression when fitting a line onto their data. We ll start with a simple example using a single feature dataset. Recall that single feature means one variable. For example, using a variable gas-mileage to predict the price of a car. Or perhaps the square-footage of a house to predict its price. SECTIO 3. SIMPLE LIEAR REGRESSIO Linear regression is a statistical method used to model a linear relationship between a dependent variable and independent variables. Like I mentioned above, a dependent variable would be the price of a car. The independent variable would be the gas-mileage. ow, whether or not there exists any true hidden relationship is not important yet. It is up to us to fit a linear model the best we can and evaluate from there. [Table of Data] [Plot of Data] Recall the formula for the line of an equation: y = mx + b. Well, if we are doing a simple linear regression task, we have only one independent variable. When fitting a line onto a plot similar to Figure, think about which value you want to control in order to make the best fit. Well y and x in the line equation are simply variables that serve as input and output in our model, so those can t be optimized. What about m and b? Well m controls the slope, and b controls the y intercept. Maybe if we configure the slope and y-intercept to the right setting, we can get a decent fit. Well that is essentially what linear regression does. ow to generalize, we will replace m and b with w and w 0. Since we re building a model f(x) that takes in input x, we formulate our line equation as such: f x = w, x + w -. Great, now what? Well, we do have previous data we re fitting onto, and we want the best fit line to be close as possible to each point. This means for a particular data point (x,, y, ), we d want y, to be close as possible to the value of our model at that point, f(x, ). The residual, or error of our model at a particular point is then r / = y / f( ). As our model fits the data points better, our residuals across each data point should be minimized.

2 [ISERT PLOT] Hence, it goes without proving that we need to minimize the sum of the residuals, since they represent the total error of our model against the data (e.g. data points). Error = y, f x, + y f x + + y f x = y / f By averaging the error by the number of data points, we can achieve a mean error of our model. 78, Mean Error = 78, y / f The residual is squared in order to ensure positive error summation. There are actually other additional reasons why we square the residual that are discussed later on and in the practice problems. The entire quantity is divided by ½ for mathematically convenient reasons you ll see soon. Recall our discussion of mean squared error from Chapter 2. Mean Squared Error = 78, y / f We re not doing anything different here. ow we use the term min to denote a minimization operation. min y / f Well, and y / are the data points, so we can t modify those. is just the number of data points; it s also a constant. The only thing we can modify in our model are w and w 0. Since our model is parameterized by w and w 0, so is the error function, or sometimes called the cost function. We denote the cost function as J(w -, w, ), and our model as f, w -, w,. The minimization problem is rewritten and sufficiently defined as such: min H I,H J J(w -, w, ) = min H I,H J,.

3 The obvious strategy coming out of Chapter 2 is to use calculus. Taking the derivative of J(w -, w, ) can help us find the optimal values for w - and w, such that the cost function is minimized. otice, there are two parameters, the slope w, and the y-intercept w -, also known as the bias term. When we take derivative of a function, we do it with respect to one variable. Since we have two parameters to solve for, we will do KL(H I,H J ) first and then KL(H I,H J ) ; as an example KH J KH I exercise. Then since the derivative of a function is zero at its local/global minimum, we solve for KL(H I,H J ) and KL(H I,H J ). Since it s just basic derivatives and arithmetic, I ll leave it as an KH J KH J exercise problem at the end of the chapter. For each parameter we get the following values: J(w -, w, ) w, = w, = w, y / w, w - = y w / w, w -, = y / w, w - ( ) y / + w, + w - y / + y / + w, w, + + w - w - w, = y / w - J(w -, w, ) w - = w -

4 = w - y / w, w - = y w / w, w - - = y / w, w - y / w, w - y / y / w, w - = w, y / + w, w - w - w, = y / y / + w, [ISERT PLOT OF ERROR FUCITO I 2D TOPOLOGICAL ] And that s it! We ve found the best fit. Wait! Our task was to minimize, correct? How are we certain that we weren t solving for the maximum? The derivative of a function is zero at both a local maximum and local minimum. There is an another way to ensure we re dealing with a convex function that has a minimum versus a concave function with a maximum. That is, we take the second derivative! If the second derivative is positive, we re dealing with a convex shaped function and if the second derivative is negative, then it s concave shaped. So let s take the second derivative to verify we indeed found the minimum of the cost function. J(w -, w, ) w, = w,

