A Study on Reliability Analysis for Reinforced Earth Retaining Walls

Size: px
Start display at page:

Download "A Study on Reliability Analysis for Reinforced Earth Retaining Walls"

Transcription

1 A Study on Reliability Analysis for Reinforced Earth Retaining Walls Byung Sik, Chun Department of Civil Engineering, Hanyang University, Seoul, Korea(Rep.) Kyung Min, Kim Department of Civil Engineering, Hanyang University, Seoul, Korea(Rep.) Deok Ki, Min Department of Civil and Environmental Engineering, Ulsan University, Ulsan, Korea(Rep.) ABSTRACT: Traditionally, the reliability of retaining walls is achieved through the use of safety factors or margins and adopting conservative assumption in the process of design, that is, by ascertaining that a minimum supply condition will remain adequate under a maximum demand condition. However that is often defined on the basis of subjective judgments. Such a traditional design methods are difficult to quantify and lack the logical basis of describing uncertainty. Especially, reinforced walls consider not only soil properties but soil-reinforcement interaction uncertainties. There has been much emphasis recently the use of probabilistic method in the geotechnical engineering. The most effective applications of probabilistic methods are involving relative probabilities of failure or illuminating the effects of uncertainties in the parameter. This thesis described how probabilistic description of soil parameters and soil-reinforcement interaction parameters were applied to the stability analysis. The first-order, second moment approach was explored and applied to the design of reinforced retaining walls. An example illustrated the relative contribution of uncertainties about different parameters to the reliability of the reinforced retaining walls. The results obtained from this study were follows; the reliability of the soil-reinforcement interface friction angle, was highly sensitive to the coefficient of variation. However, when the reinforced fill unit weight γ r, and the reinforcement length, L were lower than the limited values, the probabilities of failure were increased. The reliability of the retained backfill soil unit weight, γ f in the unreinforced area was lowly sensitive to the coefficient of variation. 1 INTRODUCTION This system used steel strips for reinforcement and as geosynthetic reinforcement has developed, this method is widely applied in various sites. Reinforced earth retaining walls are generally less expensive and more convenient than conventional concrete retaining walls. Various analyses and design methods were proposed for reasonable design of reinforced earth retaining wall. Limit equilibrium analysis is mostly used to decide the safety factor for failure of retaining wall. This design method shows different results according to differences for assumptions and application of safety factor because equilibrium for stresses and moment is analyzed assuming stress condition and shape of active failure plane and pullout resistance of geosynthetic reinforcements. Therefore, in this study, reliability analysis is carried out under consideration of uncertainty of assumptions to compensate for limit equilibrium analysis. 248

2 2 DESIGN CASE OF GEOSYNTHETICS REINFORCED EARTH RETAINING WALL The two kinds of design methods by limit equilibrium analysis are used for suitable design of reinforced earth retaining wall. Firstly, tie-back analysis method is generally used. This method represents that lateral active pressure is almost equal to lateral pressure. The second method is similar to traditional slope stability analysis method. In this method, the effect of reinforcement is considered when analyzes force of active surface of failure or moment equilibrium. In this study, 'tie-back' method Figure 1. Final section of design case combined with tensile-resistant has chosen for carrying out sensitivity and reliability analysis precisely. Design parameters are as follows. Reinforced fill properties γ r = 1.9tonf/m 3, c r = 0.0tonf/m 2, φ r = 32 Retained backfill properties γ f = 1.85tonf/m 3, c f = 0.0tonf/m 2, φ f = 30 Foundation ground properties γ b = 1.85tonf/m 3, c b = 0.0tonf/m 2, φ b = 30 Geosynthetic reinforcement is two kinds of geogrids each of which maximum tensile strength is 10tonf/m and 6tonf/m. The frictional characteristic between soil and geosynthetic reinforcement are c * = 0.0tonf/m 2, = 30. The height of retaining wall is 8m and design length of geosynthetic reinforcement is 6m. Because slope of wall is vertical, is zero, and slope angle is 25. Figure 1 shows the vertical spacing of geosynthetic reinforcement and type of geogrids by layers. Figure 1. Design example 3 STABILITY ANALYSIS BY LIMIT EQUILIBRIUM METHOD Figure 2 illustrates limit equilibrium state of soil mass acting on the sliding surface for vertical direction. In this case, the total sum P R of weight of soil mass V 1, vertical and horizontal factor of earth pressure F V, F H, reaction force on active surface R, and resisting friction force acting on geosynthetic reinforcement layers 249

