Compiler Design Spring 2017

Size: px
Start display at page:

Download "Compiler Design Spring 2017"

Transcription

1 Compiler Design Spring Live variables Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation

2 Last lecture Definition: A variable V is live at point P if there is a path from P to EXIT that contains a statement S that uses V and there is no definition of V on this path between P and S. 33

3 (Detailed) local analysis S 1 : V = S 2 : W = expr S 3 : = X V S 4 : = Y 1 S 5 : = Z Live = {X, Z, Y} B Live = {X, Z, Y, V} Live = {X, Z, Y, V} Live = {X, Z, Y} Live = {X, Z} Given set of live variables at P after_b Determines live variables On a per-statement level, e.g., P before_s 5, P before_s4, etc. Also at P before_b == P before_s 1 Global analysis Propagates liveness information through control flow graph Through control structures and basic blocks (needs local analysis) Compiler transforms program Based on liveness information For example: No need to store value computed by S 2 in variable W If expr has no side effect stmt can be removed Live = {X, Z} 34

4 Observation Effect of statements in a basic block can be also summarized def B = { var var is defined in B prior to any use of var in B } use B = { var var is used in B prior to any definition of var in B } 35

5 Live = {X, Z, Y} = OUT(B) S 1 : V = S 2 : W = expr S 3 : = X V S 4 : = Y 1 S 5 : = Z B Live = {X, Z, Y, V} Live def = {V, {X, W} Z, Y, V} Live use = {X, Z, V, Y} Y, Z} Live = {X, Z} Live = {X, Z} = IN(B) Transfer function IN(B) = use B (OUT(B) def B ) 36

6 Finding live variables IN[EXIT] = Initialize IN[B] = for B EXIT while (changes to any IN(B)) { for (each basic block B EXIT) { OUT(B) = Bi, Bi is successor of B in CFG IN(Bi) IN(B) = use B (OUT(B) def B ) } } 37

7 Finding live variables IN[EXIT] = Initialize IN[B] = for B EXIT while (changes to any IN(B)) { for (each basic block B EXIT) { OUT(B) = Bi, Bi is successor of B in CFG IN(Bi) IN(B) = use B (OUT(B) def B ) } } 38

8 Initialize IN[B] = while (changes to any IN(B)) { for (each basic block B EXIT) { OUT(B) = Bi, Bi is successor of B in CFG IN(Bi) IN(B) = use B (OUT(B) def B ) } def = {i, j, a} use = { m, n } ENTRY d1: i = m 1 d2: j = n d3: a = IN(B1) = OUT(B1) = def = {} use = {i, j} d4: i = i + 1 d5: j = j - 1 IN(B2) = OUT(B2) = d6: a = IN(B3) = def = {a} use = def = {i} use = OUT(B3) = d7: i = IN(B4) = OUT(B4) = From Aho et al Compilers, p 604 EXIT IN(EXIT) 39

9 40

10 Initialize IN[B] = while (changes to any IN(B)) { for (each basic block B EXIT) { OUT(B) = Bi, Bi is successor of B in CFG IN(Bi) IN(B) = use B (OUT(B) def B ) } def = {i, j, a} use = { m, n } ENTRY d1: i = m 1 d2: j = n d3: a = IN(B1) OUT(B1) {m,n} {i,j} def = {} use = {i, j} d4: i = i + 1 d5: j = j - 1 IN(B2) OUT(B2) {i,j} {j} d6: a = IN(B3) {j} def = {a} use = def = {i} use = OUT(B3) {j} d7: i = IN(B4) OUT(B4) {j} {i,j} From Aho et al Compilers, p 604 EXIT IN(EXIT) 41

11 Variation ENTRY def = {i, j, a} use = { m, n } d1: i = m 1 d2: j = n d3: a = IN(B1) OUT(B1) {m,n} {i,j} def = {} use = {i, j} d4: i = i + 1 d5: j = j - 1 IN(B2) OUT(B2) {i,j} {j} d6: a = IN(B3) {j} def = {a} use = def = {i} use = OUT(B3) {j} d7: i = d8: = i + 1 IN(B4) OUT(B4) {j} {i,j} From Aho et al Compilers, p 604 EXIT IN(EXIT) 42

12 Variation 2 ENTRY def = {i, j, a} use = { m, n } d1: i = m 1 d2: j = n d3: a = IN(B1) OUT(B1) {m,n} {i,j,n} def = {} use = {i, j} d4: i = i + 1 d5: j = j - 1 IN(B2) OUT(B2) {i,j,n} {j,n} d6: a = n + 1 IN(B3) {j,n} def = {a} use = {n} def = {i} use = OUT(B3) {n,j} d7: i = IN(B4) OUT(B4) {n,j} {i,j,n} From Aho et al Compilers, p 604 EXIT IN(EXIT) 43