5 J(w -, w, ) w, = = = w, w, y w / w, w - ( ), = > 0 J(w -, w, ) w - = w - J(w -, w, ) w - = = w - w - = w - y / w, w - ( ) = > 0 Since the second derivatives of the cost with respect to both parameters is strictly positive, the function is convex and the optimal parameter values minimize the error. But we re not done yet, how good is our model? What sort of metrics are there to evaluate our model? SECTIO 3.2 EXPLAIED VARAICE AD COEFFICIET OF DETERMIATIO One way to view (x, y) coordinates on a plot is to see that the y values vary from each other depending the x value paired with it in the data. Hence, finding the right linear regression model f(x) is to explain this variance in y. In statistics, variance quantifies the spread of a particular

6 variable from its average. The variance, often denoted as σ, is essentially the averaged sum of each value y / (i =.. ) from its mean, y: σ STSUV =, (y / y). It s the job of our model to explain the variance well. So how do we go about calculating the explained variance? Lucky for us, we know how to calculate the unexplained variance; it s just the mean squared error! (dropping the ½ for generalization and consistency) σ WXXTX = i=. y i f x i, w 0, w 2 Think about it. If the explained variance is how good the linear regression model explains the total variance σ, then the unexplained variance is how much the linear regression model fails to explain the data. The fraction of variance unexplained (FVU) is then simply: FVU = \ ` ]^^_^ \ `. a_abc It should go without proving that the fraction of variance explained is simply FVU. This value is commonly known as the coefficient of determination or R. This statistical measure is commonly used to determine the goodness of our regression fit. A R value of indicates our line fits the data perfectly. What would a R value of 0 indicate? (Q) SECTIO 3.3 MULTIPLE LIEAR REGRESSIO PREVIEW Before we gave an example of one feature variable regression problem: gas-mileage to predict car prices. In most problems, there are multiple features to factor in. This means our model isn t just a simple line anymore in which we need to find a slope and y-intercept. The previous problem worked out nicely to look like a y = mx + b line since we were dealing with just one feature variable. Say we re given data and want to predict a person s height. Features include: age, arm length, father s height, and mother s height. Our starting model could look something like this: f x = w, x ghi + w x gjk + w l x mgnoij + w p x kqnoij + w -. The bold x represents a feature vector (recall from Chapter ). The feature vector is essentially an array of our features stored in a (x) matrix given features. The mathematics from here

7 and onwards takes a bit of a leap. We will cover multiple linear regression as a special topic in the next chapter. With multiple features, the problem becomes multidimensional and requires us to utilize linear algebra for the first time. Chapter will lay out the foundations of linear algebra and probability necessary for the remainder of this text. [CH placed on hold, sorry L]

Regression, part II. I. What does it all mean? A) Notice that so far all we ve done is math.

Regression, part II. I. What does it all mean? A) Notice that so far all we ve done is math. Regression, part II I. What does it all mean? A) Notice that so far all we ve done is math. 1) One can calculate the Least Squares Regression Line for anything, regardless of any assumptions. 2) But, if

More information

HOLLOMAN S AP STATISTICS BVD CHAPTER 08, PAGE 1 OF 11. Figure 1 - Variation in the Response Variable

HOLLOMAN S AP STATISTICS BVD CHAPTER 08, PAGE 1 OF 11. Figure 1 - Variation in the Response Variable Chapter 08: Linear Regression There are lots of ways to model the relationships between variables. It is important that you not think that what we do is the way. There are many paths to the summit We are

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 17 Simple Linear Regression and Correlation 17.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module 2 Lecture 05 Linear Regression Good morning, welcome

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

Lecture 2: Linear regression

Lecture 2: Linear regression Lecture 2: Linear regression Roger Grosse 1 Introduction Let s ump right in and look at our first machine learning algorithm, linear regression. In regression, we are interested in predicting a scalar-valued

More information

22 Approximations - the method of least squares (1)

22 Approximations - the method of least squares (1) 22 Approximations - the method of least squares () Suppose that for some y, the equation Ax = y has no solutions It may happpen that this is an important problem and we can t just forget about it If we

