are (0 cm, 10 cm), (10 cm, 10 cm), and (10 cm, 0 cm), respectively. Solve: The coordinates of the center of mass are = = = (200 g g g)

Size: px
Start display at page:

Download "are (0 cm, 10 cm), (10 cm, 10 cm), and (10 cm, 0 cm), respectively. Solve: The coordinates of the center of mass are = = = (200 g g g)"

Transcription

1 Rotational Motion Problems Solutions.. Model: A spinning skater, whose arms are outstretched, is a rigid rotating body. Solve: The speed v rω, where r 40 / 0.70 m. Also, 80 rpm (80) π/60 rad/s 6 π rad/s. Thus, v (0.70 m)(6 π rad/s) 3. m/s. Assess: A speed of 3. m/s 6 mph for the hands is a little high, but reasonable..7. Please refer to Figure EX.7. The coordinates of the three masses ma, m B, and m C are (0, 0 ), (0, 0 ), and (0, 0 ), respectively. Solve: The coordinates of the center of mass are x mx + mx + mx (00 g)(0 ) + (300 g)(0 ) + (00 g)(0 ) A A B B C C ma + mb + mc (00 g g + 00 g) y my + my + my (00 g)(0 ) + (300 g)(0 ) + (00 g)(0 ) A A B B C C ma + mb + mc (00 g g + 00 g) Model: The door is a slab of uniform density. Solve: (a) The hinges are at the edge of the door, so from Table., ( 5 kg )( 0.9 m ) 6.9 kg m I 3 (b) The distance from the axis through the center of mass along the height of the door is 0.9 m d 0.5 m m. Using the parallel axis theorem, I I + Md ( 5 kg )( 0.9 m ) + ( 5 kg )( ) 4. kg m Assess: The moment of inertia is less for a parallel axis through a point closer to the center of mass.

2 .9. Solve: Torque by a force is defined as τ Fr sinφ where φ is measured counterclockwise from the r vector to the F vector. The net torque on the pulley about the axle is the torque due to the 30 N force plus the torque due to the 0 N force: (30 N) r sin φ + (0 N) r sin φ (30 N)(0.0 m) sin ( 90 ) + (0 N)(0.0 m) sin (90 ) ( 0.60 N m) + (0.40 N m) 0.0 N m Assess: A negative torque causes a clockwise acceleration of the pulley..3. Model: The beam is a solid rigid body. The steel beam experiences a torque due to the gravitational force on the construction worker ( G ) force on the beam ( F G ). B bolted into place. F C and the gravitational The normal force exerts no torque since the net torque is calculated about the point where the beam is Solve: The net torque on the steel beam about point O is the sum of the torque due to ( F G ) and the torque due to ( ) gravitational force on the beam acts at the center of mass. τ (( FG) C)(4.0 m)sin( 90 ) + (( FG) B)(.0 m)sin( 90 ) (70 kg)(9.80 m/s )(4.0 m) (500 kg)(9.80 m/s )(.0 m).5 kn m The negative torque means these forces would cause the beam to rotate clockwise. The magnitude of the torque is.5 kn m..7. Model: Two balls connected by a rigid, massless rod are a rigid body rotating about an axis through the center of mass. Assume that the size of the balls is small compared to m. C F G B. The We placed the origin of the coordinate system on the.0 kg ball. Solve: The center of mass and the moment of inertia are