3 placed on active surface are acting. So, angle of sliding failure planes is ϕ, equilibrium formula is described below(korean Geotechnical Society, 1998). P R = F H +(V 1 +V 2 +F T sin )tan(ϕ- ) (1) Resisting friction force P R of Each geosynthetic reinforcement is as follows. where, P R = 2L e (c*+ 'γtanφ*) (2) L e = Effective length of geosynthetic reinforcement, i.e. the length of geosynthetic reinforcement in the zone of resistance (beyond failure planes in Fig. 2) c * = Cohesion between soil and geosynthetic reinforcement (not considered sandy soil with little fine fraction) δ= Interface friction angle between soil and geosynthetic reinforcement σ' v = Effective vertical stress acting on geosynthetic reinforcement (=γ r z + L tanβ γ f /2, z : penetrated depth of geosynthetic reinforcement in upper surface of retaining wall) Figure 2. Stability analysis of geosynthetic reinforced earth retaining wall 4 SENSITIVITY ANALYSIS Sensitivity analysis was carried out to confirm the significant design parameters which could have influence on stability analysis. For this study, basic data used are provided below. L e =0.485m, c * = 0.0tonf/m 2, =30, γ r =1.9tonf/m 3, z=5.4m, H=8m, L=6m, =25, γ f =1.85tonf/m 3 Frictional resistance of geosynthetic reinforcement is 7.35tonf/m under the above condition. Table 1 shows that the most sensitive tendency was found for interface friction angle between soil and geosynthetic reinforcement and also unit weight of reinforced fill soils γ r was same. On the other hand, retained backfill soil 250

4 unit weight γ f, length of geosynthetic reinforcement L, and cohesion between soil and geosynthetic reinforcement c * had low sensitivity level. Table 1. Results of sensitivity analysis Baseline Coefficient of Variation, Parameter Value CV(%) New Value P R Change P R δ γ r 1.9tonf/m c * 0.16tonf/m L 6m γ f 1.85tonf/m RELIABILITY ANALYSIS Resistance conditions or load conditions for design of structures are diverse and these design parameters have uncertainty. So it is required that basic design parameters which affect the stability of structures are represented by general formulas in order to analyze probability analysis. General formula which consists of basic design parameters is as shown in Eq. (3). where, X term is vector value for X 1,X 2,X 3,...,X n. g(x)=g(x1, X2, X3,..., Xn) (3) For Eq.(3), the state of g(x)=0 is limit state, and if g(x) > 0 and g(x) < 0, then, each state is safe state, failure state. Generally, there are existing resisting force (R) and sliding force(s) in various structures and condition of maintaining those structures is R>S. This condition can be expressed as probability for the state P(SM < 0) which structures come to failure (Safety Margin, SM = R-S, Fig. 3). So, Eq. (3) becomes SM = R - S = g(x 1, X 2, X 3,..., X n ) < 0 (4) 251

5 In this study, reliability analysis was focused on interface friction characteristics and evaluated the probability of failure of reinforced earth retaining wall. For the characteristic of interface friction between soil and geosynthetic reinforcement, g-function is able to be obtained from the concept of the force acting on active area within retaining wall(s) and resisting force with frictional resistance between soil and geosynthetic reinforcement(r). SM = R - S = ΣP R - [F H +(V 1 +V 2 +F T sinβ)tan(φ-ψ)] = g(γ r, c *, L, β,δ, γ f ) (5) From probability Density Function by using μ M and σ M, probability can be obtained(rosenblueth, 1975). Reliability is dependent on kinds of structures, but generally allowable design standard is required over 95%(Smith, 1986). Also, Meyerhof (1982) suggested the limit value of β=3.1, maximum P f = 10-3 for earth retaining structures. When probability of failure is calculated, Equation of Reliability Index, β is used. This equation is defined as ratio of average of SM(μ M ) over root mean square deviation(σ M ), and from this Eq.(6), probability of failure can be written as Eq. (7). β = μ M / σ M (6) P f = P f FORM = Φ(-β) (7) Φ in Eq. (6) means Cumulative Normal Distribution Function in formula (6), and Reliability Index is decided by FORM, then probability of failure can be obtained by Φ-diagram. Figure 3. PDF of safety margin, SM 6 RESULTS OF RELIABILITY ANAYSIS Results of reliability analysis of design variables for proposed design case are shown in Fig 4, 5, 6, 7. Figure 4 shows that if interface friction angle is under 24 with respect to CV = 5%, 10%, 15%, probability of failure would be over 50%. As unit weight of reinforced fill within reinforced earth is increasing, probability of failure decreases in Figure 5. If CV = 15%, γ r = 1.9tonf/m 3 then, probability of failure was , and if CV = 20%, γ r = 1.9tonf/m 3 then, probability of failure was These values were evaluated larger than limit value 10-3 which was proposed by Meyerhof(1982). Figure 6, 7 show probability of failure according to length of geosynthetic reinforcement L, and retained backfill soil unit weight of retaining wall. For sensitivity analysis carried out already, effects on probability of failure are little, but influences of those factors are shown. The result shows Probability of failure depends on Length of geosynthetic reinforcement and unit weight γ f. 252