More information

Ordinary Least Squares Linear Regression

Ordinary Least Squares Linear Regression Ordinary Least Squares Linear Regression Ryan P. Adams COS 324 Elements of Machine Learning Princeton University Linear regression is one of the simplest and most fundamental modeling ideas in statistics

More information

Least Mean Squares Regression. Machine Learning Fall 2018

Least Mean Squares Regression. Machine Learning Fall 2018 Least Mean Squares Regression Machine Learning Fall 2018 1 Where are we? Least Squares Method for regression Examples The LMS objective Gradient descent Incremental/stochastic gradient descent Exercises

More information

Error Functions & Linear Regression (1)

Error Functions & Linear Regression (1) Error Functions & Linear Regression (1) John Kelleher & Brian Mac Namee Machine Learning @ DIT Overview 1 Introduction Overview 2 Univariate Linear Regression Linear Regression Analytical Solution Gradient

More information

Least Mean Squares Regression

Least Mean Squares Regression Least Mean Squares Regression Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture Overview Linear classifiers What functions do linear classifiers express? Least Squares Method

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Bayesian Linear Regression [DRAFT - In Progress]

Bayesian Linear Regression [DRAFT - In Progress] Bayesian Linear Regression [DRAFT - In Progress] David S. Rosenberg Abstract Here we develop some basics of Bayesian linear regression. Most of the calculations for this document come from the basic theory

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

Testing a Hash Function using Probability

Testing a Hash Function using Probability Testing a Hash Function using Probability Suppose you have a huge square turnip field with 1000 turnips growing in it. They are all perfectly evenly spaced in a regular pattern. Suppose also that the Germans

More information

ES-2 Lecture: More Least-squares Fitting. Spring 2017

ES-2 Lecture: More Least-squares Fitting. Spring 2017 ES-2 Lecture: More Least-squares Fitting Spring 2017 Outline Quick review of least-squares line fitting (also called `linear regression ) How can we find the best-fit line? (Brute-force method is not efficient)

More information

Approximations - the method of least squares (1)

Approximations - the method of least squares (1) Approximations - the method of least squares () In many applications, we have to consider the following problem: Suppose that for some y, the equation Ax = y has no solutions It could be that this is an

More information

BIOSTATISTICS NURS 3324

BIOSTATISTICS NURS 3324 Simple Linear Regression and Correlation Introduction Previously, our attention has been focused on one variable which we designated by x. Frequently, it is desirable to learn something about the relationship

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations 4 The Cartesian Coordinate System- Pictures of Equations Concepts: The Cartesian Coordinate System Graphs of Equations in Two Variables x-intercepts and y-intercepts Distance in Two Dimensions and the

More information

Linear Regression. Udacity

Linear Regression. Udacity Linear Regression Udacity What is a Linear Equation? Equation of a line : y = mx+b, wherem is the slope of the line and (0,b)isthey-intercept. Notice that the degree of this equation is 1. In higher dimensions

More information

Vectors and their uses

Vectors and their uses Vectors and their uses Sharon Goldwater Institute for Language, Cognition and Computation School of Informatics, University of Edinburgh DRAFT Version 0.95: 3 Sep 2015. Do not redistribute without permission.

More information

Lecture 4: Training a Classifier

Lecture 4: Training a Classifier Lecture 4: Training a Classifier Roger Grosse 1 Introduction Now that we ve defined what binary classification is, let s actually train a classifier. We ll approach this problem in much the same way as

More information

Lecture 4: Training a Classifier

Lecture 4: Training a Classifier Lecture 4: Training a Classifier Roger Grosse 1 Introduction Now that we ve defined what binary classification is, let s actually train a classifier. We ll approach this problem in much the same way as

More information

6 Multiple regression

6 Multiple regression 6 Multiple regression From lines to planes Linear regression, as we ve learned, is a powerful tool for finding patterns in data. So far, we ve only considered models that involve a single numerical predictor,

More information

Lecture 20: Further graphing

Lecture 20: Further graphing Lecture 20: Further graphing Nathan Pflueger 25 October 2013 1 Introduction This lecture does not introduce any new material. We revisit the techniques from lecture 12, which give ways to determine the