13 Comments The set use B includes also uses in statements that are not assignment statements Expression in if-then statements Expressions in while loops Actuals in method calls The order of visiting the basic blocks (in main loop) determines how fast the fixed point is found But not the final result There may be other solutions that are also correct 44

14 Summary Reaching definitions and live variables require a similar approach Compute two sets for each basic block B Solution = OUT(B) / IN(B) Context = IN(B) / OUT(B) Two sets to capture local effects local_cut = def B (but with different meaning: sets of definitions/sets of variables) local_new = gen B / use B Init Solution(ENTRY) / Solution(EXIT) i.e. OUT(ENTRY) / IN(EXIT) Init remaining Solution sets Iterate over basic blocks B Context(B) = Bi, Bi is predecessor/successor of B in CFG Solution(Bi) Solution(B) = local_new B (Context(B) local_cut B ) 45

15 Flow of information Reaching definition: i ENTRY d1: i = m 1 d2: j = n d3: a = d4: = i + 1 d5: j = j - 1 d6: a = i + 1 d7: i = EXIT 46

16 Flow of information Reaching definition: j ENTRY d1: i = m 1 d2: j = n d3: a = d4: = i + 1 d5: j = j - 1 d6: a = i + 1 d7: i = EXIT 48

17 Flow of information Live variable: i ENTRY d1: i = m 1 d2: j = n d3: a = d4: = i + 1 d5: j = j - 1 d6: a = i + 1 d7: i = EXIT 49

18 Flow of information Live variable: j ENTRY d1: i = m 1 d2: j = n d3: a = d4: = i + 1 d5: j = j - 1 d6: a = i + 1 d7: i = EXIT 50

19 Implications Should try to propagate information in the direction of the flow For speed of conversion, not for correctness Reaching definitions: forward problem Information flows in the direction of the CFG, from ENTRY to EXIT Live variables: backward problem Information flows from EXIT to ENTRY 51

20 Implementation ENTRY d1: i = m 1 d2: j = n d3: a = d4: i = i + 1 d5: j = j - 1 d6: a = d7: i = Flow graph as used when EXIT computing reaching definitions 52

21 Implementation EXIT d1: i = m 1 d2: j = n d3: a = d4: i = i + 1 d5: j = j - 1 d6: a = d7: i = Flip flow graph when computing ENTRY live variables 53

22 Def-use and use-def chains Store information about reaching definitions as lists For each use of a variable include in the list all definitions that reach this use (use-def chain) For each definition of a variable include in the list all uses of this variable (def-use chain) DU chains or UD chains for short Can be obtained from solution to global data flow problem 54

23 UD chains ENTRY d 1 : i = m 1 d 2 : j = n d 3 : a = IN(B1) OUT(B1) {d 1,d 2,d 3 } d 4 : i = i + 1 d 5 : j = j - 1 IN(B2) OUT(B2) {d 1,d 2,d 3,d 5,d 6,d 7 } {d 3,d 4,d 5,d 6 } d 6 : a = IN(B3) OUT(B3) {d 3,d 4,d 5,d 6 } {d 4,d 5,d 6 } d 7 : i = IN(B4) OUT(B4) {d 3,d 4,d 5,d 6 } {d 3,d 5,d 6,d 7 } EXIT 55

24 56

25 DU chains ENTRY d 1 : i = m 1 d 2 : j = n d 3 : a = IN(B1) OUT(B1) {d 1,d 2,d 3 } d 4 : i = i + 1 d 5 : j = j - 1 IN(B2) OUT(B2) {d 1,d 2,d 3,d 5,d 6,d 7 } {d 3,d 4,d 5,d 6 } d 6 : a = IN(B3) OUT(B3) {d 3,d 4,d 5,d 6 } {d 4,d 5,d 6 } d 7 : i = IN(B4) OUT(B4) {d 3,d 4,d 5,d 6 } {d 3,d 5,d 6,d 7 } EXIT 58

26 59

27 ENTRY UD/DU chains Show the DU and UD chains r = 3 s = t t = u r = r + 1 v = r * s s = 0 s = s + 1 u = r + s w = u + 2 EXIT 60

28 61

29 Program analysis Compiler needs information Specific problem Devise flow analysis to compute information Can we think of other kinds of information that might be useful to the compiler? 63

: Compiler Design. 9.5 Live variables 9.6 Available expressions. Thomas R. Gross. Computer Science Department ETH Zurich, Switzerland

