Chapter 31: Current & Resistance & Simple Circuits

Size: px
Start display at page:

Download "Chapter 31: Current & Resistance & Simple Circuits"

Transcription

1 Chapter 31: Current & Resistance & Simple Circuits

2 Simple Single Loop Circuits J E V = IR

3 What makes the wires Glow?

4 Electrical Power As the charge moves through the resistor the system loses this electric potential energy during collisions of the electrons with the atoms of the resistor This energy is transformed into internal energy in the resistor as increased vibrational motion of the atoms in the resistor The resistor emits thermal radiation which can make it glow. U q V du dq V dq P V I V dt dt dt P I V

5 POWER P P I V Energy J time s Watt P I V I( IR) I R 2 V P I V V R V R 2 You pay for ENERGY not for ELECTRONS! Kilowatt-hour is the energy consumed in one hour: [kwh]=j NOT TIME! Power x Time

6 QUESTION The voltage and power on a light bulb read 120 V, 60 W How much current will flow through the bulb? USE: P = I V I = P/ V = 60 W/120 V = 1/2 Amp

7 QUESTION The power and voltage on a light bulb read 120 V, 60 W What is the resistance of the filament? (I =.5 A) Hint: USE OHMS LAW: V = IR R = V/I = 120 V/.5 A = 240

8 QUESTION The power rating for two light bulbs read 30W and 60W. Which bulb has the greatest resistance at 120V? 2 2 P V / R R V / P R V W 2 (120 ) / R V W 2 (120 ) / RULE: THE MORE POWER DISSIPATED IN A BULB, THE BRIGHTER IT IS, the LESS Resistance and greater current! P= IV!

9 Quick Quiz For the two lightbulbs shown in this figure, WHICH BULB BURNS BRIGTHEST? rank the current values at the points, from greatest to least. I a = I b > I c = I d > I e = I f. The 60 W bulb has the lowest resistance and therefore draws the most current and burns brightest!

10 Series Circuits The current is the same in each device. The equivalent resistance of the circuit is the sum of the individual resistances. Parallel Circuits The voltage of each device is the full voltage of the EMF source (the battery) The total current is divided between each path: R R R total 1 2 R R R total 1 2

11 Series Circuits The current is the same in each device. The equivalent resistance of the circuit is the sum of the individual resistances. R=R 1 +R 2 V V + V, I I I V total IR total I( R + R ) IR + IR V + V R R R S 1 2

12 Series Circuits The current is the same in each device. The equivalent resistance of the circuit is the sum of the individual resistances. R=R 1 +R 2 V V + V, R R R R S To find the current, use the total voltage and equivalent resistance: I V R S

13 Circuits Problem:3 Bulbs in Series If one more bulb is added to each circuit (3 bulbs total), how does the brightness of the bulbs change? Or not? In the series circuit, the bulbs DIM. WHY? V V1 V2 V3 In series, each of the three equal bulbs gets one third of the Voltage (V/3) that a single bulb would get. P 2 2 V /3 1 V P R R 9 R 9 V 2 singlebulb Note: P=VI but I is due to the equivalent Resistance: I = V/R s =V/3R So the Current through each is 1/3 the current through a single bulb and P=VI=V/3 x I/3 = VI/9 = P/9. The bulbs burn 1/9 as bright!

14 Parallel Circuits The voltage of each device is the full voltage of the EMF source (the battery) The total current is divided between each path: V V 1 1 V I I1 I2 V ( ) R R R R R Equivalent Resistance: R R R R P P

15 Circuits Problem:3 Bulbs in Parallel If one more bulb is added to each circuit (3 bulbs total), how does the brightness of the bulbs change? Or not? In the parallel circuit, the bulbs DO NOT DIM. WHY? In parallel, each of the three equal bulbs gets the full voltage of the battery source. P V R 2 P singlebulb Is this getting something for nothing? NO! Parallel circuits drain the battery faster!

16 Parallel Circuits As the number of branches is increased, the overall resistance of the circuit is DECREASED. Overall resistance is lowered with each added path between any two points of the circuit. This means the overall resistance of the circuit is less than the resistance of any one of the branches!!!! (Weird?) As overall resistance is lowered, more current is drawn. This is how you blow fuses!

