AP Physics 1 First Semester Final Exam Review

Size: px
Start display at page:

Download "AP Physics 1 First Semester Final Exam Review"

Transcription

1 AP Physics First Semester Final Exam Review Chapters and. Know the SI Units base units.. Be able to use the factor-label method to convert from one unit to another (ex: cm/s to m/year) 3. Be able to identify the number of significant digits in a given number. Also be able to work simple calculations with the correct amount of significant digits. 4. Know the definitions of precision and accuracy. 5. Given the velocity of an object and the time that the object is in motion, know how to find the displacement of the object. 6. Know the relationship between science and technology and how they interact. 7. Know the scientific method, what it is used for, and the general steps taken in developing scientific laws 8. Know the definition of acceleration 9. Be able to recognize position, velocity, and acceleration on a displacement vs. time graph. Chapter 3 0. Know the difference between vectors and scalars. Also know several examples of each.. Given the magnitude of two vectors, know the range of possible magnitudes for the resultant vector.. Be able to compute the components of a vector when given the magnitude of the vector and the angle the vector makes with the horizontal. 3. Be able to complete a simple one dimensional vector addition problem. 4. Know how the time, position, velocity (both initial and final), and acceleration in each dimension are related for an object traveling in two dimensions. 5. Review the points in a two dimensional motion problem when velocity and acceleration are constant or at zero. Chapter 4 6. Know the relationship between weight, mass, and gravity. 7. Know Newton s 3 Laws of motion. Think of examples for each. Also know other names that they are known by. 8. Know the definitions of and difference between static and kinetic friction 9. Be familiar with the diagram used in incline plane problems. Know how to find the parallel and perpendicular forces Chapter 5 0. Know the definition of work. Be able to calculate the work done when given the force applied and the distance over which it is applied. Be sure to recognize when work is being done and when it is not.. Be able to use a force vs. position graph to find the work done by a varying force.. Know the definition of potential and kinetic energy. Be able to calculate these energies give the appropriate variables.

2 Chapter 6 3. Know how to find the change in momentum of an object. Pay special attention to when the object changes direction. 4. Know the definition of momentum and impulse. Know how they are related. 5. Know what information you can find using a force vs. time graph. Be able to use a force vs. time graph to find this information. 6. What are the benefits of air bags and how are they related to momentum and impulse? Review Problems. A car moving with a speed of 3.0 m/s strikes a movable barrier and stops after a distance of.00 m. a. What is the decceleration of the car? (Answer:-5 m/s ) b. How much time does it take for the car to come to rest? (Answer: s). A student completes the Shoot for Your Grade lab that was done in class. The marble has a mass of 0.0 kg. It traveled along the table for a distance of 0.80 m in. seconds. The table is 95 cm high. a. How long will it take for the marble to hit the floor? (Answer: 0.44 s) b. How far from the base of the table did it strike the floor? (Answer: 0.6 m) c. Complete the following graphs for the previous problem.

3 3. A force of 38.3 N is required to start a 56 kg wood block moving across the floor. After it is moving, a force of 9.5 N is required to keep it moving at a constant velocity of.3 m/s. What are the coefficients of static and kinetic friction between the block and the floor? (µ s =.58 and µ k =.40) 4. Two blocks are connected by a cord that passes over a massless, frictionless pulley. Block A has a mass of.3 kg, while block B has a mass of.8 kg. a. Find the acceleration of the two blocks. (a = 3.59 m/s ) b. Find the tension of the cord. (T = 7.4N) 5. What is the minimum value of the coefficient of static friction between block (m 3 ) and the table that would keep the system at rest if m = 0.50 kg, m = 0.5 kg, and m 3 = 0.75 kg? (µ = 0.333) 6. Billy expends 3,500 J of energy to drag a wooden crate 7 m across the floor. The rope that he pulls makes an angle of 4 0 with the floor. How much force must he apply while he is moving the crate? (F = 673 N)

4 7. Sally rides her bike to the top of a 5.0 m tall hill. As he reaches the top, he is traveling at 5.50 m/s. The combined mass of Sally and her bike is 35 kg. If he coasts all the way down the hill, and up another hill that is 3.5 m high, what is her velocity at the top of the second hill? (Assume no friction) (Answer: 7.7 m/s) 8. A 0 g hot wheels car is started on a 0.46 m high frictionless hill. The car stops right when it reaches the end of a.5 m long horizontal track coated with sandpaper. What is the coefficient for friction between the car and the sandpaper track? (µ = 0.84) 9. A 65 kg man holding a 7 kg box rides on a pair of ice skates at a speed of 9 m/s. He throws the box behind him, giving it a velocity of 5 m/s. What is his velocity after throwing the object? (v =.7 m/s) v = v0 + at AP Physics Formula Sheet st Semester Final Exam x = x0 + v0t + at v = v + a( x x ) 0 0 Fg = mg Ff µ FN = Fnet = ma ( m v m v ) ( m v m v ) + = + p = mv F t = m v i f Ue = kx g U = mgh K = mv F = kx W P = W = Fd cosθ t sin opp adj = cos = tan hyp hyp = opp adj

