PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

Size: px
Start display at page:

Download "PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19"

Transcription

1 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition)

2 hapter 3 Electroagnetic Oscillations and Alternating urrent In this chapter we will cover the following topics: -Electroagnetic oscillations in an circuit -Alternating current (A) circuits with capacitors -esonance in circuits -ower in A circuits -ransforers, A power transission

3 Oscillations he circuit shown in the figure consists of a capacitor and an inductor. We give the capacitor an initial charge Q and then observe what happens. he capacitor will discharge through the inductor, resulting in a tiedependent current i. We will show that the charge q on the capacitor plates as well as the current i in the inductor oscillate with constant aplitude at an angular frequency. he total energy U in the circuit is the su of the energy stored in the electric field q i of the capacitor and the agnetic field of the inductor: U UE UB. du he total energy of the circuit does not change with tie. hus 0. dt du q dq di dq di d q dq i 0. i q 0 dt dt dt dt dt dt dt 3

4 qt () Qco s t dq dq q 0 ( ) q 0 eq. dt dt his is a hoogeneous, second order, linear differential equation that we have encountered previously. We used it to describe the siple haronic oscillator (HO). d x x 0 ( eq. ) dt With solution: xt ( ) Xcos( t) If we copare eq. with eq. we find that the solution to the differential equation that describes the circuit (eq. ) is: qt ( ) Qcos t where, and is the phase angle. dq he current i Qsin t. dt 4

5 he energy stored in the electric field of the capacitor: q Q UE cos t he energy stored in the agnetic field of the inductor: i Q Q UB sin t t he total energy U U U : sin E Q Q U cos t sin t he total energy is constant; energy is conserved. B Q 3 he energy of the electric field has a axiu value of at t 0,,,,... Q 3 5 he energy of the agnetic field has a axiu value of at t,,, Note : When U is axiu, U is zero, and vice versa. E B 5

6 t 0 t /8 3 t /4 4 3 /8 t 5 5 t / /8 t 3 /4 t 7 /8 t

7 dq di dq dq dq Daped Oscillations in an ircuit If we add a resistor in an circuit (see figure) we ust odify the energy equation, because now energy is du being dissipated on the resistor: i. dt q i du q dq di U UE UB i i dt dt dt i q 0. his is the sae equation as that dt dt dt dt dt d x dx of the daped haronics oscillator: b kx0, which has the solution: dt dt x t x e t bt / () cos. he angular freque For the daped circuit the solution is: ncy k b 4. t/ q() t Qe cos t. he angular frequency. 4 7

8 Q qt () / Qe t qt () / () t qt Qe cos t 4 Q / Qe t he equations above describe a haronic oscillator with an exponentially decaying aplitude Qe 4 t/. he angular frequency of the daped oscillator is always saller than the angular frequency of the undaped oscillator. If the ter we can use the approxiation. 4 8

9 Alternating urrent A battery for which the ef is constant generates a current that has a constant direction. his type of current is known as " direct current " or " dc. " sin t In hapter 30 we encountered a different type of source (see figure) whose ef is: NABsint sin t, where NAB, A is the area of the generator windings, N is the nuber of the windings, is the angular frequency of the rotation of the windings, and B is the agnetic field. his type of generator is known as " alternating current" or " ac" because the ef as well as the current change direction with a frequency f. In the U.. f 60 Hz. Alost all coercial electrical power used today is ac even though the analysis of ac circuits is ore coplicated than that of dc circuits. he reasons why ac power was adapted will be discussed at the end of this chapter. 9

10 hree iple ircuits Our objective is to analyze the circuit shown in the figure ( circuit). he discussion will be greatly siplified if we exaine what happens if we connect each of the three eleents (,, and ) separately to an ac generator. A onvention Fro now on we will use the standard notation for ac circuit analysis. owercase letters will be used to indicate the instantaneous values of ac quantities. Uppercase letters will be used to indicate the constant aplitudes of ac quantities. Exaple: he capacitor charge in an circuit was written as q Qcos t. he sybol q is used for the instantaneous value of the charge. he sybol Q is used for the constant aplitude of q. 0

11 V I A esistive oad In fig. a we show an ac generator connected to a resistor. Fro K we have: i 0 i sin t. he current aplitude is I. he voltage v across is equal to sin t. he voltage aplitude is equal to. he relation between the voltage and current aplitudes is V I. In fig. b we plot the resistor current i and the resistor voltage v as functions of ti e t. Both quantities reach their axiu values at the sae tie. We say that voltage and current are in phase.