: Compiler Design. 9.5 Live variables 9.6 Available expressions. Thomas R. Gross. Computer Science Department ETH Zurich, Switzerland 252-210: Compiler Design 9.5 Live variables 9.6 Available expressions Thomas R. Gross Computer Science Department ETH Zurich, Switzerland Outline Warp up reaching definifons Live variables Available expressions

More information

Compiler Design Spring 2017

Compiler Design Spring 2017 Compiler Design Spring 2017 8.5 Reaching definitions Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation Admin issues Brief reminder: Code review takes place today @ 15:15 You

More information

Lecture 5 Introduction to Data Flow Analysis

Lecture 5 Introduction to Data Flow Analysis Lecture 5 Introduction to Data Flow Analysis I. Structure of data flow analysis II. III. IV. Example 1: Reaching definition analysis Example 2: Liveness analysis Framework Phillip B. Gibbons 15-745: Intro

More information

Dataflow Analysis Lecture 2. Simple Constant Propagation. A sample program int fib10(void) {

Dataflow Analysis Lecture 2. Simple Constant Propagation. A sample program int fib10(void) { -4 Lecture Dataflow Analysis Basic Blocks Related Optimizations Copyright Seth Copen Goldstein 00 Dataflow Analysis Last time we looked at code transformations Constant propagation Copy propagation Common

More information

Topic-I-C Dataflow Analysis

Topic-I-C Dataflow Analysis Topic-I-C Dataflow Analysis 2012/3/2 \course\cpeg421-08s\topic4-a.ppt 1 Global Dataflow Analysis Motivation We need to know variable def and use information between basic blocks for: constant folding dead-code

More information

Lecture 4 Introduc-on to Data Flow Analysis

Lecture 4 Introduc-on to Data Flow Analysis Lecture 4 Introduc-on to Data Flow Analysis I. Structure of data flow analysis II. Example 1: Reaching defini?on analysis III. Example 2: Liveness analysis IV. Generaliza?on 15-745: Intro to Data Flow

More information

CMSC 631 Program Analysis and Understanding. Spring Data Flow Analysis

CMSC 631 Program Analysis and Understanding. Spring Data Flow Analysis CMSC 631 Program Analysis and Understanding Spring 2013 Data Flow Analysis Data Flow Analysis A framework for proving facts about programs Reasons about lots of little facts Little or no interaction between

More information

Dataflow Analysis. A sample program int fib10(void) { int n = 10; int older = 0; int old = 1; Simple Constant Propagation

Dataflow Analysis. A sample program int fib10(void) { int n = 10; int older = 0; int old = 1; Simple Constant Propagation -74 Lecture 2 Dataflow Analysis Basic Blocks Related Optimizations SSA Copyright Seth Copen Goldstein 200-8 Dataflow Analysis Last time we looked at code transformations Constant propagation Copy propagation

More information

CSC D70: Compiler Optimization Dataflow-2 and Loops

CSC D70: Compiler Optimization Dataflow-2 and Loops CSC D70: Compiler Optimization Dataflow-2 and Loops Prof. Gennady Pekhimenko University of Toronto Winter 2018 The content of this lecture is adapted from the lectures of Todd Mowry and Phillip Gibbons

More information

Data-Flow Analysis. Compiler Design CSE 504. Preliminaries

Data-Flow Analysis. Compiler Design CSE 504. Preliminaries Data-Flow Analysis Compiler Design CSE 504 1 Preliminaries 2 Live Variables 3 Data Flow Equations 4 Other Analyses Last modifled: Thu May 02 2013 at 09:01:11 EDT Version: 1.3 15:28:44 2015/01/25 Compiled

More information

Compiler Design. Data Flow Analysis. Hwansoo Han

Compiler Design. Data Flow Analysis. Hwansoo Han Compiler Design Data Flow Analysis Hwansoo Han Control Flow Graph What is CFG? Represents program structure for internal use of compilers Used in various program analyses Generated from AST or a sequential

More information

Data flow analysis. DataFlow analysis

Data flow analysis. DataFlow analysis Data flow analysis DataFlow analysis compile time reasoning about the runtime flow of values in the program represent facts about runtime behavior represent effect of executing each basic block propagate

More information

Data Flow Analysis (I)

Data Flow Analysis (I) Compiler Design Data Flow Analysis (I) Hwansoo Han Control Flow Graph What is CFG? Represents program structure for internal use of compilers Used in various program analyses Generated from AST or a sequential

More information

(b). Identify all basic blocks in your three address code. B1: 1; B2: 2; B3: 3,4,5,6; B4: 7,8,9; B5: 10; B6: 11; B7: 12,13,14; B8: 15;