17 Circuits Problem:Bulbs in Series vs Parallel A circuit contains a 48-V battery and two 240 light bulbs. In which circuit does each bulb burn brighter? RULE: THE MORE POWER DISSIPATED IN A BULB, THE BRIGHTER IT IS. P IV Find the power in each bulb when in series and in parallel.

18 Circuits Problem:Bulbs in Series vs Parallel In Series: The Voltage is divided in series: each bulb gets half: V = 24V. 2 2 V V (24 V ) P IV V 2.4W R R 240 In Parallel: Voltage is the same in each bulb: 48V. P 2 2 V (48 V) R W Parallel Bulbs Burn Brighter!

19 Circuits Problem:Bulbs in Series vs Parallel If a bulb burns out - what happens to the other bulb in each circuit? Does it go out? Is it brighter? Dimmer? Or? In the series circuit, the burned out bulb will short the circuit and the other bulb will go out. In the parallel circuit the other bulb will have the same brightness.

20 QuickCheck The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the bulbs. A. A B C. B. A C B. C. A B C. D. A B C. E. A B C. Slide 31-84

21 QuickCheck The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the bulbs. A. A B C. B. A C B. C. A B C. D. A B C. E. A B C. Slide 31-85

22 QuickCheck The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the bulbs. A. A B C. B. A C B. C. A B C. D. A B C. E. A B C. Slide 31-86

23 QuickCheck The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the bulbs. A. A B C. B. A C B. C. A B C. D. A B C. E. A B C. Slide 31-87

24 Find Everything V 15.0V, R 10.0, R 20.0, R 30.0, 1 2 2

25 Single Loops: When a circuit can be reduced to one equivalent Resister. Reduce and Use Ohm s Law For the circuit shown, find the equivalent resistance of the circuit, the total current drawn by the battery, and the current through and the potential difference across each resistor. Place your results in a table for ease of reading. 6.0

26 Multi-Loop Circuits When resistors are connected so that the circuits formed cannot be reduced to a single equivalent resistor you can use two rules, called Kirchhoff s rules, to solve the problem by generating systems of equations to find the unknowns!!

27 German physicist Worked with Robert Bunsen They Gustav Kirchhoff Invented the spectroscope and founded the science of spectroscopy Discovered the elements cesium and rubidium Invented astronomical spectroscopy

28 Kirchhoff s Rules for Spectra: 1859 German physicist who developed the spectroscope and the science of emission spectroscopy with Bunsen. Kirkoff Bunsen * Rule 1 : A hot and opaque solid, liquid or highly compressed gas emits a continuous spectrum. * Rule 2 : A hot, transparent gas produces an emission spectrum with bright lines. * Rule 3 : If a continuous spectrum passes through a gas at a lower temperature, the transparent cooler gas generates dark absorption lines.

29 Kirchhoff s Rules Equations In order to solve a particular circuit problem, the number of independent equations you need to obtain from the two rules equals the number of unknown currents Any capacitor acts as an open branch in a circuit The current in the branch containing the capacitor is zero under steady-state conditions

30 Kirchhoff s Junction Rule Junction Rule The sum of the currents at any junction must equal zero Currents directed into the junction are entered into the -equation as +I and those leaving as -I A statement of Conservation of Charge Mathematically, junction I 0

31 Kirchhoff s Loop Rule Loop Rule The sum of the potential differences across all elements around any closed circuit loop must be zero A statement of Conservation of Energy Mathematically, V closed loop 0

32 Using the Loop Rule Traveling around the loop from a to b In (a), the resistor is traversed in the direction of the current, the potential across the resistor is IR In (b), the resistor is traversed in the direction opposite of the current, the potential across the resistor is is + IR

33 Loop Rule: Polarity In (c), the source of emf is traversed in the direction of the emf (from to +), and the change in the electric potential is +ε Discharging I In (d), the source of emf is traversed in the direction opposite of the emf (from + to -), and the change in the electric potential is ε which means you are CHARGING the battery! I Charging

34 Kirchhoff s Rules Junction Rule: junction Loop Rule: I 0 V closed loop 0 First use junction rule and assign values to the current - guess the directions! Then use the loop rule CONSISTENTLY (e.g. Clockwise) on each loop. Any capacitor acts as an open branch in a circuit once under steady state conditions

35 Single Circuit: Multiple Batts What is the direction of current? If you choose wrong Current Directions you get negative currents. It still works out but try to pick the correct direction! I The 12 V WINS! When polarities of the batteries are opposed, one gets CHARGED.