12 A convenient ethod for the representation of ac quantities is that of phasors. he resistor voltage v and the resistor current i are represented by rotating vectors known as phasors using the following conventions:. hasors rotate in the counterclockwise direction with angular speed.. he length of each phasor is proportional to the ac quantity aplitude. 3. he projection of the phasor on the vertical axis gives the instantaneous value of the ac quantity. 4. he rotation angle for each phasor is equal to the phase of the ac quantity ( t in this exaple).

13 Vrs Average ower for tdt () sin t 0 sin 0 tdt 0 sin tdt We define the "root ean square" (rs) value of V as follows: Vrs Vrs. he equation looks the sae as in the dc case. his power appears as heat on. 3

14 A apacitive oad In fig. a we show an ac generator connected to a capacitor. q Fro K we have: 0 q sint O dq i cost sin t90 dt he voltage aplitude V is equal to. V he current aplitude is I V. / he quantity X / is known as the capacitive reactance. In fig. b we plot the capacitor current and the capacitor voltage v as functions of tie t. he current leads the voltage by a quarter of a period. he voltage and current are out of phase by 90. i X X 4

15 Average ower for 0 VI sintcos t X sincos sin 0 0 X sin t () t dt = sintdt 0 X Note : A capacitor does not dissipate any power on the average. In soe parts ofthe cycle it absorbs energy fro the ac generator, but at the rest of the cycle it gives the energy back so that on the average no power is used! 5

16 An Inductive oad In fig. a we show an ac generator connected to an inductor. di di Fro K we have: 0 sint dt dt i di sintdt cost sin t90 he voltage aplitude V is equal to. X V he current aplitude is I. he quantity X is known as the O inductive reactance. X In fig. b we plot the inductor current i and the inductor voltage v as functions of tie t. he current lags behind the voltage by a quarter of a period. he voltage and current are out of phase by 90. 6

17 0 Average ower for ower VI sintcos t X sincos sin 0 0 X sin t () t dt = sintdt 0 X Note : An inductor does not dissipate any power on the average. In soe parts of the cycle it absorbs energy fro the ac generator, but at the rest of the cycle it gives the energy back so that on the average no power is used! 7

18 UMMAY ircuit Eleent Average ower eactance hase of urrent Voltage Aplitude esistor urrent is in phase with the voltage V I apacitor 0 X urrent leads voltage by a quarter of a period V I X I Inductor 0 X urrent lags behind voltage by a quarter of a period V I X I 8

19 i I t sin he eries ircuit An ac generator with ef sint is connected to an in-series cobination of a resistor, a capacitor, and an inductor, as shown in the figure. he phasor for the ac generator is given in fig. c. he current in this circuit is described by the equation: i I sin t. he current i is coon for the resistor, the capacitor, and the inductor. he phasor for the current is shown in fig. a. In fig. b we show the phasors for the voltage v across, the voltage v across, and the voltage v across. he voltage v is in phase with the current i. he voltage v lags behind the current i by 90. he voltage v leads ahead of the current i by 90. 9

20 A B i I t sin Kirchhoff's loop rule (K) for the circuit: v v v. his equation O is represented in phasor for in fig. d. Because V and V have opposite directions we cobine the two in a single phasor V X X of the circuit. V Z X X he current aplitude I. Fro triangle OABwe have: V V V I IX IX I X X I. he denoinator is known as the " ipedance" Z I. Z Z X X. I Z 0

21 i I t sin X A B Z X X O X X tan X V V IX IX X X Fro triangle OAB we have: tan. V I We distinguish the following three cases depending on the relative values of X and X.. X X 0 he current phasor lags behind the generator phasor. he circuit is ore inductive than capacitive.. X X 0 he current phasor leads ahead of the generator phasor. he circuit is ore capacitive than inductive. 3. X X 0 he current phasor and the generator phasor are in phase.

22 . Figs. a and b: X X 0 he current phasor lags behind the generator phasor. he circuit is ore inductive than capacitive.. Figs. c and d: X X 0 he current phasor leads ahead of the generator phasor. he circuit is ore capacitive than inductive. 3. Figs. e and f: X X 0 he current phasor and the generator phasor are in phase.