(b). Identify all basic blocks in your three address code. B1: 1; B2: 2; B3: 3,4,5,6; B4: 7,8,9; B5: 10; B6: 11; B7: 12,13,14; B8: 15; (a). Translate the program into three address code as defined in Section 6.2, dragon book. (1) i := 2 (2) if i > n goto (7) (3) a[i] := TRUE (4) t2 := i+1 (5) i := t2 (6) goto (2) (7) count := 0 (8) s

More information

3/11/18. Final Code Generation and Code Optimization

3/11/18. Final Code Generation and Code Optimization Final Code Generation and Code Optimization 1 2 3 for ( i=0; i < N; i++) { base = &a[0]; crt = *(base + i); } original code base = &a[0]; for ( i=0; i < N; i++) { crt = *(base + i); } optimized code e1

More information

Topics on Compilers

Topics on Compilers Assignment 2 4541.775 Topics on Compilers Sample Solution 1. Test for dependences on S. Write down the subscripts. Which positions are separable, which are coupled? Which dependence test would you apply

More information

Generalizing Data-flow Analysis

Generalizing Data-flow Analysis Generalizing Data-flow Analysis Announcements PA1 grades have been posted Today Other types of data-flow analysis Reaching definitions, available expressions, reaching constants Abstracting data-flow analysis

More information

CSC D70: Compiler Optimization Static Single Assignment (SSA)

CSC D70: Compiler Optimization Static Single Assignment (SSA) CSC D70: Compiler Optimization Static Single Assignment (SSA) Prof. Gennady Pekhimenko University of Toronto Winter 08 The content of this lecture is adapted from the lectures of Todd Mowry and Phillip

More information

Dataflow Analysis. Chapter 9, Section 9.2, 9.3, 9.4

Dataflow Analysis. Chapter 9, Section 9.2, 9.3, 9.4 Dataflow Analysis Chapter 9, Section 9.2, 9.3, 9.4 2 Dataflow Analysis Dataflow analysis is a sub area of static program analysis Used in the compiler back end for optimizations of three address code and

More information

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed Another Form of Data-Flow Analysis Propagation of values for a variable reference, where is the value produced? for a variable definition, where is the value consumed? Possible answers reaching definitions,

More information

CS 553 Compiler Construction Fall 2006 Homework #2 Dominators, Loops, SSA, and Value Numbering

CS 553 Compiler Construction Fall 2006 Homework #2 Dominators, Loops, SSA, and Value Numbering CS 553 Compiler Construction Fall 2006 Homework #2 Dominators, Loops, SSA, and Value Numbering Answers Write your answers on another sheet of paper. Homework assignments are to be completed individually.

More information

Dataflow Analysis. Dragon book, Chapter 9, Section 9.2, 9.3, 9.4

Dataflow Analysis. Dragon book, Chapter 9, Section 9.2, 9.3, 9.4 Dataflow Analysis Dragon book, Chapter 9, Section 9.2, 9.3, 9.4 2 Dataflow Analysis Dataflow analysis is a sub-area of static program analysis Used in the compiler back end for optimizations of three-address

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

Dataflow analysis. Theory and Applications. cs6463 1

Dataflow analysis. Theory and Applications. cs6463 1 Dataflow analysis Theory and Applications cs6463 1 Control-flow graph Graphical representation of runtime control-flow paths Nodes of graph: basic blocks (straight-line computations) Edges of graph: flows

More information

We define a dataflow framework. A dataflow framework consists of:

We define a dataflow framework. A dataflow framework consists of: So far been talking about various dataflow problems (e.g. reaching definitions, live variable analysis) in very informal terms. Now we will discuss a more fundamental approach to handle many of the dataflow

More information

Compiler Design Spring 2017

Compiler Design Spring 2017 Compiler Design Spring 2017 3.4 Bottom-up parsing Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation 1 Bottom up parsing Goal: Obtain rightmost derivation in reverse w S Reduce

More information

The Reachability-Bound Problem. Gulwani and Zuleger PLDI 10

The Reachability-Bound Problem. Gulwani and Zuleger PLDI 10 The Reachability-Bound Problem Gulwani and Zuleger PLDI 10 CS252r Spring 2011 The Reachability-Bound problem Find a symbolic worst case bound on the number of times a program point is reached Intra-procedural:

More information

COSE312: Compilers. Lecture 17 Intermediate Representation (2)

COSE312: Compilers. Lecture 17 Intermediate Representation (2) COSE312: Compilers Lecture 17 Intermediate Representation (2) Hakjoo Oh 2017 Spring Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 1 / 19 Common Intermediate Representations Three-address code

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Xiangyu Zhang The slides are compiled from Alex Aiken s Michael D. Ernst s Sorin Lerner s A Scary Outline Type-based analysis Data-flow analysis Abstract interpretation Theorem