More information

17 Neural Networks NEURAL NETWORKS. x XOR 1. x Jonathan Richard Shewchuk

17 Neural Networks NEURAL NETWORKS. x XOR 1. x Jonathan Richard Shewchuk 94 Jonathan Richard Shewchuk 7 Neural Networks NEURAL NETWORKS Can do both classification & regression. [They tie together several ideas from the course: perceptrons, logistic regression, ensembles of

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

Fitting a Straight Line to Data

Fitting a Straight Line to Data Fitting a Straight Line to Data Thanks for your patience. Finally we ll take a shot at real data! The data set in question is baryonic Tully-Fisher data from http://astroweb.cwru.edu/sparc/btfr Lelli2016a.mrt,

More information

Linear Classifiers and the Perceptron

Linear Classifiers and the Perceptron Linear Classifiers and the Perceptron William Cohen February 4, 2008 1 Linear classifiers Let s assume that every instance is an n-dimensional vector of real numbers x R n, and there are only two possible

More information

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning Mark Schmidt University of British Columbia, May 2016 www.cs.ubc.ca/~schmidtm/svan16 Some images from this lecture are

More information

Math 101: Course Summary

Math 101: Course Summary Math 101: Course Summary Rich Schwartz August 22, 2009 General Information: Math 101 is a first course in real analysis. The main purpose of this class is to introduce real analysis, and a secondary purpose

More information

Higher-Order Equations: Extending First-Order Concepts

Higher-Order Equations: Extending First-Order Concepts 11 Higher-Order Equations: Extending First-Order Concepts Let us switch our attention from first-order differential equations to differential equations of order two or higher. Our main interest will be

More information

Lesson 3-1: Solving Linear Systems by Graphing

Lesson 3-1: Solving Linear Systems by Graphing For the past several weeks we ve been working with linear equations. We ve learned how to graph them and the three main forms they can take. Today we re going to begin considering what happens when we

More information

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 39 Regression Analysis Hello and welcome to the course on Biostatistics

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Graphing. y m = cx n (3) where c is constant. What was true about Equation 2 is applicable here; the ratio. y m x n. = c

Graphing. y m = cx n (3) where c is constant. What was true about Equation 2 is applicable here; the ratio. y m x n. = c Graphing Theory At its most basic, physics is nothing more than the mathematical relationships that have been found to exist between different physical quantities. It is important that you be able to identify

More information

Discrete Structures Proofwriting Checklist

Discrete Structures Proofwriting Checklist CS103 Winter 2019 Discrete Structures Proofwriting Checklist Cynthia Lee Keith Schwarz Now that we re transitioning to writing proofs about discrete structures like binary relations, functions, and graphs,

More information

The symmetric group R + :1! 2! 3! 1. R :1! 3! 2! 1.

The symmetric group R + :1! 2! 3! 1. R :1! 3! 2! 1. Chapter 2 The symmetric group Consider the equilateral triangle. 3 1 2 We want to describe all the symmetries, which are the motions (both rotations and flips) which takes the triangle to itself. First

More information

Chapter 0: Some basic preliminaries

Chapter 0: Some basic preliminaries Chapter 0: Some basic preliminaries 0.1 Introduction Unfortunately, I will tend to use some simple common and interchangeable terms that you ll all have heard of but perhaps you don t really know or cannot

More information

f(x) x

f(x) x 2 Function 2.1 Function notation The equation f(x) = x 2 + 3 defines a function f from the set R of real numbers to itself (written f : R R). This function accepts an input value x and returns an output

More information

Block 3. Introduction to Regression Analysis

Block 3. Introduction to Regression Analysis Block 3 Introduction to Regression Analysis Block 3 Introduction to Regression Analysis Overview Introduction In this block, we will discuss: The equation of a straight line. Linear Regression Variation

More information

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013 Lecture 11: Extrema Nathan Pflueger 2 October 201 1 Introduction In this lecture we begin to consider the notion of extrema of functions on chosen intervals. This discussion will continue in the lectures

More information

Supplement for MAA 3200, Prof S Hudson, Fall 2018 Constructing Number Systems

Supplement for MAA 3200, Prof S Hudson, Fall 2018 Constructing Number Systems Supplement for MAA 3200, Prof S Hudson, Fall 2018 Constructing Number Systems A major goal of this course is to construct the number systems N, Z and Q, and especially the real numbers R, which play such

More information

Describing the Relationship between Two Variables

Describing the Relationship between Two Variables 1 Describing the Relationship between Two Variables Key Definitions Scatter : A graph made to show the relationship between two different variables (each pair of x s and y s) measured from the same equation.