23 I res esonance In the circuit shown in the figure, assue that the angular frequency of the ac generator can be varied continuously. he current aplitude in the circuit is given by the equation I. he current aplitude has a axiu when the ter 0. his occurs when. he equation above is the condition for resonance. When it is satisfied, Ires. A plot of the current aplitude I as a function of is shown in the lower figure. his plot is known as a " resonance curve. " 3

24 I I cos avg rs rs avg rs ower in an ircuit We already have seen that the average power used by a capacitor and an inductor is equal to zero. he power on the average is consued by the resistor. he instantaneous power i Isin t. he average power avg dt. I avg I sin t dt Irs 0 rs avg IrsIrs Irs Irsrs Irsrs cos Z Z he ter cos in the equation above is known as the " power factor" of the circuit. he average power consued by the circuit is axiu 4 when 0. 0

25 I V V = 40 V V V tan=(x X )/=(88 44)/300= =

26 ransission lines rs =735 kv, I rs = 500 A tep-up transforer tep-down transforer 0 V Hoe ower tation = 0Ω 000 k Energy ransission equireents he resistance of the power line. is fixed (0 in our exaple). A Heating of power lines I. his paraeter is also fixed (55 MW in our exaple). heat heat heat rs ower transitted I (368 MW in our exaple). trans rs rs In our exaple is alost 5 % of and is acceptable. rs trans o keep we ust keep I as low as possible. he only way to accoplish this is by increasing. In our exaple 735 kv. o do that we need a device rs that can change the aplitude of any ac voltage (either increase or decrease). rs 6

27 he ransforer he transforer is a device that can change the voltage aplitude of any ac signal. It consists of two coils with a different nuber of turns wound around a coon iron core. he coil on which we apply the voltage to be changed is called the " priary" and it has N turns. he transforer output appears on the second coil, which is known as the "secondary" and has N turns. he role of the iron core is to ensure that the agnetic field lines fro one coil also pass through the second. We assue that if voltage equal to V is applied across the priary then a voltage V appears on the secondary coil. We also assue that the agnetic field through both coils is equal to B and that the iron core has cross-sectional area A. he agnetic flux d db through the priary NBAV NA ( eq. ). dt dt d db he flux through the secondary NBA V NA ( eq. 7 ). dt dt

28 V N V N d db NBAV NA ( eq. ) dt dt d db NBA V NA ( eq. ) dt dt If we divide equation by equation we get: V V db N A N dt V V db N N A N N dt. N he voltage on the secondary V V. N N If N N V V, we have what is known as a " step up" transforer. N N If N N V V, we have what is known as a " step down" transforer. N Both types of transforers are used in the transport of electric power over large distances. 8

29 I I V N V N I N I N We have that: VN VN V N V N (eq. ). If we close switch in the figure we have in addition to the priary current a current I in the secondary coil. We assue that the transforer is " ideal, " i.e., it suffers no losses due to heating. hen we have: VI VI (eq. ). If we divide eq. with eq. we get: I N N I In a step-up transforer ( N N ) we have that I I. In a step-down transforer ( N VI VN VI VN I N N ) we have that I I. I N. I 9

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations Oscillating urrents h.30: Induced E Fields: Faraday s aw h.30: ircuits h.3: Oscillations and A ircuits eview: Inductance If the current through a coil of wire changes, there is an induced ef proportional

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Chapter 10 ACSS Power

Chapter 10 ACSS Power Objectives: Power concepts: instantaneous power, average power, reactive power, coplex power, power factor Relationships aong power concepts the power triangle Balancing power in AC circuits Condition

More information

ALTERNATING CURRENT

ALTERNATING CURRENT ATENATING UENT Important oints:. The alternating current (A) is generally expressed as ( ) I I sin ω t + φ Where i peak value of alternating current.. emf of an alternating current source is generally

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Chapter 31: AC Circuits

Chapter 31: AC Circuits hapter 31: A ircuits A urrents and Voltages In this chapter, we discuss the behior of circuits driven by a source of A. Recall that A means, literally, alternating current. An alternating current is a

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1 Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t = τ). Consequently,

More information

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212 I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

JOURNAL OF PHYSICAL AND CHEMICAL SCIENCES

JOURNAL OF PHYSICAL AND CHEMICAL SCIENCES JOURNAL OF PHYSIAL AND HEMIAL SIENES Journal hoepage: http://scienceq.org/journals/jps.php Review Open Access A Review of Siple Haronic Motion for Mass Spring Syste and Its Analogy to the Oscillations

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

Physics 11b Lecture #15

Physics 11b Lecture #15 Physics 11b ecture #15 and ircuits A ircuits S&J hapter 3 & 33 Administravia Midterm # is Thursday If you can t take midterm, you MUST let us (me, arol and Shaun) know in writing before Wednesday noon

More information

CLUSTER LEVEL WORK SHOP

CLUSTER LEVEL WORK SHOP CLUSTER LEVEL WORK SHOP SUBJECT PHYSICS QUESTION BANK (ALTERNATING CURRENT ) DATE: 0/08/06 What is the phase difference between the voltage across the inductance and capacitor in series AC circuit? Ans.