6 Figure 4. Probability of failure according to interface friction angle δ, P f Figure 5. Probability of failure according to reinforced fill unit weight γ r, P f Figure 6. Probability of failure according to 1ength of geogrid L, P f Figure 7. Probability of failure according to retained backfill soil unit weight γ f, P f 253

7 7 CONCLUSION In this paper, owing to uncertainty of design parameters, reliability analysis concentrates upon the frictional characteristic between soils and geosynthetic reinforcements. As a result, interface friction angle between soil and geosynthetic reinforcement and unit weight of reinforced fill have more influence on probability of failure than other design parameters. Besides, results showed that the length of geosynthetic reinforcement and unit weight of retained backfill soils have little influence on probability of failure. REFERENCES Korean Geotechnical Society, Geosynthetics, Geotechnical Series 9(1998). Meyerhof, G. G., "Limit state designs in geotechnical engineering", Structure Safety 1, No. 1, pp (1982). Rosenblueth, E., "Point estimates for probability moments", Proceedings of the National Academy of Science of the United State America, Vol. 72, pp (1975). Smith, G. N., "The use of probability theory to assess the safety of propped embedded cantilever retaining walls", Géotechnique, Vol. 35, No. 4, pp (1985). 254

Design of Reinforced Soil Walls By Lrfd Approach

Design of Reinforced Soil Walls By Lrfd Approach IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 16-26 www.iosrjournals.org Design of Reinforced Soil Walls By Lrfd Approach A.D. Maskar 1, N.T. Suryawanshi 2 1 Assistant

More information

Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method

Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method American J. of Engineering and Applied Sciences 2 (3): 565-572, 2009 ISSN 1941-7020 2009 Science Publications Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method B. Munwar

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Pullout Tests of Geogrids Embedded in Non-cohesive Soil Archives of Hydro-Engineering and Environmental Mechanics Vol. 51 (2004), No. 2, pp. 135 147 Pullout Tests of Geogrids Embedded in Non-cohesive Soil Angelika Duszyńska, Adam F. Bolt Gdansk University of

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

Chapter (11) Pile Foundations

Chapter (11) Pile Foundations Chapter (11) Introduction Piles are structural members that are made of steel, concrete, or timber. They are used to build pile foundations (classified as deep foundations) which cost more than shallow

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER. Sample Problems Problem 5.1 A gravity retaining wall is supporting a cohesionless soil. The active lateral force per linear foot of the retaining wall is most nearly (A) 5,000 lb/ft (B) 6,000 lb/ft (C)

More information

ULTIMATE BEARING CAPACITY OF ECCENTRICALLY LOADED STRIP FOUNDATION ON SAND REINFORCED WITH GEOGRIDS

ULTIMATE BEARING CAPACITY OF ECCENTRICALLY LOADED STRIP FOUNDATION ON SAND REINFORCED WITH GEOGRIDS ULTIMATE BEARING CAPACITY OF ECCENTRICALLY LOADED STRIP FOUNDATION ON SAND REINFORCED WITH GEOGRIDS C. R. Patra National Institute of Technology, Rourkela, India B. M. Das California State University,

More information

FHWA/IN/JTRP-2008/5. Final Report. Dongwook Kim Rodrigo Salgado

FHWA/IN/JTRP-2008/5. Final Report. Dongwook Kim Rodrigo Salgado FHWA/IN/JTRP-2008/5 Final Report LIMIT STATES AND LOAD AND RESISTANCE DESIGN OF SLOPES AND RETAINING STRUCTURES Dongwook Kim Rodrigo Salgado January 2009 INDOT Research TECHNICAL Summary Technology Transfer

More information

Reliability analysis of geotechnical risks

Reliability analysis of geotechnical risks Reliability analysis of geotechnical risks Lazhar Belabed*, Hacene Benyaghla* * Department of Civil Engineering and Hydraulics, University of Guelma, Algeria Abstract The evaluation of safety or reliability

More information

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press,   ISSN Design Of Retaining Walls : System Uncertainty & Fuzzy Safety Measures J. Oliphant *, P. W. Jowitt * and K. Ohno + * Department of Civil & Offshore Engineering, Heriot-Watt University, Riccarton, Edinburgh.