More information

Descriptive Statistics (And a little bit on rounding and significant digits)

Descriptive Statistics (And a little bit on rounding and significant digits) Descriptive Statistics (And a little bit on rounding and significant digits) Now that we know what our data look like, we d like to be able to describe it numerically. In other words, how can we represent

More information

Error Correcting Codes Prof. Dr. P Vijay Kumar Department of Electrical Communication Engineering Indian Institute of Science, Bangalore

Error Correcting Codes Prof. Dr. P Vijay Kumar Department of Electrical Communication Engineering Indian Institute of Science, Bangalore (Refer Slide Time: 00:54) Error Correcting Codes Prof. Dr. P Vijay Kumar Department of Electrical Communication Engineering Indian Institute of Science, Bangalore Lecture No. # 05 Cosets, Rings & Fields

More information

Univariate analysis. Simple and Multiple Regression. Univariate analysis. Simple Regression How best to summarise the data?

Univariate analysis. Simple and Multiple Regression. Univariate analysis. Simple Regression How best to summarise the data? Univariate analysis Example - linear regression equation: y = ax + c Least squares criteria ( yobs ycalc ) = yobs ( ax + c) = minimum Simple and + = xa xc xy xa + nc = y Solve for a and c Univariate analysis

More information

Principal components

Principal components Principal components Principal components is a general analysis technique that has some application within regression, but has a much wider use as well. Technical Stuff We have yet to define the term covariance,

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

Chapter 3. Introduction to Linear Correlation and Regression Part 3

Chapter 3. Introduction to Linear Correlation and Regression Part 3 Tuesday, December 12, 2000 Ch3 Intro Correlation Pt 3 Page: 1 Richard Lowry, 1999-2000 All rights reserved. Chapter 3. Introduction to Linear Correlation and Regression Part 3 Regression The appearance

More information

Table of contents. Jakayla Robbins & Beth Kelly (UK) Precalculus Notes Fall / 53

Table of contents. Jakayla Robbins & Beth Kelly (UK) Precalculus Notes Fall / 53 Table of contents The Cartesian Coordinate System - Pictures of Equations Your Personal Review Graphs of Equations with Two Variables Distance Equations of Circles Midpoints Quantifying the Steepness of

More information

Understanding Exponents Eric Rasmusen September 18, 2018

Understanding Exponents Eric Rasmusen September 18, 2018 Understanding Exponents Eric Rasmusen September 18, 2018 These notes are rather long, but mathematics often has the perverse feature that if someone writes a long explanation, the reader can read it much

More information

1 Review of the dot product

1 Review of the dot product Any typographical or other corrections about these notes are welcome. Review of the dot product The dot product on R n is an operation that takes two vectors and returns a number. It is defined by n u

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16 60.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 0/3/6 6. Introduction We talked a lot the last lecture about greedy algorithms. While both Prim

More information

Nonlinear Programming (NLP)

Nonlinear Programming (NLP) Natalia Lazzati Mathematics for Economics (Part I) Note 6: Nonlinear Programming - Unconstrained Optimization Note 6 is based on de la Fuente (2000, Ch. 7), Madden (1986, Ch. 3 and 5) and Simon and Blume

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

Linear Regression Linear Least Squares

Linear Regression Linear Least Squares Linear Regression Linear Least Squares ME 120 Notes Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@me.pdx.edu ME120: Linear Regression Introduction Introduction

More information

Calculus with Analytic Geometry I Exam 8 Take Home Part.