36 Multiple Loop Circuit How Many Currents? If you choose wrong Current Directions you get negative currents. It still works out but try to pick the correct direction! I 1 I 2 I 1 I 3 I 3

37 QuickCheck 31.4 The current through the 3 resistor is A. 9 A. B. 6 A. C. 5 A. D. 3 A. E. 1 A. Slide 31-34

38 QuickCheck 31.4 The current through the 3 resistor is A. 9 A. B. 6 A. C. 5 A. D. 3 A. E. 1 A. Slide 31-35

39 Kirchhoff Problem

40 What is the current in the resistors?

41 Many-Loop Many Equations! You can solve systems of equations with simple algebra or by using linear algebra (Cramer s Rule) but I can t teach you that! I ve put a document on the website if you want to teach yourself. BUT YOU DON T NEED TO! Algebra will work and I won t put a circuit with more than two loops on the exam! Also, you calculator can solve systems of equations!

42

43 Which Circuit(s) Requires Kirchoff? Rank net Power Supply Figure P28-50, p. 824

44 Voltage in a single-resistor circuit with an Ideal 1.5 Volt battery

45 Electromotive Force: EMF e = V+ Ir The emf e is the voltage labeled on the battery. It is greater than the terminal voltage. V=IR The actual potential difference V between the terminals of the battery depends on the current in the circuit and the internal resistance of the battery: V = e Ir If the internal resistance of the battery is zero, the terminal voltage equals the emf : V = e R is the load resistance: V = IR

46 Power with real batts The total power output of the battery is I V Ie This power is delivered to the external resistor (I 2 R) and to the internal resistor (I 2 r) is maximum when R = r!! (see nice proof in text) I 2 R I 2 r

47

48 HW: What is the emf and internal resistance of the battery?

49 Next Time: RC Circuits: Charging The capacitor continues to charge until it reaches its maximum charge (Q = Cε). Once the capacitor is fully charged, the current in the circuit is zero and the The potential difference across the capacitor matches that supplied by the battery.

50 RC Simulator

51 RC Circuit: Charging The charge on the capacitor varies with time q(t) = Ce(1 e -t/rc ) = Q(1 e -t/rc ) t is the time constant t = RC The current through R is: ε t RC I( t) e R The time constant t has units of time represents the time required for the charge to increase from zero to 63.2% of its maximum The energy stored in the charged capacitor is ½ Qe = ½ Ce 2

52 RC Circuit: Charging t RC Qt ( ) εc( 1 e ) t RC Capacitor: VC ( t ) V0 ( 1 e ) C C Resistor: ε VR ( t ) I( t ) R R e εe V 0 e R t RC t RC t RC

53 Charging an RC Circuit

54 Discharging

55 An RC Problem The switch in the figure has been in position a for a long time. It is changed to position b at t = 0s. What are the charge on the capacitor and the current I through the resistor a)immediately after the switch is closed? b)what is the time constant t? c)at t = 50 s? d)at t = 200 s?

56 RC Circuit Charging q(t) = Q(1 e -t/rc ) I( t) ε R e t RC

57 HO RC Problem

58 Discharging a Capacitor in an RC Circuit When a charged capacitor is placed in the circuit, it can be discharged q = Qe -t/rc The charge decreases exponentiallyat t = t = RC, the charge decreases to Q max In other words, in one time constant, the capacitor loses 63.2% of its initial charge The current is: I t dq dt Q RC e t RC

59 QuickCheck What does the voltmeter read? A. 6 V. B. 3 V. C. 2 V. D. Some other value. E. Nothing because this will fry the meter. Slide 31-91

60 QuickCheck What does the voltmeter read? A. 6 V. B. 3 V. C. 2 V. D. Some other value. E. Nothing because this will fry the meter. Slide 31-92

61 QuickCheck What does the ammeter read? A. 6 A. B. 3 A. C. 2 A. D. Some other value. E. Nothing because this will fry the meter. Slide 31-93

62 QuickCheck What does the ammeter read? A. 6 A. B. 3 A. C. 2 A. D. Some other value. E. Nothing because this will fry the meter. Slide 31-94

63

64 Current: Dead or Alive DEATH: NEUROLOGIC CRITERIA: An individual with irreversible cessation of all brain function, including the brain stem, is dead. CARDIOPULMONARY CRITERIA: An individual with irreversible cessation of circulatory and respiratory function is dead.