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

Design of Geo-Synthetic Retaining Walls as an Alternative to the Reinforced Concrete Walls in Jordan

Design of Geo-Synthetic Retaining Walls as an Alternative to the Reinforced Concrete Walls in Jordan American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-12, pp-301-312 www.ajer.org Research Paper Open Access Design of Geo-Synthetic Retaining Walls as an

More information

VIII. Sample Design Calculation... Page 2. Copyright 2011 Blaise J. Fitzpatrick, P.E. Page 1 of 24

VIII. Sample Design Calculation... Page 2.  Copyright 2011 Blaise J. Fitzpatrick, P.E. Page 1 of 24 Mechanically Stabilized Earth Structures Part 3 By Blaise J. Fitzpatrick, P.E. Fitzpatrick Engineering Associates, P.C. VIII. Sample Design Calculation... Page www.suncam.com Copyright 0 Blaise J. Fitzpatrick,

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls Excerptfrom theabengineeringmanualforretainingwals CHAPTER FIVE Seismic Analysis Introduction In seismic design we take a dynamic force and analyze it

More information

Seismic stability analysis of quay walls: Effect of vertical motion

Seismic stability analysis of quay walls: Effect of vertical motion Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland J. Yang Department of Civil Engineering, The University of Hong Kong, Hong Kong. Keywords: earthquakes; earth

More information

Active Earth Pressure on Retaining Wall Rotating About Top

Active Earth Pressure on Retaining Wall Rotating About Top INTERNATIONAL JOURNAL OF GEOLOGY Volume 9, 05 Active Earth Pressure on Retaining Wall Rotating About Top Ahad Ouria and Sajjad Sepehr Abstract Traditional methods for calculation of lateral earth pressure

More information

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil)

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil) QuickWall 8.0 - RETAINING WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

More information

RAMWALL DESIGN METHODOLOGY

RAMWALL DESIGN METHODOLOGY RAMWALL DESIGN METHODOLOGY Submitted by:. June 005 CONTENTS 1. INTRODUCTION 1 Page. REFERENCED DOCUMENTS & ABBREVIATIONS 1 3 DESIGN METHODOLOGY / THEORY 3.1 General 3. Internal Analysis 4 3.3 External

More information

9.13 Fixed Earth-Support Method for Penetration into Sandy Soil

9.13 Fixed Earth-Support Method for Penetration into Sandy Soil 476 Chapter 9: Sheet Pile Walls 9.13 Fixed Earth-Support Method for Penetration into y Soil When using the fixed earth support method, we assume that the toe of the pile is restrained from rotating, as

More information

BACKFILL AND INTERFACE CHARACTERISTICS

BACKFILL AND INTERFACE CHARACTERISTICS Chapter 5 BACKFILL AND INTERFACE CHARACTERISTICS This chapter introduces the properties of backfill and the distribution of soil density in the soil bin. The interface characteristics between the backfill

More information

Reliability-based ultimate limit state design in finite element methods

Reliability-based ultimate limit state design in finite element methods Delft University of Technology Faculty of Civil Engineering and Geosciences Section Geo-Engineering, Civil Engineering Reliability-based ultimate limit state design in finite element methods Author: Stefan

More information

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment Proc. of Second China-Japan Joint Symposium on Recent Development of Theory and Practice in Geotechnology, Hong Kong, China Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment J. C. Chai 1

More information

Earth Pressure Theory

Earth Pressure Theory Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition

More information

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Introduction To perform satisfactorily, shallow foundations must have two main characteristics: 1. They have to be safe against overall shear

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls FOREWORD This manual presents the techniques used by Allan Block in our engineering practice to design retaining walls. It is not intended as a textbook

More information

Calculation and analysis of internal force of piles excavation supporting. based on differential equation. Wei Wang

Calculation and analysis of internal force of piles excavation supporting. based on differential equation. Wei Wang International Conference on Energy and Environmental Protection (ICEEP 016) Calculation and analysis of internal force of piles excavation supporting based on differential equation Wei Wang School of Prospecting

More information

A Fundamental Approach for an Investigation of Behavior Characteristics of the Vegetation Structures Using Seeded Sandbags

A Fundamental Approach for an Investigation of Behavior Characteristics of the Vegetation Structures Using Seeded Sandbags A Fundamental Approach for an Investigation of Behavior Characteristics of the Vegetation Structures Using Seeded Sandbags H. T. Kim & S. D. Yoo Dept. of Civil Engineering, Hongik University, Seoul, Korea.