5

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Name. VCE Physics Unit 3 Preparation Work

Name. VCE Physics Unit 3 Preparation Work Name. VCE Physics Unit 3 Preparation Work Transition into 2019 VCE Physics Unit 3+4 Units 3 and 4 include four core areas of study plus one detailed study. Unit 3: How do fields explain motion and electricity?

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity.

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Name: 1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Graph A Graph B Graph C Graph D Graph E Graph F Graph G Graph H (a)

More information

Forces on an inclined plane Section 2.2

Forces on an inclined plane Section 2.2 Forces on an inclined plane Section 2.2 Examples of inclined planes Previous Knowledge Since some of the incline problems lets review friction (both kinetic and static) and normal force. Friction Friction

More information

Name & Surname:... No:... Class: 11 /...

Name & Surname:... No:... Class: 11 /... METU D. F. HIGH SCHOOL 2017-2018 ACADEMIC YEAR, 1 st SEMESTER GRADE 11 / PHYSICS REVIEW FOR GENERAL EXAM-3 UNIFORMLY ACCELERATED MOTION IN TWO DIMENSIONS, ENERGY, IMPULSE & MOMENTUM & TORQUE DECEMBER 2017

More information

Physics I (Navitas) FINAL EXAM Fall 2015

Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

Physics 101. Hour Exam I Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam I Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators may not be shared. Please keep your calculator on your own desk.

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Exam 2 Phys Fall 2002 Version A. Name ID Section

Exam 2 Phys Fall 2002 Version A. Name ID Section Closed book exam - Calculators are allowed. Only the official formula sheet downloaded from the course web page can be used. You are allowed to write notes on the back of the formula sheet. Use the scantron

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

Physics 6A TR Section Winter 2012 Midterm

Physics 6A TR Section Winter 2012 Midterm Physics 6A TR Section Winter 2012 Midterm The test consists of 19 multiple choice questions. Enter the answer to the multiple choice questions in the pink scantron sheet. Use a pencil, not a pen. There

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

Physics 12 Final Exam Review Booklet # 1

Physics 12 Final Exam Review Booklet # 1 Physics 12 Final Exam Review Booklet # 1 1. Which is true of two vectors whose sum is zero? (C) 2. Which graph represents an object moving to the left at a constant speed? (C) 3. Which graph represents

More information

AP/Honors Physics Take-Home Exam 1

AP/Honors Physics Take-Home Exam 1 AP/Honors Physics Take-Home Exam 1 Section 1: Multiple Choice (Both Honors & AP) Instructions: Read each question carefully and select the best answer from the choices given. Show all work on separate

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview Examples of Nonfundamental Forces -- All of these are derived from the electroweak force: normal or support forces friction tension

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

General Physics I Forces

General Physics I Forces General Physics I Forces Dynamics Isaac Newton (1643-1727) published Principia Mathematica in 1687. In this work, he proposed three laws of motion based on the concept of FORCE. A force is a push or a

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force.

Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force. NEWTON S LAWS OF MOTION Newton s First Law Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force. Inertia (Newton s 1

More information

NOTE: x and d are both variables for distance. Either may be used. x f = x i + v t

NOTE: x and d are both variables for distance. Either may be used. x f = x i + v t Motion Equations NOTE: x and d are both variables for distance. Either may be used. Special case when a=g, up and down problems, parabolic motion Kinematics REMEMBER DISTANCE MY BE INDICATED BY EITHER

More information

Lecture 18. Newton s Laws

Lecture 18. Newton s Laws Agenda: l Review for exam Lecture 18 l Assignment: For Monday, Read chapter 14 Physics 207: Lecture 18, Pg 1 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced? Chapter Problems Newton s 2nd Law: Class Work 1. A 0.40 kg toy car moves at constant acceleration of 2.3 m/s 2. Determine the net applied force that is responsible for that acceleration. 2. If a net horizontal

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

OPEN ONLY WHEN INSTRUCTED

OPEN ONLY WHEN INSTRUCTED OPEN ONLY WHEN INSTRUCTED Name: Hr: AP Physics C Mechanics Final Semester Examination Instructions: Write your name on the exam as well as scantron before you begin This exam consists of Section 1) Multiple

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Physics 2101, First Exam, Spring 2006

Physics 2101, First Exam, Spring 2006 Physics 2101, First Exam, Spring 2006 January 24, 2006 Name : KEY Section: (Circle one) 1 (Rupnik, MWF 7:40am) 4 (Kirk, MWF 2:40pm) 2 (Rupnik, MWF 9:40am) 5 (Kirk, TTh 10:40am) 3 (Rupnik, MWF 11:40am)

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface?