More information

Adventures in Dataflow Analysis

Adventures in Dataflow Analysis Adventures in Dataflow Analysis CSE 401 Section 9-ish Jack Eggleston, Aaron Johnston, & Nate Yazdani Announcements - Code Generation due Announcements - Code Generation due - Compiler Additions due next

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Lecture 10: Data Flow Analysis II

Lecture 10: Data Flow Analysis II CS 515 Programming Language and Compilers I Lecture 10: Data Flow Analysis II (The lectures are based on the slides copyrighted by Keith Cooper and Linda Torczon from Rice University.) Zheng (Eddy) Zhang

More information

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach EDA045F: Program Analysis LECTURE 10: TYPES 1 Christoph Reichenbach In the last lecture... Performance Counters Challenges in Dynamic Performance Analysis Taint Analysis Binary Instrumentation 2 / 44 Types

More information

: Compiler Design

: Compiler Design 252-210: Compiler Design 9.2 Points and paths 9.3 Transfer func6ons Thomas R. Gross Computer Science Department ETH Zurich, Switzerland Outline Points Paths Transfer funceons 2 Terminology Local {analysis

More information

Stochastic processes. MAS275 Probability Modelling. Introduction and Markov chains. Continuous time. Markov property

Stochastic processes. MAS275 Probability Modelling. Introduction and Markov chains. Continuous time. Markov property Chapter 1: and Markov chains Stochastic processes We study stochastic processes, which are families of random variables describing the evolution of a quantity with time. In some situations, we can treat

More information

Lecture 11: Data Flow Analysis III

Lecture 11: Data Flow Analysis III CS 515 Programming Language and Compilers I Lecture 11: Data Flow Analysis III (The lectures are based on the slides copyrighted by Keith Cooper and Linda Torczon from Rice University.) Zheng (Eddy) Zhang

More information

Computing Static Single Assignment (SSA) Form

Computing Static Single Assignment (SSA) Form Computing Static Single Assignment (SSA) Form Overview What is SSA? Advantages of SSA over use-def chains Flavors of SSA Dominance frontiers revisited Inserting φ-nodes Renaming the variables Translating

More information

Context-Free Grammars (and Languages) Lecture 7

Context-Free Grammars (and Languages) Lecture 7 Context-Free Grammars (and Languages) Lecture 7 1 Today Beyond regular expressions: Context-Free Grammars (CFGs) What is a CFG? What is the language associated with a CFG? Creating CFGs. Reasoning about

More information

Data Flow Analysis. Lecture 6 ECS 240. ECS 240 Data Flow Analysis 1

Data Flow Analysis. Lecture 6 ECS 240. ECS 240 Data Flow Analysis 1 Data Flow Analysis Lecture 6 ECS 240 ECS 240 Data Flow Analysis 1 The Plan Introduce a few example analyses Generalize to see the underlying theory Discuss some more advanced issues ECS 240 Data Flow Analysis

More information

Department of Computer Science and Engineering, IIT Kanpur, INDIA. Code Optimization. Sanjeev K Aggarwal Code Optimization 1 of I

Department of Computer Science and Engineering, IIT Kanpur, INDIA. Code Optimization. Sanjeev K Aggarwal Code Optimization 1 of I Code Optimization Sanjeev K Aggarwal Code Optimization 1 of 23 2007-08-I Code Optimization int a,b,c,d ldw a,r1 add r1,r2,r3 c = a+b ldw b,r2 add r3,1,r4 d = c+1 add r1,r2,r3 stw r3,c ldw c,r3 add r3,1,r4

More information

MIT Manufacturing Systems Analysis Lectures 18 19

MIT Manufacturing Systems Analysis Lectures 18 19 MIT 2.852 Manufacturing Systems Analysis Lectures 18 19 Loops Stanley B. Gershwin Spring, 2007 Copyright c 2007 Stanley B. Gershwin. Problem Statement B 1 M 2 B 2 M 3 B 3 M 1 M 4 B 6 M 6 B 5 M 5 B 4 Finite

More information

Math 5490 Network Flows

Math 5490 Network Flows Math 90 Network Flows Lecture 8: Flow Decomposition Algorithm Stephen Billups University of Colorado at Denver Math 90Network Flows p./6 Flow Decomposition Algorithms Two approaches to modeling network

More information

Saturday, April 23, Dependence Analysis

Saturday, April 23, Dependence Analysis Dependence Analysis Motivating question Can the loops on the right be run in parallel? i.e., can different processors run different iterations in parallel? What needs to be true for a loop to be parallelizable?

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity.

MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity. MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity. Orbit Let f : X X be a map defining a discrete dynamical system. We use notation f n for the n-th iteration of f defined

More information

Fortran program + Partial data layout specifications Data Layout Assistant.. regular problems. dynamic remapping allowed Invoked only a few times Not part of the compiler Can use expensive techniques HPF

More information

ACS2: Decidability Decidability

ACS2: Decidability Decidability Decidability Bernhard Nebel and Christian Becker-Asano 1 Overview An investigation into the solvable/decidable Decidable languages The halting problem (undecidable) 2 Decidable problems? Acceptance problem

More information

reversed chain is ergodic and has the same equilibrium probabilities (check that π j =

reversed chain is ergodic and has the same equilibrium probabilities (check that π j = Lecture 10 Networks of queues In this lecture we shall finally get around to consider what happens when queues are part of networks (which, after all, is the topic of the course). Firstly we shall need

More information

Iterative Dataflow Analysis

Iterative Dataflow Analysis Iterative Dataflow Analysis CS 352 9/24/07 Slides adapted from Nielson, Nielson, Hankin Principles of Program Analysis Key Ideas Need a mechanism to evaluate (statically) statements in a program Problem:

More information

Register Allocation. Maryam Siahbani CMPT 379 4/5/2016 1

Register Allocation. Maryam Siahbani CMPT 379 4/5/2016 1 Register Allocation Maryam Siahbani CMPT 379 4/5/2016 1 Register Allocation Intermediate code uses unlimited temporaries Simplifying code generation and optimization Complicates final translation to assembly

More information

Scalar Optimisation Part 2

Scalar Optimisation Part 2 Scalar Optimisation Part 2 Michael O Boyle January 2014 1 Course Structure L1 Introduction and Recap 4-5 lectures on classical optimisation 2 lectures on scalar optimisation Last lecture on redundant expressions

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 21: Introduction to NP-Completeness 12/9/2015 Daniel Bauer Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways

More information

AST rewriting. Part I: Specifying Transformations. Imperative object programs. The need for path queries. fromentry, paths, toexit.

AST rewriting. Part I: Specifying Transformations. Imperative object programs. The need for path queries. fromentry, paths, toexit. Part I: Specifying Transformations Oege de Moor Ganesh Sittampalam Programming Tools Group, Oxford focus AST rewriting To apply rule: rewrite(pat 0, pat 1 ) Match: focus = φ(pat 0 ) Replace: focus := φ(pat

More information

Model Checking & Program Analysis

Model Checking & Program Analysis Model Checking & Program Analysis Markus Müller-Olm Dortmund University Overview Introduction Model Checking Flow Analysis Some Links between MC and FA Conclusion Apology for not giving proper credit to

More information

or 0101 Machine

or 0101 Machine Synchronous State Graph or Synchronous State Graph or Detector Design a state graph for a machine with: One input X, one output Z. Z= after receiving the complete sequence or Overlapped sequences are detected.

More information

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS 1. [6 POINTS] For language L 1 = {0 n 1 m n, m 1, m n}, which string is in L 1? ANSWER: 0001111 is in L 1 (with n =

More information

directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time

directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time Network Flow 1 The Maximum-Flow Problem directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time 2 Maximum Flows and Minimum Cuts flows and cuts max flow equals

More information

Statistical NLP: Hidden Markov Models. Updated 12/15

Statistical NLP: Hidden Markov Models. Updated 12/15 Statistical NLP: Hidden Markov Models Updated 12/15 Markov Models Markov models are statistical tools that are useful for NLP because they can be used for part-of-speech-tagging applications Their first

More information

Space-aware data flow analysis

Space-aware data flow analysis Space-aware data flow analysis C. Bernardeschi, G. Lettieri, L. Martini, P. Masci Dip. di Ingegneria dell Informazione, Università di Pisa, Via Diotisalvi 2, 56126 Pisa, Italy {cinzia,g.lettieri,luca.martini,paolo.masci}@iet.unipi.it

More information

ECE380 Digital Logic

ECE380 Digital Logic ECE38 Digital Logic State Minimization Dr. D. J. Jackson Lecture 32- State minimization For simple FSMs, it is easy to see from the state diagram that the number of states used is the minimum possible

More information

Software Verification

Software Verification Software Verification Grégoire Sutre LaBRI, University of Bordeaux, CNRS, France Summer School on Verification Technology, Systems & Applications September 2008 Grégoire Sutre Software Verification VTSA

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

DFA of non-distributive properties

DFA of non-distributive properties DFA of non-distributive properties The general pattern of Dataflow Analysis GA (p)= i if p E { GA (q) q F } otherwise GA (p)= f p ( GA (p) ) where : E is the set of initial/final points of the control-flow