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland. EN 1997 1: Sections 3 and 6 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr

More information

Appraisal of Soil Nailing Design

Appraisal of Soil Nailing Design Indian Geotechnical Journal, 39(1), 2009, 81-95 Appraisal of Soil Nailing Design G. L. Sivakumar Babu * and Vikas Pratap Singh ** Introduction Geotechnical engineers largely prefer soil nailing as an efficient

More information

Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism

Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism S. B. Yu 1,a, J. P. Hambleton 1,b, and S. W. Sloan 1,c 1 ARC Centre of Excellence for Geotechnical Science and Engineering, The

More information

Design of RC Retaining Walls

Design of RC Retaining Walls Lecture - 09 Design of RC Retaining Walls By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Retaining Walls Terms Related to Retaining Walls Types of Retaining

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls This manual presents the techniques used by Allan Block in our engineering practice to design retaining walls. It is not intended as a textbook of soil

More information

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7.

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7. App'd by Construction Stages Name Term Objects present in this stage Stage 1 Long Wall 1 (Generated) (Generated) On retained side: Ground 1 (Generated), Borehole 1 (Generated), On excavated side: Excavation

More information

Chapter (7) Lateral Earth Pressure

Chapter (7) Lateral Earth Pressure Chapter (7) Lateral Earth Pressure Introduction Vertical or near vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other similar

More information

R.SUNDARAVADIVELU Professor IIT Madras,Chennai - 36.

R.SUNDARAVADIVELU Professor IIT Madras,Chennai - 36. Behaviour of Berthing Structure under Changing Slope in Seismic Condition - A Case Study K.MUTHUKKUMARAN Research Scholar Department of Ocean Engineering, R.SUNDARAVADIVELU Professor IIT Madras,Chennai

More information

Module 7 (Lecture 27) RETAINING WALLS

Module 7 (Lecture 27) RETAINING WALLS Module 7 (Lecture 27) RETAINING WALLS Topics 1.1 RETAINING WALLS WITH METALLIC STRIP REINFORCEMENT Calculation of Active Horizontal and vertical Pressure Tie Force Factor of Safety Against Tie Failure

More information

Chapter (4) Ultimate Bearing Capacity of Shallow Foundations (Special Cases)

Chapter (4) Ultimate Bearing Capacity of Shallow Foundations (Special Cases) Chapter (4) Ultimate earing Capacity of Shallow Foundations (Special Cases) Ultimate.C. of Shallow Foundations (Special Cases) Introduction The ultimate bearing capacity theories discussed in Chapter 3

More information

FOUNDATION ENGINEERING UNIT V

FOUNDATION ENGINEERING UNIT V FOUNDATION ENGINEERING UNIT V RETAINING WALLS Plastic equilibrium in soils active and passive states Rankine s theory cohesion less and cohesive soil - Coloumb s wedge theory condition for critical failure

More information

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS CONTENTS: 1.0 INTRODUCTION 2.0 SHALLOW FOUNDATIONS 2.1 Design criteria 2.2 Spreading load 2.3 Types of foundations 2.4 Ground failure modes 2.5 Definitions

More information

Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness

Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness Hsein Juang Glenn Professor of Civil Engineering Clemson University 1 2 Outline of Presentation Background

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

Upper bound seismic rotational stability analysis of gravity retaining walls considering embedment depth

Upper bound seismic rotational stability analysis of gravity retaining walls considering embedment depth J. Cent. South Univ. (05) : 4083 4089 DOI: 0.007/s77-05-953-4 Upper bound seismic rotational stability analysis of gravity retaining walls considering embedment depth LIU Jie( 刘杰 ),, HUNG Da( 黄达 ), 3,

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

Reliability analyses of rock slope stability

Reliability analyses of rock slope stability Reliability analyses of rock slope stability C. Cherubini & G. Vessia Politecnico di Bari, Bari, Italy ABSTRACT: The benchmark proposed is related to the topic of instability analyses in anchored rock

More information

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure.