3 I x about (.0 kg)(0 m) + (.0 kg)(.0 m) m and y 0 m (.0 kg +.0 kg) mr (.0 kg)(0.667 m) + (.0 kg)(0.333 m) kg m i i We have ω f 0 rad/s, t f t i 5.0 s, and ω 0 rpm 0( π rad/60 s) πrad/s, so ωf ωi + α( tf ti) becomes i 3 π π 0 rad/s rad/s + α(5.0 s) α rad/s 3 5 Having found I and α, we can now find the torque τ that will bring the balls to a halt in 5.0 s: π 4π τ Iabout α kg m rad/s N m 0.8 N m The magnitude of the torque is 0.8 N m, applied in the counterclockwise direction..3. Model: The rod is in rotational equilibrium, which means that τ net 0. As the gravitational force on the rod and the hanging mass pull down (the rotation of the rod is exaggerated in the figure), the rod touches the pin at two points. The piece of the pin at the very end pushes down on the rod; the right end of the pin pushes up on the rod. To understand this, hold a pen or pencil between your thumb and forefinger, with your thumb on top (pushing down) and your forefinger underneath (pushing up). Solve: Calculate the torque about the left end of the rod. The downward force exerted by the pin acts through this point, so it exerts no torque. To prevent rotation, the pin s normal force n pin exerts a positive torque (ccw about the left end) to balance the negative torques (cw) of the gravitational force on the mass and rod. The gravitational force on the rod acts at the center of mass, so τ net τ.8 N m 0 N m τpin (0.40 m)(.0 kg)(9.8 m/s ) (0.80 m)(0.50 kg)(9.8 m/s ).35. Solve: (a) According to Equation.35, the speed of the center of mass of the tire is v pin v 0 m/s 60 Rω R 0.30 m π ( ) 0 m/s ω rad/s 66.7 rpm rpm (b) The speed at the top edge of the tire relative to the ground is vtop v (0 m/s) 40 m/s. (c) The speed at the bottom edge of the tire relative to ground is v bottom 0 m/s..43. Solve: (a) C D 0 implies that D must also be in the same or opposite direction as the C vector or zero, because iˆ iˆ 0. Thus D niˆ, where n could be any real number. (b) C E 6kˆ implies that E must be along the ĵ vector, because iˆ ˆ j kˆ. Thus E. ˆj (c) C F 3 ˆj implies that F must be along the ˆk vector, because iˆ kˆ ˆ. j Thus F. kˆ.49. Model: The disk is a rotating rigid body. Please refer to Figure EX.49. Solve: From Table., the moment of inertial of the disk about its center is

4 I MR (.0 kg)(0.00 m) kg m 4 The angular velocity ω is 600 rpm 600 π/60 rad/s 0 π rad/s. Thus, 4 (4.0 0 kg m )(0 rad/s) L Iω π 0.05 kg m /s. If we wrap our right fingers in the direction of the disk s rotation, our thumb will point in the x direction. Consequently, L ˆ 0.05 i kg m /s (0.05 kg m /s, into page).55. Model: The disk is a rigid rotating body. The axis is perpendicular to the plane of the disk. Solve: (a) From Table., the moment of inertia of a disk about its center is (.0 kg)(0.0 m) 0.00 kg m I MR (b) To find the moment of inertia of the disk through the edge, we can make use of the parallel axis theorem: I Icenter + Mh (0.00 kg m ) + (.0 kg)(0.0 m) kg m Assess: The larger moment of inertia about the edge means there is more inertia to rotational motion about the edge than about the center..63. Model: The structure is a rigid body. Solve: We pick the left end of the beam as our pivot point. We don t need to know the forces F h and F v because the pivot point passes through the line of application of F h and F v and therefore these forces do not exert a torque. For the beam to stay in equilibrium, the net torque about this point is zero. We can write Using ( G) B (450 kg)(9.8 m/s ) τ ( F ) (3.0 m) ( F ) (4.0 m) + ( Tsin50 )(6.0 m) 0 N m F and about left end G B G W ( G) W (80 kg)(9.8 m/s ), F the torque equation can be solved to yield T 5,300 N. The tension in the cable is slightly more than the cable rating. The worker should be worried.