Calculus with Analytic Geometry I Exam 8 Take Home Part. Calculus with Analytic Geometry I Exam 8 Take Home Part. INSTRUCTIONS: SHOW ALL WORK. Write clearly, using full sentences. Use equal signs appropriately; don t use them between quantities that are not

More information

At the start of the term, we saw the following formula for computing the sum of the first n integers:

At the start of the term, we saw the following formula for computing the sum of the first n integers: Chapter 11 Induction This chapter covers mathematical induction. 11.1 Introduction to induction At the start of the term, we saw the following formula for computing the sum of the first n integers: Claim

More information

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc.

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc. Chapter 8 Linear Regression Copyright 2010 Pearson Education, Inc. Fat Versus Protein: An Example The following is a scatterplot of total fat versus protein for 30 items on the Burger King menu: Copyright

More information

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression Chapter 12 12-1 North Seattle Community College BUS21 Business Statistics Chapter 12 Learning Objectives In this chapter, you learn:! How to use regression analysis to predict the value of a dependent

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Basic Probability Reference Sheet

Basic Probability Reference Sheet February 27, 2001 Basic Probability Reference Sheet 17.846, 2001 This is intended to be used in addition to, not as a substitute for, a textbook. X is a random variable. This means that X is a variable

More information

Ch 7: Dummy (binary, indicator) variables

Ch 7: Dummy (binary, indicator) variables Ch 7: Dummy (binary, indicator) variables :Examples Dummy variable are used to indicate the presence or absence of a characteristic. For example, define female i 1 if obs i is female 0 otherwise or male

More information

Lecture 11: Linear Regression

Lecture 11: Linear Regression Lecture 11: Linear Regression Background Suppose we have an independent variable x (time for example). And, we have some other variable y, and we want to ask how the variable y depends on x (maybe y are

More information

Calculus: What is a Limit? (understanding epislon-delta proofs)

Calculus: What is a Limit? (understanding epislon-delta proofs) Calculus: What is a Limit? (understanding epislon-delta proofs) Here is the definition of a limit: Suppose f is a function. We say that Lim aa ff() = LL if for every εε > 0 there is a δδ > 0 so that if

More information

Answers for Ch. 6 Review: Applications of the Integral

Answers for Ch. 6 Review: Applications of the Integral Answers for Ch. 6 Review: Applications of the Integral. The formula for the average value of a function, which you must have stored in your magical mathematical brain, is b b a f d. a d / / 8 6 6 ( 8 )

More information

MATH 1130 Exam 1 Review Sheet

MATH 1130 Exam 1 Review Sheet MATH 1130 Exam 1 Review Sheet The Cartesian Coordinate Plane The Cartesian Coordinate Plane is a visual representation of the collection of all ordered pairs (x, y) where x and y are real numbers. This

More information

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors Roberto s Notes on Linear Algebra Chapter 0: Eigenvalues and diagonalization Section Eigenvalues and eigenvectors What you need to know already: Basic properties of linear transformations. Linear systems

More information

Business Statistics. Lecture 9: Simple Regression

Business Statistics. Lecture 9: Simple Regression Business Statistics Lecture 9: Simple Regression 1 On to Model Building! Up to now, class was about descriptive and inferential statistics Numerical and graphical summaries of data Confidence intervals

More information

1. Create a scatterplot of this data. 2. Find the correlation coefficient.

1. Create a scatterplot of this data. 2. Find the correlation coefficient. How Fast Foods Compare Company Entree Total Calories Fat (grams) McDonald s Big Mac 540 29 Filet o Fish 380 18 Burger King Whopper 670 40 Big Fish Sandwich 640 32 Wendy s Single Burger 470 21 1. Create

More information

Chapter 19 Sir Migo Mendoza

Chapter 19 Sir Migo Mendoza The Linear Regression Chapter 19 Sir Migo Mendoza Linear Regression and the Line of Best Fit Lesson 19.1 Sir Migo Mendoza Question: Once we have a Linear Relationship, what can we do with it? Something

More information

Linear Regression. Chapter 3

Linear Regression. Chapter 3 Chapter 3 Linear Regression Once we ve acquired data with multiple variables, one very important question is how the variables are related. For example, we could ask for the relationship between people

More information

Correlation and Regression

Correlation and Regression Correlation and Regression 8 9 Copyright Cengage Learning. All rights reserved. Section 9.2 Linear Regression and the Coefficient of Determination Copyright Cengage Learning. All rights reserved. Focus