More information

7. Shortest Path Problems and Deterministic Finite State Systems

7. Shortest Path Problems and Deterministic Finite State Systems 7. Shortest Path Problems and Deterministic Finite State Systems In the next two lectures we will look at shortest path problems, where the objective is to find the shortest path from a start node to an

More information

Worst-Case Execution Time Analysis. LS 12, TU Dortmund

Worst-Case Execution Time Analysis. LS 12, TU Dortmund Worst-Case Execution Time Analysis Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 02, 03 May 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 53 Most Essential Assumptions for Real-Time Systems Upper

More information

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I University of Cambridge MPhil in Computer Speech Text & Internet Technology Module: Speech Processing II Lecture 2: Hidden Markov Models I o o o o o 1 2 3 4 T 1 b 2 () a 12 2 a 3 a 4 5 34 a 23 b () b ()

More information

CSE P 501 Compilers. Value Numbering & Op;miza;ons Hal Perkins Winter UW CSE P 501 Winter 2016 S-1

CSE P 501 Compilers. Value Numbering & Op;miza;ons Hal Perkins Winter UW CSE P 501 Winter 2016 S-1 CSE P 501 Compilers Value Numbering & Op;miza;ons Hal Perkins Winter 2016 UW CSE P 501 Winter 2016 S-1 Agenda Op;miza;on (Review) Goals Scope: local, superlocal, regional, global (intraprocedural), interprocedural

More information

Causal Dataflow Analysis for Concurrent Programs

Causal Dataflow Analysis for Concurrent Programs Causal Dataflow Analysis for Concurrent Programs Azadeh Farzan P. Madhusudan Department of Computer Science, University of Illinois at Urbana-Champaign. {afarzan,madhu}@cs.uiuc.edu Abstract. We define

More information

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG)

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) CS5371 Theory of Computation Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) Objectives Recall that decidable languages are languages that can be decided by TM (that means,

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

4.7.1 Computing a stationary distribution

4.7.1 Computing a stationary distribution At a high-level our interest in the rest of this section will be to understand the limiting distribution, when it exists and how to compute it To compute it, we will try to reason about when the limiting

More information

Backpropagation Introduction to Machine Learning. Matt Gormley Lecture 13 Mar 1, 2018

Backpropagation Introduction to Machine Learning. Matt Gormley Lecture 13 Mar 1, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Backpropagation Matt Gormley Lecture 13 Mar 1, 2018 1 Reminders Homework 5: Neural

More information

Markov Chains. CS70 Summer Lecture 6B. David Dinh 26 July UC Berkeley

Markov Chains. CS70 Summer Lecture 6B. David Dinh 26 July UC Berkeley Markov Chains CS70 Summer 2016 - Lecture 6B David Dinh 26 July 2016 UC Berkeley Agenda Quiz is out! Due: Friday at noon. What are Markov Chains? State machine and matrix representations. Hitting Time 1

More information

CS5371 Theory of Computation. Lecture 18: Complexity III (Two Classes: P and NP)

CS5371 Theory of Computation. Lecture 18: Complexity III (Two Classes: P and NP) CS5371 Theory of Computation Lecture 18: Complexity III (Two Classes: P and NP) Objectives Define what is the class P Examples of languages in P Define what is the class NP Examples of languages in NP

More information

Recitation 9: Loopy BP

Recitation 9: Loopy BP Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 204 Recitation 9: Loopy BP General Comments. In terms of implementation,

More information

Machine Learning (CSE 446): Backpropagation

Machine Learning (CSE 446): Backpropagation Machine Learning (CSE 446): Backpropagation Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 8, 2017 1 / 32 Neuron-Inspired Classifiers correct output y n L n loss hidden units

More information

Dynamic Programming: Matrix chain multiplication (CLRS 15.2)

Dynamic Programming: Matrix chain multiplication (CLRS 15.2) Dynamic Programming: Matrix chain multiplication (CLRS.) The problem Given a sequence of matrices A, A, A,..., A n, find the best way (using the minimal number of multiplications) to compute their product.