5 .69. Model: The flywheel is a rigid body rotating about its central axis. Solve: (a) The radius of the flywheel is of rotation is that of a disk: R 0.75 m and its mass is M 50 kg. The moment of inertia about the axis I MR (50 kg)(0.75 m) 70.3 kg m The angular acceleration is calculated as follows: net net Using the kinematic equation for angular velocity gives τ Iα α τ / I (50 N m)/(70.3 kg m ) 0.7 rad/s ω ω + α( t t ) 00 rpm 40 π rad/s 0 rad/s rad/s ( t 0 s) 0 0 t 77 s (b) The energy stored in the flywheel is rotational kinetic energy: The energy stored is 5 Krot Iω (70.3 kg m )(40 π rad/s) J J. 5 energy delivered ( J)/ 5 (c) Average power delivered.39 0 W 39 kw time interval.0 s (d) Because obtained as: ω ω ω τ Iα τ I I t t full energy half energy,. ω ω (from part (a)) 40 π rad/s. full energy 5 Krot J Iωhalf energy Krot ωhalf energy rad/s I 70.3 kg m Thus 40 π rad/s rad/s τ (70.3 kg m ).30 kn m.0 s.7. Model: Assume the string does not slip on the pulley. half energy ω can be

6 The free-body diagrams for the two blocks and the pulley are shown. The tension in the string exerts an upward force on the block m, but a downward force on the outer edge of the pulley. Similarly the string exerts a force on block m to the right, but a leftward force on the outer edge of the pulley. Solve: (a) Newton s second law for m and m is T ma and T mg. ma Using the constraint a + a a, we have T ma and T + mg. ma Adding these equations, we get mg ( m+ m) a, or mg mmg a T ma m m m m + + (b) When the pulley has mass m, the tensions ( T and T ) in the upper and lower portions of the string are different. Newton s second law for m and the pulley are: T ma and TR TR Iα We are using the minus sign with α because the pulley accelerates clockwise. Also, a Rα. Thus, T ma and Adding these two equations gives I a ai T T RR R I T a m+ R Newton s second law for m is T mg. ma ma Using the above expression for T, Since I mr p for a disk about its center, With this value for a we can now find T and T : I a m + + ma mg a mg R m+ m + I/ R mg a m m m + + p mmg mg T ma T a m I R m m ( m m mp) ( + ) m m m g p ( + / ) + p m+ m + mp + + m+ m + mp Assess: For m 0 kg, the equations for a, T, and T of part (b) simplify to These agree with the results of part (a). a mg and T mmg and T mmg m m m m m m Model: The hoop is a rigid body rotating about an axle at the edge of the hoop. The gravitational torque on the hoop causes it to rotate, transforming the gravitational potential energy of the hoop s center of mass into rotational kinetic energy.

7 We placed the origin of the coordinate system at the hoop s edge on the axle. In the initial position, the center of mass is a distance R above the origin, but it is a distance R below the origin in the final position. Solve: (a) Applying the parallel-axis theorem, Iedge I + mr mr + mr mr. Using this expression in the energy conservation equation Kf + Ugf Ki + Ugi yields: g Iedgeω + mgy Iedgeω0 + mgy0 ( mr ) ω mgr 0 J + mgr ω R (b) The speed of the lowest point on the hoop is g v ( ω)( R) ( R) 8gR R Assess: Note that the speed of the lowest point on the loop involves a distance of R instead of R..85. Model: The mechanical energy of both the hoop (h) and the sphere (s) is conserved. The initial gravitational potential energy is transformed into kinetic energy as the objects roll down the slope. The kinetic energy is a combination of translational and rotational kinetic energy. We also assume no slipping of the hoop or of the sphere. The zero of gravitational potential energy is chosen at the bottom of the slope. Solve: (a) The energy conservation equation for the sphere or hoop Kf + Ugf Ki + Ugi is For the sphere, this becomes I( ω ) + m( v ) + mgy I( ω ) + m( v ) + mgy ( v ) mr m ( v ) 0 J 0 J 0 J mgh 5 R s + s+ + + s 7 ( v ) s gh ( v ) s 0 gh /7 0(9.8 m/s )(0.30 m)/7.05 m/s 0 For the hoop, this becomes