65 Electric Shock What causes electric Shock in the human body, Voltage or Current? Electric Shock occurs when current is produced in the body, which is caused by an impressed voltage. Voltage is the CAUSE Current does the DAMAGE

66 Electric Shock Current (A) Effect Can be felt Painful Causes involuntary muscle spasms Causes loss of muscle control If through heart, serious! If current lasts for 1 s - FATAL! Dry Skin Body Resistance: 500,000 Wet Skin Body Resistance: 1000

67 Electric Shock Therapy ELECTRO CONVULSIVE THERAPY An electric shock is applied to produce a convulsive seizure. The shock is typically between volts and lasts between 0.5 and 1 seconds. No explanation of how it works. Used in the treatment of: 1.Chronic endogenous depression 2.Bipolar disorder. 3.Acute mania. 4.Certain types of schizophrenia In the U.S. 33,000-50,000 people receive ECT each year

68 Question What current would you draw if you were unfortunate to short-circuit a 120 V line with dry hands? Wet hands? Dry Skin Body Resistance: 500,000 Wet Skin Body Resistance: 1000 DRY: I = V/R = 120 V/500,000 = (live!) WET: I = V/R = 120 V/1000 =.12 (dead!)

69 Electrical equipment manufacturers use electrical cords that have a third wire, called a ground This safety ground normally carries no current and is both grounded and connected to the appliance Ground Wire

70 Ground-Fault Interrupters (GFI) Special power outlets Used in hazardous areas Designed to protect people from electrical shock Senses currents (< 5 ma) leaking to ground Quickly shuts off the current when above this level

71 Is AC Deadlier than DC? Low frequency (50-60 Hz) AC currents can be more dangerous than similar levels of DC current since the alternating fluctuations can cause the heart to lose coordination, inducing ventricular fibrillation, which then rapidly leads to death. High voltage DC power can be more dangerous than AC, however, since it tends to cause muscles to lock in position, stopping the victim from releasing the energized conductor once grasped. Frequency MATTERS.

72 Is AC Deadlier than DC? They are BOTH Deadly! Any practical distribution system will use voltage levels quite sufficient for a dangerous amount of current to flow, whether it uses alternating or direct current. Ultimately, the advantages of AC power transmission outweighed this theoretical risk, and it was eventually adopted as the standard worldwide after Nikola Tesla designed the first AC hydroelectric power plant at Niagara Falls, New York which started producing electrical power in 1895.

73 War of Currents 1880 s Thomas Edison, American inventor and businessman, pushed for the development of a DC power network. George Westinghouse, American entrepreneur and engineer, backed financially the development of a practical AC power network. Nikola Tesla, Serbian inventor, physicist, and electro-mechanical engineer, was instrumental in developing AC networks.

74 Edison's Publicity Campaign Edison wired NYC with DC. He carried out a campaign to discourage the use of AC, including spreading information on fatal AC accidents, killing animals, and lobbying against the use of AC in state legislatures. Edison opposed capital punishment, but his desire to disparage the system of alternating current led to the invention of the electric chair. Harold P. Brown, who was at this time being secretly paid by Edison, constructed the first electric chair for the state of New York in order to promote the idea that alternating current was deadlier than DC. The first electric chair, which was used to execute William Kemmler in 1890

75 GE & Edison: We bring good things to light. More than a 1000 killed since 1890! The first electric chair, which was used to execute William Kemmler in 1890 Nebraska: Only state that requires it. 15-second-long jolt of 2,450 volts of electricity (~ 8 Amps)

76 Limitations of DC Transmission Large currents in wires produce heat and energy losses by P = I 2 R. Large expensive conductors would be needed or else very high voltage drops (and efficiency losses) would result. High loads of direct current could rarely be transmitted for distances greater than one mile without introducing excessive voltage drops. Direct current can not easily be changed to higher or lower voltages. Separate electrical lines are needed to distribute power to appliances that used different voltages, for example, lighting and electric motors.

77 Advantages of AC Transmission Alternating Current can be transformed to step the voltage up or down with transformers. Power is transmitted at great distances at HIGH voltages and LOW currents and then stepped down to low voltages for use in homes (240V) and industry (440V). Convert AC to DC with a rectifier in appliances. AC is more efficient for Transmission & Distribution of electrical power than DC over long distances! But what if the power generation is LOCAL?