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. UNIT V 1. Define Active Earth pressure. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. 2. Define Passive Earth pressure. The passive earth pressure occurs

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered

Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered 108 The Open Mechanical Engineering Journal, 011, 5, 108-116 Open Access Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered

More information

Probability - James Bay Case History

Probability - James Bay Case History 1 Introduction Probability - James Bay Case History This article looks at the SLOPE/W probabilistic analysis capabilities relative to a published case history. The James Bay hydroelectric project in Northern

More information

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

INTRODUCTION TO STATIC ANALYSIS PDPI 2013 INTRODUCTION TO STATIC ANALYSIS PDPI 2013 What is Pile Capacity? When we load a pile until IT Fails what is IT Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable

More information

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory Objectives In this section you will learn the following Development of Bearing Capacity Theory Terzaghi's Bearing Capacity Theory Assumptions in Terzaghi s Bearing Capacity Theory. Meyerhof's Bearing Capacity

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Geotechnical analysis of slopes and landslides: achievements and challenges

Geotechnical analysis of slopes and landslides: achievements and challenges University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2010 Geotechnical analysis of slopes and landslides: achievements and

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES

NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering C.A. Mota Soares et.al. (eds.) Lisbon, Portugal, 5-8 June 2006 NUMERICAL ANALYSIS OF PASSIVE EARTH

More information

The theories to estimate lateral earth pressure due to a strip surcharge loading will

The theories to estimate lateral earth pressure due to a strip surcharge loading will Chapter LITERATURE REVIEW The theories to estimate lateral earth pressure due to a strip surcharge loading will be introduced in this chapter. Commonly geotechnical engineers apply the equations suggested

More information

Chapter 12: Lateral Earth Pressure

Chapter 12: Lateral Earth Pressure Part 4: Lateral Earth Pressure and Earth-Retaining Structures Chapter 12: Lateral Earth Pressure Introduction Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile

More information

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA Ghasemloy Takantapeh Sasan, *Akhlaghi Tohid and Bahadori Hadi Department

More information

CE 4780 Hurricane Engineering II. Section on Flooding Protection: Earth Retaining Structures and Slope Stability. Table of Content

CE 4780 Hurricane Engineering II. Section on Flooding Protection: Earth Retaining Structures and Slope Stability. Table of Content CE 4780 Hurricane Engineering II Section on Flooding Protection: Earth Retaining Structures and Slope Stability Dante Fratta Fall 00 Table of Content Introduction Shear Strength of Soils Seepage nalysis

More information

LIVING REINFORCED SOIL - AN ECOLOGICAL METHOD TO STABILISE SLOPES

LIVING REINFORCED SOIL - AN ECOLOGICAL METHOD TO STABILISE SLOPES 75 Improvement of Soil Properties, Bratislava on June 4 5, 2007 LIVING REINFORCED SOIL - AN ECOLOGICAL METHOD TO STABILISE SLOPES Bernd Schuppener Abstract: Living Reinforced Soil is a method of stabilising

More information

Reliability of Traditional Retaining Wall Design

Reliability of Traditional Retaining Wall Design Reliability of Traditional Retaining Wall Design by Gordon A. Fenton 1, D. V. Griffiths 2, and M. B. Williams 3 in Géotechique, Vol. 55, No. 1, pp. 55-62, 2005 Keywords: retaining walls, earth pressure,

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 4

More information

Rock slope failure along non persistent joints insights from fracture mechanics approach

Rock slope failure along non persistent joints insights from fracture mechanics approach Rock slope failure along non persistent joints insights from fracture mechanics approach Louis N.Y. Wong PhD(MIT), BSc(HKU) Assistant Professor and Assistant Chair (Academic) Nanyang Technological University,

More information

EAS 664/4 Principle Structural Design

EAS 664/4 Principle Structural Design UNIVERSITI SAINS MALAYSIA 1 st. Semester Examination 2004/2005 Academic Session October 2004 EAS 664/4 Principle Structural Design Time : 3 hours Instruction to candidates: 1. Ensure that this paper contains

More information

Innovative Technique for Analysis of Retaining Wall using Dimensional Analysis

Innovative Technique for Analysis of Retaining Wall using Dimensional Analysis International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 1 Innovative Technique for Analysis of Retaining Wall using Dimensional Analysis Siddhesh P. Narvekar, Dr. Manoj

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

LRFD Calibration of the Ultimate Pullout Limit State for Geogrid Reinforced Soil Retaining Walls

LRFD Calibration of the Ultimate Pullout Limit State for Geogrid Reinforced Soil Retaining Walls LRFD Calibration of the Ultimate Pullout Limit State for Geogrid Reinforced Soil Retaining Walls Richard J. Bathurst, Ph.D. 1 ; Bingquan Huang, Ph.D. 2 ; and Tony M. Allen, M.ASCE 3 Int. J. Geomech. 2012.12:399-413.

More information

Resistance vs. Load Reliability Analysis

Resistance vs. Load Reliability Analysis esistance vs. oad eliability Analysis et be the load acting on a system (e.g. footing) and let be the resistance (e.g. soil) Then we are interested in controlling such that the probability that > (i.e.