8 For the hoop to have the same velocity as that of the sphere, ( v ) ( mr ) m( v ) 0 J 0 J 0 J mgh R ( v) h hhoop g h + h hoop ( v ) (.05 m/s) 4.9 g 9.8 m/s s hoop h The hoop should be released from a height of 43. (b) As we see in part (a), the speed of a hoop at the bottom depends only on the starting height and not on the mass or radius. So the answer is No..89. Model: The toy car is a particle located at the rim of the track. The track is a cylindrical hoop rotating about its center, which is an axis of symmetry. No net torques are present on the track, so the angular momentum of the car and track is conserved. Solve: The toy car s steady speed of 0.75 m/s relative to the track means that vc vt 0.75 m/s vc vt m/s, where v t is the velocity of a point on the track at the same radius as the car. Conservation of angular momentum implies that L L i f ( ) ( ) 0 Icωc + Itωt mr ωc + Mr ωt mωc + Mωt The initial and final states refer to before and after the toy car was turned on. Table. was used for the track. Since vc vt ω c, ω t, we have r r 0 mvc + Mvt m( vt m/s) + Mvt 0 M ( 0.00 kg) v ( ) ( ) ( ) t 0.75 m/s 0.75 m/s 0.5 m/s m+ M 0.00 kg +.0 kg The minus sign indicates that the track is moving in the opposite direction of the car. The angular velocity of the track is vt ( 0.5 m/s) ω t 0.47 rad/s clockwise. r 0.30 m In rpm, rev 60 s ωt ( 0.47 rad/s) π rad min 4.0 rpm Assess: The speed of the track is less than that of the car because it is more massive.

ROTATION OF A RIGID BODY

ROTATION OF A RIGID BODY ROTATION OF A RIGID BODY Conceptual Questions.. As suggested by the figure, we will assume that the larger sphere is more massive. Then the center of gravity would be at point a because if we suspend the

More information

ROTATION OF A RIGID BODY

ROTATION OF A RIGID BODY ROTATION OF A RIGID BODY Conceptual Questions.. As suggested by the figure, we will assume that the larger sphere is more massive. Then the center of gravity would be at point a because if we suspend the

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Physics 101 Lecture 11 Torque

Physics 101 Lecture 11 Torque Physics 101 Lecture 11 Torque Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Force vs. Torque q Forces cause accelerations q What cause angular accelerations? q A door is free to rotate about an axis

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

O Which force produces the greatest torque about the point O (marked by the blue dot)?

O Which force produces the greatest torque about the point O (marked by the blue dot)? Q10.1 The four forces shown all have the same magnitude: F 1 = F 2 = F 3 = F 4. F 1 F 3 O Which force produces the greatest torque about the point O (marked by the blue dot)? F 2 F 4 A. F 1 B. F 2 C. F

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy.

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy. Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Toward Exam 3 Eqs. of motion o To study angular

More information

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure

More information

= F 4. O Which force produces the greatest torque about the point O (marked by the blue dot)? E. not enough information given to decide

= F 4. O Which force produces the greatest torque about the point O (marked by the blue dot)? E. not enough information given to decide Q10.1 The four forces shown all have the same magnitude: F 1 = F 2 = F 3 = F 4. F 1 F 3 O Which force produces the greatest torque about the point O (marked by the blue dot)? F 2 F 4 A. F 1 B. F 2 C. F

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion To understand the concept of torque. To relate angular acceleration and torque. To work and power in rotational motion. To understand angular momentum. To understand

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Chapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.

Chapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs. Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

11-2 A General Method, and Rolling without Slipping

11-2 A General Method, and Rolling without Slipping 11-2 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

Chapter 10 Solutions

Chapter 10 Solutions Chapter 0 Solutions 0. (a) α ω ω i t.0 rad/s 4.00 rad/s 3.00 s θ ω i t + αt (4.00 rad/s )(3.00 s) 8.0 rad 0. (a) ω ω π rad 365 days π rad 7.3 days *0.3 ω i 000 rad/s α 80.0 rad/s day 4 h day 4 h h 3600

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

Chapter 10.A. Rotation of Rigid Bodies

Chapter 10.A. Rotation of Rigid Bodies Chapter 10.A Rotation of Rigid Bodies P. Lam 7_23_2018 Learning Goals for Chapter 10.1 Understand the equations govern rotational kinematics, and know how to apply them. Understand the physical meanings

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

16. Rotational Dynamics

16. Rotational Dynamics 6. Rotational Dynamics A Overview In this unit we will address examples that combine both translational and rotational motion. We will find that we will need both Newton s second law and the rotational

More information

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque: Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass? NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω Thur Oct 22 Assign 9 Friday Today: Torques Angular Momentum x θ v ω a α F τ m I Roll without slipping: x = r Δθ v LINEAR = r ω a LINEAR = r α ΣF = ma Στ = Iα ½mv 2 ½Iω 2 I POINT = MR 2 I HOOP = MR 2 I

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

More information

Chapter 11 Rolling, Torque, and Angular Momentum

Chapter 11 Rolling, Torque, and Angular Momentum Prof. Dr. I. Nasser Chapter11-I November, 017 Chapter 11 Rolling, Torque, and Angular Momentum 11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED Translation vs. Rotation General Rolling Motion General

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

Rotation review packet. Name:

Rotation review packet. Name: Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

AP Physics 1: Rotational Motion & Dynamics: Problem Set

AP Physics 1: Rotational Motion & Dynamics: Problem Set AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are

More information

Exercise Torque Magnitude Ranking Task. Part A

Exercise Torque Magnitude Ranking Task. Part A Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV

It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it

More information

Class XI Chapter 7- System of Particles and Rotational Motion Physics

Class XI Chapter 7- System of Particles and Rotational Motion Physics Page 178 Question 7.1: Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,

More information

第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel

More information

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14 Objectives Calculate torque given the lever arm (perpendicular distance) and the force. Calculate torque in newton meters and in pound feet. Interpret positive and negative signs in the context of torque.

More information

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2 PHY 302 K. Solutions for problem set #9. Textbook problem 7.10: For linear motion at constant acceleration a, average velocity during some time interval from t 1 to t 2 is the average of the velocities

More information

Moment of Inertia Race

Moment of Inertia Race Review Two points, A and B, are on a disk that rotates with a uniform speed about an axis. Point A is closer to the axis than point B. Which of the following is NOT true? 1. Point B has the greater tangential

More information

Answers to selected problems from Essential Physics, Chapter 10

Answers to selected problems from Essential Physics, Chapter 10 Answers to selected problems from Essential Physics, Chapter 10 1. (a) The red ones have the same speed as one another. The blue ones also have the same speed as one another, with a value twice the speed

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Lecture 5 Review. 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation.

Lecture 5 Review. 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation. PHYSICAL SCIENCES 1 Concepts Lecture 5 Review Fall 017 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation.. Angle θ: The angle at which the rigid body

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

More information

Rotational Motion. Rotational Motion. Rotational Motion

Rotational Motion. Rotational Motion. Rotational Motion I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =

More information

Unit 9 Rotational Motion & Torque

Unit 9 Rotational Motion & Torque Unit 9 Rotational Motion & Torque Essential Fundamentals of Rotational Motion & Torque 1. Torque is a twisting force that produces angular motion. Early E. C.: / 1 Total HW Points Unit 9: / 30 Total Lab

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8 AP Physics Rotational Motion Introduction: Which moves with greater speed on a merry-go-round - a horse near the center or one near the outside? Your answer probably depends on whether you are considering

More information

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

More information

Suggested Problems. Chapter 1

Suggested Problems. Chapter 1 Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for

More information

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Take-home quizzes this week. See Elaine Schulte s email. HW

More information

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During

More information

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here. Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information