78 In The Future. Long Distance AC Power Transmission may not be needed!!! New DC technologies and Solar Power will make AC obsolete!

79 Quick Quiz For the two lightbulbs shown in this figure, rank the current values at the points, from greatest to least. I a = I b > I c = I d > I e = I f. The 60 W bulb has the lowest resistance and therefore draws the most current and burns brightest!

Chapter 28: DC and RC Circuits Kirchhoff s Rules

Chapter 28: DC and RC Circuits Kirchhoff s Rules Chapter 28: DC and RC Circuits Kirchhoff s Rules Series Circuits The current is the same in each device. The equivalent resistance of the circuit is the sum of the individual resistances. Parallel Circuits

More information

Electricity CHARGE. q = 1.6 x10-19 C

Electricity CHARGE. q = 1.6 x10-19 C Electricity CHARGE q = 1.6 x10-19 C How many protons in a Coulomb? -19 1.00 C x (1 proton) / (1.60 x 10 C) = 18 6.25x10 protons! Opposites Attract Most materials are Electrically NEUTRAL (lowest potential

More information

Chapter 27: Current & Resistance

Chapter 27: Current & Resistance Chapter 27: Current & Resistance HW For Chapter 27: 7th/6th: 5/6, 8/8, 11/15, 16/26, 19/31, 31/44, 38/52, 42/55, 44/56, 48/62, 52/68, and also do the Multiple Choice and turn it in! Current: Dead or Alive

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal

More information

Chapter 18. Direct Current Circuits -II

Chapter 18. Direct Current Circuits -II Chapter 18 Direct Current Circuits -II So far A circuit consists of three-four elements: Electromotive force/power supply/battery capacitors, resistors inductors Analyzed circuits with capacitors or resistors

More information

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the terminals of a battery is constant,

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Chapter 26: Direct-Current Circuits (Part 2)

Chapter 26: Direct-Current Circuits (Part 2) Chapter 26: Direct-Current Circuits (Part 2) Electrical measuring instruments (con d) RC circuits Electrical Safety Phys 2435: Chap. 26, Pg 1 Electrical Measuring Instruments New Topic Phys 2435: Chap.

More information

Chapter 31 HW. Due Tuesday Nov 18 th Turn in Thursday, Nov 20 th, Exam Day

Chapter 31 HW. Due Tuesday Nov 18 th Turn in Thursday, Nov 20 th, Exam Day Chapter 31 HW 4/5, 8/9, 15/13, 17/18, 22-24/20-22, 28, 37, 43, 49/50, 57/60 Due Tuesday Nov 18 th Turn in Thursday, Nov 20 th, Exam Day Print out and use NEW equation sheet for the Exam! Practice Exam

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

More information

Maxwell s Equations. q ε. Gauss's law electric. Gauss's law in (magnetic): B da 0. Faraday's law: Ampere-Maxwell law

Maxwell s Equations. q ε. Gauss's law electric. Gauss's law in (magnetic): B da 0. Faraday's law: Ampere-Maxwell law Chapter 33 Maxwell s Equations : Gauss's law electric E da Gauss's law in (magnetic): B da 0 Faraday's law: Ampere-Maxwell law S S q ε E ds o d dt B B ds μ I μ o o d dt E Faraday s Law of Induction = -N

More information

Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68

Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Chapter 27: Current & Resistance HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Positive Charges move from HI to LOW potential. HI V LOW V Negative Charges move from LOW to HI potential.

More information

PHY232 Spring 2008 Jon Pumplin (Original ppt courtesy of Remco Zegers) Direct current Circuits

PHY232 Spring 2008 Jon Pumplin  (Original ppt courtesy of Remco Zegers) Direct current Circuits PHY232 Spring 2008 Jon Pumplin http://www.pa.msu.edu/~pumplin/phy232 (Original ppt courtesy of Remco Zegers) Direct current Circuits So far, we have looked at systems with only one resistor PHY232 Spring

More information

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

More information

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles

More information

POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems.

POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. A. True B. False Hint: this is a good time to

More information

5. In parallel V 1 = V 2. Q 1 = C 1 V 1 and Q 2 = C 2 V 2 so Q 1 /Q 2 = C 1 /C 2 = 1.5 D

5. In parallel V 1 = V 2. Q 1 = C 1 V 1 and Q 2 = C 2 V 2 so Q 1 /Q 2 = C 1 /C 2 = 1.5 D NSWRS - P Physics Multiple hoice Practice ircuits Solution nswer 1. The resistances are as follows: I:, II: 4, III: 1, IV:. The total resistance of the 3 and 6 in parallel is making the total circuit resistance

More information

Electricity Test Review

Electricity Test Review Electricity Test Review Definitions; Series Circuit, Parallel Circuit, Equivalent Resistance, Fuse, Circuit Breaker, kilowatt hour, load, short circuit, dry cell, wet cell, fuel cells, solar cells, fossil

More information

Circuits. PHY2054: Chapter 18 1

Circuits. PHY2054: Chapter 18 1 Circuits PHY2054: Chapter 18 1 What You Already Know Microscopic nature of current Drift speed and current Ohm s law Resistivity Calculating resistance from resistivity Power in electric circuits PHY2054:

More information

Class 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRL-L to view as a slide show. Class 8. Physics 106.

Class 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRL-L to view as a slide show. Class 8. Physics 106. and Circuits and Winter 2018 Press CTRL-L to view as a slide show. Last time we learned about Capacitance Problems Parallel-Plate Capacitors Capacitors in Circuits Current Ohm s Law and Today we will learn

More information

This week. 3/23/2017 Physics 214 Summer

This week. 3/23/2017 Physics 214 Summer This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

More information

This week. 6/2/2015 Physics 214 Summer

This week. 6/2/2015 Physics 214 Summer This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Clicker Session Currents, DC Circuits

Clicker Session Currents, DC Circuits Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:

More information

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel Unit 3C Circuits RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel 2 Types of Electricity Electrostatics Electricity

More information

Electrical Circuits. Sources of Voltage

Electrical Circuits. Sources of Voltage Electrical Circuits ALESSANDRO VOLTA (1745-1827) ANDRE MARIE AMPERE (1775-1836) GEORG SIMON OHM (1789-1854) POTENTIAL IN VOLTS, CURRENT IN AMPS, RESISTANCE IN OHMS! Sources of Voltage Voltage, also known

More information

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20 Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

More information

Electric Currents and Circuits

Electric Currents and Circuits Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

More information

Power lines. Why do birds sitting on a high-voltage power line survive?

Power lines. Why do birds sitting on a high-voltage power line survive? Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

PHYS 1444 Section 003. Lecture #12

PHYS 1444 Section 003. Lecture #12 Chapter 5 Power PHYS 1444 Section 003 Alternating Current Microscopic Current Chapter 6 EMF and Terminal Voltage Lecture #1 Tuesday October 9, 01 Dr. Andrew Brandt Resistors in Series and Parallel Energy

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 0 Electric Circuits Chevy olt --- Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive

More information

PHY 1214 General Physics II

PHY 1214 General Physics II PHY 1214 General Physics II Lecture 14 Grounding, RC Circuits June 27, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6) We are here.

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

Direct-Current Circuits. Physics 231 Lecture 6-1

Direct-Current Circuits. Physics 231 Lecture 6-1 Direct-Current Circuits Physics 231 Lecture 6-1 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.

Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction. Electrostatics Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction. Electric Charge in the Atom Atom: Nucleus (small, massive, positive charge) Electron

More information

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

Circuits. David J. Starling Penn State Hazleton PHYS 212

Circuits. David J. Starling Penn State Hazleton PHYS 212 Invention is the most important product of man s creative brain. The ultimate purpose is the complete mastery of mind over the material world, the harnessing of human nature to human needs. - Nikola Tesla

More information

Relating Voltage, Current and Resistance

Relating Voltage, Current and Resistance Relating Voltage, Current and Resistance Using Ohm s Law in a simple circuit. A Simple Circuit Consists of:! A voltage source often a battery! A load such as a bulb! Conductors arranged to complete a circuit

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

Chapter 19 Lecture Notes

Chapter 19 Lecture Notes Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC

More information

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71. Chapter 6 DRECT CURRENT CRCUTS Recommended Problems: 6,9,,3,4,5,6,9,0,,4,5,6,8,9,30,3,33,37,68,7. RESSTORS N SERES AND N PARALLEL - N SERES When two resistors are connected together as shown we said that