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES Studia Geotechnica et Mechanica, Vol. XXXII, No. 2, 2010 CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES JERZY BAUER Institute of Mining, Wrocław University

More information

D DAVID PUBLISHING. Port and Marine Structures Made of Sheet Piling with Staggered Toe. 1. Introduction. 2. Design Approach and Main Dependencies

D DAVID PUBLISHING. Port and Marine Structures Made of Sheet Piling with Staggered Toe. 1. Introduction. 2. Design Approach and Main Dependencies Journal of Shipping and Ocean Engineering 4 (2017) 168-173 doi 10.17265/2159-5879/2017.04.004 D DAVID PUBLISHING Port and Marine Structures Made of Sheet Piling with Staggered Toe Doubrovsky Michael 1,

More information

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS S. Kontoe, L. Pelecanos & D.M. Potts ABSTRACT: Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified

More information

Steep reinforced slopes

Steep reinforced slopes Steep reinforced slopes Pietro Rimoldi Director, Geosynthetics Division Angelo Ricciuti Design Eng., Geosynthetics Division Piergiorgio Recalcati Design Eng., Geosynthetics Division Geogrids and reinforced

More information

Geotechnical Parameters for Retaining Wall Design

Geotechnical Parameters for Retaining Wall Design 11 th October 2012 Geotechnical Parameters for Retaining Wall Design Tanya Kouzmin 1 Most geotechnical failures are of retaining walls Are failure caused by WRONG calculations? Not usually calculation

More information

SHEAR STRENGTH I YULVI ZAIKA

SHEAR STRENGTH I YULVI ZAIKA SHEAR STRENGTH I YULVI ZAIKA MATERI Keruntuhan mohr coulomb, stress paths, kuat geser tanah non kohesif dan kohesif, evaluasi kuat geser di lapangan, tegangan normal dan tegangan geser pada sebuah bidang

More information

Effect of Different Category of Geogrid and Sand Layer on Pull-out Behaviour

Effect of Different Category of Geogrid and Sand Layer on Pull-out Behaviour Proceedings of the 2 nd World Congress on Civil, Structural, and Environmental Engineering (CSEE 17) Barcelona, Spain April 2 4, 17 Paper No. ICGRE 175 ISSN: 2371-5294 DOI:.11159/icgre17.175 Effect of

More information

International Journal of Modern Trends in Engineering and Research

International Journal of Modern Trends in Engineering and Research Scientific Journal Impact Factor (SJIF): 1.711 e-issn: 2349-9745 p-issn: 2393-8161 International Journal of Modern Trends in Engineering and Research www.ijmter.com STABILITY ANALYSIS OF DOWNSTREAM SLOPE

More information

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000)

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000) Objectives In this section you will learn the following Rankine s theory Coulomb s theory Method of horizontal slices given by Wang (2000) Distribution of the earth pressure Height of application of the

More information

Procedures for Design of Earth Slopes Using LRFD January Organizational Results Research Report RI03.030

Procedures for Design of Earth Slopes Using LRFD January Organizational Results Research Report RI03.030 ......................................... Organizational Results Research Report January 2006 RI03.030 Procedures for Design of Earth Slopes Using LRFD......................................... Prepared

More information

THE SHEAR BEHAVIOR OBTAINED FROM THE DIRECT SHEAR AND PULLOUT TESTS FOR DIFFERENT POOR GRADED SOIL-GEOSYNTHETIC SYSTEMS

THE SHEAR BEHAVIOR OBTAINED FROM THE DIRECT SHEAR AND PULLOUT TESTS FOR DIFFERENT POOR GRADED SOIL-GEOSYNTHETIC SYSTEMS Journal of Hsieh GeoEngineering, and Ham: The Vol. Shear 6, No. Behavior 1, pp. Obtained 15-26, April from 211 the Direct Shear and Pullout Tests for Different Poor Graded Soil-Geosynthetic Systems 15

More information

THE EFFECT OF SOIL VARIABILITY ON THE ULTIMATE BEARING CAPACITY OF SHALLOW FOUNDATION

THE EFFECT OF SOIL VARIABILITY ON THE ULTIMATE BEARING CAPACITY OF SHALLOW FOUNDATION Journal of Engineering Science and Technology Special Issue on ACEE 05 Conference August (05) - 3 School of Engineering, Taylor s University THE EFFECT OF SOIL VARIABILITY ON THE ULTIMATE BEARING CAPACITY

More information

Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test

Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test Scientific Cooperations Journal of Civil Engineering and Architecture, Vol. 1, Issue. 1, August-2015 31 Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test Naeini, Seyed Abolhasan

More information

ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS.

ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS. Discussion on ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS. Int. J. of GEOMATE, Sept., 2015, Vol 9, No. 1 (S1. No. 17), pp. 1395-1402.

More information

30/03/2011. Eurocode 7 Today and Tomorrow. Ground structures t Slope and Retaining wall design in the Netherlands. Contents

30/03/2011. Eurocode 7 Today and Tomorrow. Ground structures t Slope and Retaining wall design in the Netherlands. Contents Eurocode 7 Today and Tomorrow Ground structures t Slope and Retaining wall design in the Netherlands Adriaan van Seters Hein Jansen Fugro Ingenieursbureau BV The Netherlands Contents Design Approach 3

More information

NUMERICAL STUDY AND LOAD AND RESISTANCE FACTOR DESIGN (LRFD) CALIBRATION FOR REINFORCED SOIL RETAINING WALLS

NUMERICAL STUDY AND LOAD AND RESISTANCE FACTOR DESIGN (LRFD) CALIBRATION FOR REINFORCED SOIL RETAINING WALLS NUMERICAL STUDY AND LOAD AND RESISTANCE FACTOR DESIGN (LRFD) CALIBRATION FOR REINFORCED SOIL RETAINING WALLS By Bing Quan Huang A thesis submitted to the Department of Civil Engineering In conformity with

More information

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Disaster Mitigation of Debris Flows, Slope Failures and Landslides 113 Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Yasuo Ishii, 1) Hisashi Tanaka, 1) Kazunori

More information

Seismic Slope Stability

Seismic Slope Stability ISSN (e): 2250 3005 Volume, 06 Issue, 04 April 2016 International Journal of Computational Engineering Research (IJCER) Seismic Slope Stability Mohammad Anis 1, S. M. Ali Jawaid 2 1 Civil Engineering,

More information

SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3

SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3 ABSTRACT SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3 The paper presents Seismic Hazard Analysis (SHA) of Sondur dam situated in Chhattisgarh

More information

Comparison Study of Static and Dynamic Earth Pressure behind the Retaining Wall

Comparison Study of Static and Dynamic Earth Pressure behind the Retaining Wall IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 12, Issue 3 Ver. I (May. - Jun. 215), PP 77-84 www.iosrjournals.org Comparison Study of Static and

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

Eurocode 7 from soil mechanics to rock mechanics. Luís Lamas, LNEC, Lisbon, Portugal Didier Virely, CEREMA, Toulouse, France

Eurocode 7 from soil mechanics to rock mechanics. Luís Lamas, LNEC, Lisbon, Portugal Didier Virely, CEREMA, Toulouse, France Eurocode 7 from soil mechanics to rock mechanics Luís Lamas, LNEC, Lisbon, Portugal Didier Virely, CEREMA, Toulouse, France Contents 1. The discontinuous nature of rock mass 2. Design methods 3. Calculation

More information

(Refer Slide Time: 04:21 min)

(Refer Slide Time: 04:21 min) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 44 Shear Strength of Soils Lecture No.2 Dear students today we shall go through yet

More information

PILE-SUPPORTED RAFT FOUNDATION SYSTEM

PILE-SUPPORTED RAFT FOUNDATION SYSTEM PILE-SUPPORTED RAFT FOUNDATION SYSTEM Emre Biringen, Bechtel Power Corporation, Frederick, Maryland, USA Mohab Sabry, Bechtel Power Corporation, Frederick, Maryland, USA Over the past decades, there has

More information

Module 8. Lecture 5: Reliability analysis

Module 8. Lecture 5: Reliability analysis Lecture 5: Reliability analysis Reliability It is defined as the probability of non-failure, p s, at which the resistance of the system exceeds the load; where P() denotes the probability. The failure

More information

STUDY OF PERFORMANCE OF GEOGRID AND SOIL INTERFACE USING VERTICAL PULLOUT TEST. Uttarakhand,

STUDY OF PERFORMANCE OF GEOGRID AND SOIL INTERFACE USING VERTICAL PULLOUT TEST. Uttarakhand, International Journal of Advances in Engineering & Scientific Research, Vol.4, Issue 2, Feb-Apr-2017, pp 49-54 ISSN: 2349 3607 (Online), ISSN: 2349 4824 (Print) www.arseam.com Impact Factor: 2.48 DOI:

More information

DESIGN AND APPLICATION

DESIGN AND APPLICATION III. 3.1 INTRODUCTION. From the foregoing sections on contact theory and material properties we can make a list of what properties an ideal contact material would possess. (1) High electrical conductivity

More information