More information

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle.

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle. BEF 5503 BEF 5503 Chapter BASC PRNCPLES Outline 1 3 4 5 6 7 8 9 ntroduction Phasor Representation Coplex Power Triangle Power Factor Coplex Power in AC Single Phase Circuits Coplex Power in Balanced Three-Phase

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t τ). Consequently,

More information

PHYS Fields and Waves

PHYS Fields and Waves PHYS 2421 - Fields and Waves Idea: how to deal with alternating currents Edison wanted direct current, Tesla alternating current, who won? Mathematically: Instantaneous current: Instantaneous voltage:

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Damped Harmonic Motion

Damped Harmonic Motion Daped Haronic Motion PY154 Special Topics in Physics PY154 1 Driven Daped Haronic Motion What if we apply a haronic force?: F h Be it The total force is then: dx F Fh kx b dt d x dt Assue a solution of

More information

PES 1120 Spring 2014, Spendier Lecture 35/Page 1

PES 1120 Spring 2014, Spendier Lecture 35/Page 1 PES 0 Spring 04, Spendier Lecture 35/Page Today: chapter 3 - LC circuits We have explored the basic physics of electric and magnetic fields and how energy can be stored in capacitors and inductors. We

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

sinb2ωtg to write this as

sinb2ωtg to write this as Chapter 31 13. (a) The charge (as a function of tie) is given by q= Qsinωt, where Q is the axiu charge on the capacitor an ω is the angular frequency of oscillation. A sine function was chosen so that

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors Physics 2112 Unit 20 Outline: Driven A ircuits Phase of V and I onceputally Mathematically With phasors Electricity & Magnetism ecture 20, Slide 1 Your omments it just got real this stuff is confusing

More information

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017 PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges IHLAN OLLEGE chool of Engineering & Technology ev. 0 W. lonecker ev. (8/6/0) J. Bradbury INT 307 Instrumentation Test Equipment Teaching Unit 6 A Bridges Unit 6: A Bridges OBJETIVE:. To explain the operation

More information

Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f

Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f Physics 4B Solutions to hapter 1 HW hapter 1: Questions:, 8, 1 Exercises & Probles:,, 4,, 41, 44, 48, 60, 7, 8 Question 1- (a) less; (b) greater Question 1-8 (a) 1 an 4; (b) an Question 1-1 (a) lea; (b)

More information

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

More information

19. LC and RLC Oscillators

19. LC and RLC Oscillators University of Rhode Island Digitaloons@URI PHY 204: Eleentary Physics II Physics ourse Materials 2015 19. L and RL Oscillators Gerhard Müller University of Rhode Island, guller@uri.edu reative oons License

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

c h L 75 10

c h L 75 10 hapter 31 1. (a) All the energy in the circuit resies in the capacitor when it has its axiu charge. The current is then zero. f Q is the axiu charge on the capacitor, then the total energy is c c h h U

More information

8.1 Alternating Voltage and Alternating Current ( A. C. )

8.1 Alternating Voltage and Alternating Current ( A. C. ) 8 - ALTENATING UENT Page 8. Alternating Voltage and Alternating urrent ( A.. ) The following figure shows N turns of a coil of conducting wire PQS rotating with a uniform angular speed ω with respect to

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase)

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase) Physics-7 ecture 0 A Power esonant ircuits Phasors (-dim vectors, amplitude and phase) What is reactance? You can think of it as a frequency-dependent resistance. 1 ω For high ω, χ ~0 - apacitor looks

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.