More information

ELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECT-CURRENT CIRCUITS

ELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECT-CURRENT CIRCUITS LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside

More information

Chapter 26 Examples : DC Circuits Key concepts:

Chapter 26 Examples : DC Circuits Key concepts: Chapter 26 Examples : DC Circuits Key concepts: Internal resistance : battery consists of some idealized source of voltage (called the electromotive force, or EMF, which uses the symbol ξ) and an effective

More information

Physics 214 Spring

Physics 214 Spring Lecture 23 March 4 2016 The elation between Voltage Differences V and Voltages V? Current Flow, Voltage Drop on esistors and Equivalent esistance Case 1: Series esistor Combination and esulting Currents

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Tactics Box 23.1 Using Kirchhoff's Loop Law

Tactics Box 23.1 Using Kirchhoff's Loop Law PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231

More information

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Circuits Lectures 11-12 Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 27 Circuits In this chapter we will cover the following topics: -Electromotive

More information

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A.

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A. CLSS-10 1. Explain how electron flow causes electric current with Lorentz-Drude theory of electrons?. Drude and Lorentz, proposed that conductors like metals contain a large number of free electrons while

More information

Exam 3--PHYS 102--S14

Exam 3--PHYS 102--S14 Name: Exam 3--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is always true? a. resistors in parallel have the

More information

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

V R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34.

V R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34. IMPORTANT TERMS: Alternating current (AC) Ampere Diode Direct current (DC) Electric current Electric power Electric resistance Ohm Ohm s Law Potential difference Voltage source EQUATIONS: UNIT V: Electricity

More information

A Review of Circuitry

A Review of Circuitry 1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one

More information

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy DC Circuits Electromotive Force esistor Circuits Connections in parallel and series Kirchoff s ules Complex circuits made easy C Circuits Charging and discharging Electromotive Force (EMF) EMF, E, is the

More information

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S lecture based on 2016 Pearson Education, Ltd. The Electric Battery Electric Current

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of

More information

Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

More information

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =! " Ir. Terminal Open circuit internal! voltage voltage (emf) resistance" 2.

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =!  Ir. Terminal Open circuit internal! voltage voltage (emf) resistance 2. Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V V =! " Ir Terminal Open circuit internal! voltage voltage (emf) resistance" 2.) Resistors in series! One of the bits of nastiness about

More information

Information for Makeup exam is posted on the course website.

Information for Makeup exam is posted on the course website. Information for Makeup exam is posted on the course website. Three resistors are connected to a 6-V battery as shown. The internal resistance of the battery is negligible. What is the current through the

More information

LESSON 5: ELECTRICITY II

LESSON 5: ELECTRICITY II LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE - Electric charge is a property of all objects and is responsible for electrical phenomena. -All matter

More information

Announcements. l LON-CAPA #7 and Mastering Physics (to be posted) due Tuesday March 11

Announcements. l LON-CAPA #7 and Mastering Physics (to be posted) due Tuesday March 11 Announcements l LON-CAPA #7 and Mastering Physics (to be posted) due Tuesday March 11 Resistance l l l The amount of current that flows in a circuit depends not only on the voltage but also on the electrical

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

More information

Static Electricity. Electric Field. the net accumulation of electric charges on an object

Static Electricity. Electric Field. the net accumulation of electric charges on an object Static Electricity the net accumulation of electric charges on an object Electric Field force exerted by an e - on anything that has an electric charge opposite charges attract like charges repel Static

More information

Use these circuit diagrams to answer question 1. A B C

Use these circuit diagrams to answer question 1. A B C II Circuit Basics Use these circuit diagrams to answer question 1. B C 1a. One of the four voltmeters will read 0. Put a checkmark beside it. b. One of the ammeters is improperly connected. Put a checkmark

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

ELECTRICITY Electric Fence Experiment.