More information

Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section and

Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section and Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section 2.1.1 and 8.1-8.2.6 Overview Scatterplots Explanatory and Response Variables Describing Association The Regression Equation

More information

Basic Definitions: Indexed Collections and Random Functions

Basic Definitions: Indexed Collections and Random Functions Chapter 1 Basic Definitions: Indexed Collections and Random Functions Section 1.1 introduces stochastic processes as indexed collections of random variables. Section 1.2 builds the necessary machinery

More information

CS173 Strong Induction and Functions. Tandy Warnow

CS173 Strong Induction and Functions. Tandy Warnow CS173 Strong Induction and Functions Tandy Warnow CS 173 Introduction to Strong Induction (also Functions) Tandy Warnow Preview of the class today What are functions? Weak induction Strong induction A

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

CSC321 Lecture 2: Linear Regression

CSC321 Lecture 2: Linear Regression CSC32 Lecture 2: Linear Regression Roger Grosse Roger Grosse CSC32 Lecture 2: Linear Regression / 26 Overview First learning algorithm of the course: linear regression Task: predict scalar-valued targets,

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

Evolution of quantitative traits

Evolution of quantitative traits Evolution of quantitative traits Introduction Let s stop and review quickly where we ve come and where we re going We started our survey of quantitative genetics by pointing out that our objective was

More information

The General Linear Model. How we re approaching the GLM. What you ll get out of this 8/11/16

The General Linear Model. How we re approaching the GLM. What you ll get out of this 8/11/16 8// The General Linear Model Monday, Lecture Jeanette Mumford University of Wisconsin - Madison How we re approaching the GLM Regression for behavioral data Without using matrices Understand least squares

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

Sequences & Functions

Sequences & Functions Ch. 5 Sec. 1 Sequences & Functions Skip Counting to Arithmetic Sequences When you skipped counted as a child, you were introduced to arithmetic sequences. Example 1: 2, 4, 6, 8, adding 2 Example 2: 10,

More information

Confidence Intervals

Confidence Intervals Quantitative Foundations Project 3 Instructor: Linwei Wang Confidence Intervals Contents 1 Introduction 3 1.1 Warning....................................... 3 1.2 Goals of Statistics..................................

More information

The Multivariate Gaussian Distribution [DRAFT]

The Multivariate Gaussian Distribution [DRAFT] The Multivariate Gaussian Distribution DRAFT David S. Rosenberg Abstract This is a collection of a few key and standard results about multivariate Gaussian distributions. I have not included many proofs,

More information

( )! ±" and g( x)! ±" ], or ( )! 0 ] as x! c, x! c, x! c, or x! ±". If f!(x) g!(x) "!,

( )! ± and g( x)! ± ], or ( )! 0 ] as x! c, x! c, x! c, or x! ±. If f!(x) g!(x) !, IV. MORE CALCULUS There are some miscellaneous calculus topics to cover today. Though limits have come up a couple of times, I assumed prior knowledge, or at least that the idea makes sense. Limits are

More information

SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS

SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS (Chapter 9: Discrete Math) 9.11 SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS PART A: WHAT IS AN ARITHMETIC SEQUENCE? The following appears to be an example of an arithmetic (stress on the me ) sequence:

More information

We will now find the one line that best fits the data on a scatter plot.

We will now find the one line that best fits the data on a scatter plot. General Education Statistics Class Notes Least-Squares Regression (Section 4.2) We will now find the one line that best fits the data on a scatter plot. We have seen how two variables can be correlated

More information

An introduction to plotting data

An introduction to plotting data An introduction to plotting data Eric D. Black California Institute of Technology v2.0 1 Introduction Plotting data is one of the essential skills every scientist must have. We use it on a near-daily basis

More information

INFINITE SUMS. In this chapter, let s take that power to infinity! And it will be equally natural and straightforward.

INFINITE SUMS. In this chapter, let s take that power to infinity! And it will be equally natural and straightforward. EXPLODING DOTS CHAPTER 7 INFINITE SUMS In the previous chapter we played with the machine and saw the power of that machine to make advanced school algebra so natural and straightforward. In this chapter,

More information