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? Base your answers to questions 2 and 3 on the information A student and the waxed skis she

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Question 01. A. Incorrect! This is not Newton s second law.

Question 01. A. Incorrect! This is not Newton s second law. College Physics - Problem Drill 06: Newton s Laws of Motion Question No. 1 of 10 1. Which of the options best describes the statement: Every object continues in a state of rest or uniform motion in a straight

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

Announcements. There will still be a WebAssign due this Friday, the last before the midterm.

Announcements. There will still be a WebAssign due this Friday, the last before the midterm. Announcements THERE WILL BE NO CLASS THIS FRIDAY, MARCH 5 (We are 1 full lecture ahead of the syllabus, so we will still have review/problem solving on March 7 and 9). There will still be a WebAssign due

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Physics Exam 2 October 11, 2007

Physics Exam 2 October 11, 2007 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Forces & Newton s Laws FR Practice Problems

Forces & Newton s Laws FR Practice Problems 1) A drag-racing car speeds up from rest to 22 m/s in 2 s. The car has mass 800 kg; the driver has mass 80 kg. a) Calculate the acceleration of the car. b) Calculate the net force on the car. c) Which

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Chapter 1 about science 1. Differentiate between hypothesis and theory.

Chapter 1 about science 1. Differentiate between hypothesis and theory. Physics A Exam Review Name Hr PHYSICS SCIENTIFIC METHOD FACT HYPOTHESIS LAW THEORY PHYSICAL SCIENCE UNITS VECTOR MAGNITUDE FORCE MECHANICAL EQUILIBRIUM NET FORCE SCALAR RESULTANT TENSION SUPPORT FORCE

More information

How does the total energy of the cart change as it goes down the inclined plane?

How does the total energy of the cart change as it goes down the inclined plane? Experiment 6 Conservation of Energy and the Work-Energy Theorem In this experiment you will explore the principle of conservation of mechanical energy. You will see that gravitational energy can be converted

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same 1. An object is thrown horizontally with a speed of v from point M and hits point E on the vertical wall after t seconds as shown in the figure. (Ignore air friction.). Two objects M and S are thrown as

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Phys 111 Exam 1 September 18, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 18, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 18, 018 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Online homework #6 due on Tue March 24

Online homework #6 due on Tue March 24 Online homework #6 due on Tue March 24 Problem 5.22 Part A: give your answer with only 2 significant digits (i.e. round answer and drop less significant digits) 51 Equilibrium Question 52 1 Using Newton

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec The exam is closed book and closed notes. Part I: There are 1 multiple choice questions, 1 point each. The answers for the multiple choice questions are to be placed on the SCANTRON form provided. Make

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

1. What three dimensions are used to derive most measurements in physics?

1. What three dimensions are used to derive most measurements in physics? Physics Semester 1 Exam Review Unit 1: Measurement What is the SI unit for length, mass, and time? When are zeros significant figures? When are zeros not significant figures? When are calculations rounded-off

More information

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car?

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car? Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

Announcements 23 Sep 2014

Announcements 23 Sep 2014 Announcements 23 Sep 2014 1. After today, just one more lecture of new material before Exam 1!! a. Exam 1: Oct 2 Oct 7 (2 pm) in the Testing Center, late fee after Oct 6 2 pm b. Exam review sessions by

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Conceptual Questions and Example Problems from Chapters 5 and 6 Conceptual Question 5.7 An object experiencing a constant

More information

Announcements 24 Sep 2013

Announcements 24 Sep 2013 Announcements 24 Sep 2013 1. If you have questions on exam 1 2. Newton s 2 nd Law Problems: F m a. Inclined planes b. Pulleys c. Ropes d. Friction e. Etc Remember N2 is a blueprint for obtaining a useful

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans Cause of Friction Friction is caused by the microscopic roughness between surfaces like two gears locking together. Factors Affecting Friction Factors affecting friction: 1) The condition of the surfaces

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information