ELECTRICITY Electric Fence Experiment. ELECTRICITY Electric Fence Experiment. Can you guess what will happen? What would life be like without electricity? List 4 things that you would miss the most: 1) 2) 3) 4) Positive and Negative Charge

More information

Direct-Current Circuits

Direct-Current Circuits Direct-Current Circuits A'.3/.". 39 '- )232.-/ 32,+/" 7+3(5-.)232.-/ 7 3244)'03,.5B )*+,"- &'&./( 0-1*234 35-2567+- *7 2829*4-& )"< 35- )*+,"-= 9-4-- 3563 A0.5.C2/'-231).D')232.')2-1 < /633-">&@5-:836+-0"1464-625"-4*43"

More information

ΔV of battery. = ε - Ir or εmf = I(R+r) (for this particular series circuit) March 04, Emf and internal resistance. Emf and internal resistance

ΔV of battery. = ε - Ir or εmf = I(R+r) (for this particular series circuit) March 04, Emf and internal resistance. Emf and internal resistance Emf and internal resistance Emf and internal resistance ΔV of battery = ε - Ir or εmf = I(R+r) (for this particular series circuit) As the current in the circuit increases the voltage, supplied to the

More information

Chapter19-Magnetism and Electricity

Chapter19-Magnetism and Electricity Chapter19-Magnetism and Electricity Magnetism: attraction of a magnet for another object. Magnetic poles: north & south ends of a magnet, they exert the strongest forces Like poles repel each other, unlike

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s

More information

Electricity. What is electricity?

Electricity. What is electricity? Words attract = pull towards an object back and forth = to go in one direction and then in the other balanced = the same as stable carbon = a chemical material that is in coal or petrol. It is in its purest

More information

Circuits. 1. The Schematic

Circuits. 1. The Schematic + ircuits 1. The Schematic 2. Power in circuits 3. The Battery 1. eal Battery vs. Ideal Battery 4. Basic ircuit nalysis 1. oltage Drop 2. Kirchoff s Junction Law 3. Series & Parallel 5. Measurement Tools

More information

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY. Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?

More information

Multi-loop Circuits and Kirchoff's Rules

Multi-loop Circuits and Kirchoff's Rules 1 of 8 01/21/2013 12:50 PM Multi-loop Circuits and Kirchoff's Rules 7-13-99 Before talking about what a multi-loop circuit is, it is helpful to define two terms, junction and branch. A junction is a point

More information

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current Chapter 7 ELECTRIC CURRENT Introduction Electric current Charge conservation Electric conductivity Microscopic picture Electric power Electromotive force Kirchhoff s rules Summary INTRODUCTION The first

More information

Kirchhoff s Rules. Kirchhoff s rules are statements used to solve for currents and voltages in complicated circuits. The rules are

Kirchhoff s Rules. Kirchhoff s rules are statements used to solve for currents and voltages in complicated circuits. The rules are Kirchhoff s Rules Kirchhoff s rules are statements used to solve for currents and voltages in complicated circuits. The rules are Rule. Sum of currents into any junction is zero. i = 0 i 1 2 = 12 Why?

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

More information

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli ConcepTest Clicker Questions Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli 2008 Pearson Education, Inc. This work is protected by United States copyright laws

More information

Electroscope Used to are transferred to the and Foil becomes and

Electroscope Used to are transferred to the and Foil becomes and Electricity Notes Chapter 17 Section 1: Electric Charge and Forces Electric charge is a variety of independent all with one single name. Electricity is related to, and both (-) and (+) carry a charge.

More information

physics for you February 11 Page 68

physics for you February 11 Page 68 urrent Electricity Passage 1 4. f the resistance of a 1 m length of a given wire t is observed that good conductors of heat are also is 8.13 10 3 W, and it carried a current 1, the good conductors of electricity.

More information

Read Chapter 7; pages:

Read Chapter 7; pages: Forces Read Chapter 7; pages: 191-221 Objectives: - Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors

More information

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys

More information

1. How does a light bulb work?

1. How does a light bulb work? AP Physics 1 Lesson 12.a Electric Current and Circuits Outcomes 1. Determine the resistance of a resistor given length, cross-sectional area and length. 2. Relate the movement of charge to differences

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*

More information

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C) Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which

More information

MasteringPhysics: Assignment Print View. Problem 30.50

MasteringPhysics: Assignment Print View. Problem 30.50 Page 1 of 15 Assignment Display Mode: View Printable Answers phy260s08 homework 13 Due at 11:00pm on Wednesday, May 14, 2008 View Grading Details Problem 3050 Description: A 15-cm-long nichrome wire is

More information

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other. Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in

More information

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits Chapter 26 Direct-Current and Circuits - esistors in Series and Parallel - Kirchhoff s ules - Electric Measuring Instruments - -C Circuits . esistors in Series and Parallel esistors in Series: V ax I V

More information