More information

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits Module 24: Undriven RLC Circuits 1 Module 24: Outline Undriven RLC Circuits Expt. 8: Part 2:Undriven RLC Circuits 2 Circuits that Oscillate (LRC) 3 Mass on a Spring: Simple Harmonic Motion (Demonstration)

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

More information

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 40) eminder: Exam this Wednesday 6/3 ecture 0-4 4 questions. Electricity and Magnetism nduced voltages and induction Self-nductance Circuits Energy in magnetic fields AC circuits and

More information

Study Committee B5 Colloquium 2005 September Calgary, CANADA

Study Committee B5 Colloquium 2005 September Calgary, CANADA 36 Study oittee B olloquiu Septeber 4-6 algary, ND ero Sequence urrent opensation for Distance Protection applied to Series opensated Parallel Lines TKHRO KSE* PHL G BEUMONT Toshiba nternational (Europe

More information

Mutual capacitor and its applications

Mutual capacitor and its applications Mutual capacitor and its applications Chun Li, Jason Li, Jieing Li CALSON Technologies, Toronto, Canada E-ail: calandli@yahoo.ca Published in The Journal of Engineering; Received on 27th October 2013;

More information

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. A charge of +4.0 C is placed at the origin. A charge of 3.0 C

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Active Figure 32.3 (SLIDESHOW MODE ONLY) RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

More information

Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-32) Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

More information

Chapter 32 Inductance

Chapter 32 Inductance Chapter 3 nductance 3. Sef-nduction and nductance Sef-nductance Φ BA na --> Φ The unit of the inductance is henry (H). Wb T H A A When the current in the circuit is changing, the agnetic fux is aso changing.

More information

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3 urrent onvention HEM*3440 hemical nstrumentation Topic 3 udimentary Electronics ONENTON: Electrical current flows from a region of positive potential energy to a region of more negative (or less positive)

More information

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1 Lecture - Self-Inductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance. Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Chapter 6 Objectives

Chapter 6 Objectives hapter 6 Engr8 ircuit Analysis Dr urtis Nelson hapter 6 Objectives Understand relationships between voltage, current, power, and energy in inductors and capacitors; Know that current must be continuous

More information

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown?

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown? PHY49 Spring 5 Prof. Darin Acosta Prof. Paul Avery April 4, 5 PHY49, Spring 5 Exa Solutions. Which of the following stateents is true about the LR circuit shown? It is (): () Just after the switch is closed

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

SIMPLE HARMONIC MOTION: NEWTON S LAW

SIMPLE HARMONIC MOTION: NEWTON S LAW SIMPLE HARMONIC MOTION: NEWTON S LAW siple not siple PRIOR READING: Main 1.1, 2.1 Taylor 5.1, 5.2 http://www.yoops.org/twocw/it/nr/rdonlyres/physics/8-012fall-2005/7cce46ac-405d-4652-a724-64f831e70388/0/chp_physi_pndul.jpg

More information

Lecture 4: RL Circuits. Inductive Kick. Diode Snubbers.

Lecture 4: RL Circuits. Inductive Kick. Diode Snubbers. Whites, EE 322 Lecture 4 Page 1 of 6 Lecture 4: RL Circuits. Inductive Kick. Diode Snubbers. Inductors are the third basic discrete coponent listed in Lecture 2. Uses for inductors in the NorCal 40A include

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

In this chapter we will study sound waves and concentrate on the following topics:

In this chapter we will study sound waves and concentrate on the following topics: Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves

More information

Alternating Currents. The power is transmitted from a power house on high voltage ac because (a) Electric current travels faster at higher volts (b) It is more economical due to less power wastage (c)

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

More information

Chapter 30. Inductance. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 30. Inductance. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 30 Inductance PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 30 Looking forward at how a time-varying

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

MEASURING INSTRUMENTS

MEASURING INSTRUMENTS CLASS NOTES ON ELECTRICAL MEASUREMENTS & INSTRUMENTATION 05 MEASURING INSTRUMENTS. Definition of instruents An instruent is a device in which we can deterine the agnitude or value of the quantity to be

More information

Last time. Ampere's Law Faraday s law

Last time. Ampere's Law Faraday s law Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

DOING PHYSICS WITH MATLAB

DOING PHYSICS WITH MATLAB DOING PHYSIS WITH MATAB THE FINITE DIFFERENE METHOD FOR THE NUMERIA ANAYSIS OF IRUITS ONTAINING RESISTORS, APAITORS AND INDUTORS MATAB DOWNOAD DIRETORY N01.m Voltage and current for a resistor, capacitor

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Physics 2112 Unit 19

Physics 2112 Unit 19 Physics 11 Unit 19 Today s oncepts: A) L circuits and Oscillation Frequency B) Energy ) RL circuits and Damping Electricity & Magnetism Lecture 19, Slide 1 Your omments differential equations killing me.

More information

Alternating Current. Symbol for A.C. source. A.C.

Alternating Current. Symbol for A.C. source. A.C. Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information