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional)

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional) Section 2.4 Section Summary Sequences. o Examples: Geometric Progression, Arithmetic Progression Recurrence Relations o Example: Fibonacci Sequence Summations Special Integer Sequences (optional) Sequences

More information

Theory of Computer Science to Msc Students, Spring Lecture 2

Theory of Computer Science to Msc Students, Spring Lecture 2 Theory of Computer Science to Msc Students, Spring 2007 Lecture 2 Lecturer: Dorit Aharonov Scribe: Bar Shalem and Amitai Gilad Revised: Shahar Dobzinski, March 2007 1 BPP and NP The theory of computer

More information

CS415 Compilers Syntax Analysis Top-down Parsing

CS415 Compilers Syntax Analysis Top-down Parsing CS415 Compilers Syntax Analysis Top-down Parsing These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Announcements Midterm on Thursday, March 13

More information

Lecture Overview SSA Maximal SSA Semipruned SSA o Placing -functions o Renaming Translation out of SSA Using SSA: Sparse Simple Constant Propagation

Lecture Overview SSA Maximal SSA Semipruned SSA o Placing -functions o Renaming Translation out of SSA Using SSA: Sparse Simple Constant Propagation 1 Lecture Overview SSA Maximal SSA Semipruned SSA o Placing -functions o Renaming Translation out of SSA Using SSA: Sparse Simple Constant Propagation [Chapter 9] 2 SSA Revisited It is desirable to use

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 12: Gauss for Linear Systems Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

Dataflow Analysis - 2. Monotone Dataflow Frameworks

Dataflow Analysis - 2. Monotone Dataflow Frameworks Dataflow Analysis - 2 Monotone dataflow frameworks Definition Convergence Safety Relation of MOP to MFP Constant propagation Categorization of dataflow problems DataflowAnalysis 2, Sp06 BGRyder 1 Monotone

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Reductions in Computability Theory

Reductions in Computability Theory Reductions in Computability Theory Prakash Panangaden 9 th November 2015 The concept of reduction is central to computability and complexity theory. The phrase P reduces to Q is often used in a confusing

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information

Complexity (Pre Lecture)

Complexity (Pre Lecture) Complexity (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Complexity (Pre Lecture) Fall 2018 1 / 70 Why? What can we always compute efficiently? What

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Computer Science & Engineering 423/823 Design and Analysis of s Lecture 09 Dynamic Programming (Chapter 15) Stephen Scott (Adapted from Vinodchandran N. Variyam) 1 / 41 Spring 2010 Dynamic programming

More information

Loop Scheduling and Software Pipelining \course\cpeg421-08s\topic-7.ppt 1

Loop Scheduling and Software Pipelining \course\cpeg421-08s\topic-7.ppt 1 Loop Scheduling and Software Pipelining 2008-04-24 \course\cpeg421-08s\topic-7.ppt 1 Reading List Slides: Topic 7 and 7a Other papers as assigned in class or homework: 2008-04-24 \course\cpeg421-08s\topic-7.ppt

More information

Compiling Techniques

Compiling Techniques Lecture 11: Introduction to 13 November 2015 Table of contents 1 Introduction Overview The Backend The Big Picture 2 Code Shape Overview Introduction Overview The Backend The Big Picture Source code FrontEnd

More information

ON COMPUTAMBLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHENIDUGSPROBLEM. Turing 1936

ON COMPUTAMBLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHENIDUGSPROBLEM. Turing 1936 ON COMPUTAMBLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHENIDUGSPROBLEM Turing 1936 Where are We? Ignoramus et ignorabimus Wir mussen wissen Wir werden wissen We do not know We shall not know We must know

More information

Monotone Data Flow Analysis Framework

Monotone Data Flow Analysis Framework Monotone Data Flow Analysis Framework Definition. A relation R on a set S is (a) reflexive iff ( x S)[xRx], (b) antisymmetric iff [xry yrx x=y] (c) transitive iff ( x,y,z S) [xry yrz xrz] Definition. A

More information

1 Backward and Forward Error

1 Backward and Forward Error Math 515 Fall, 2008 Brief Notes on Conditioning, Stability and Finite Precision Arithmetic Most books on numerical analysis, numerical linear algebra, and matrix computations have a lot of material covering

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

Great Theoretical Ideas

Great Theoretical Ideas 15-251 Great Theoretical Ideas in Computer Science Gödel s Legacy: Proofs and Their Limitations Lecture 25 (November 16, 2010) The Halting Problem A Quick Recap of the Previous Lecture Is there a program

More information

Hoare Logic (I): Axiomatic Semantics and Program Correctness

Hoare Logic (I): Axiomatic Semantics and Program Correctness Hoare Logic (I): Axiomatic Semantics and Program Correctness (Based on [Apt and Olderog 1991; Gries 1981; Hoare 1969; Kleymann 1999; Sethi 199]) Yih-Kuen Tsay Dept. of Information Management National Taiwan

More information

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA.

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA. Outline CS21 Decidability and Tractability Lecture 5 January 16, 219 and Languages equivalence of NPDAs and CFGs non context-free languages January 16, 219 CS21 Lecture 5 1 January 16, 219 CS21 Lecture

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information