If you need the source code from the sample solutions, copy and paste from the PDF should work. If you re having trouble, send me an .

Size: px
Start display at page:

Download "If you need the source code from the sample solutions, copy and paste from the PDF should work. If you re having trouble, send me an ."

Transcription

1 AM117 Sample Solutions, HW#1 Hi, I m Andreas Kloeckner, your grader for this course. Feel free to me at kloeckner@dam.brown.edu. The code for the sample solutions is written so that it will run in both Matlab and Octave. (I test it in both.) Octave is a language for scientific computing that is generally very similar to Matlab. Unlike Matlab, Octave is freely downloadable. You may grab a copy at If you need the source code from the sample solutions, copy and paste from the PDF should work. If you re having trouble, s me an . When grading your homework, I use four symbols to denote how right you got that particular problem: perfect ( ) mostly OK you made a small mistake, or there s a little piece missing what you wrote is somewhat like a solution, but requires substantial work X either you wrote nothing, or what you wrote is completely wrong Please follow these guidelines when turning in homework: Please staple your homework. In particular, paperclips and folded corners are evil they won t keep your homework together long enough to survive the tangle of the dropoff/pickup box. Please don t use red pen in your answers. When you turn in results of computational exercises, include something that makes it credible that you actually did write code for the problem include the code itself or a (reasonably short) printout of the results. Use your own best judgement to turn in the least amount of material that you think will convince me that you did the problem and did it correctly. If you include computer output, try to keep it concise. Norms (especially norms of errors) are much shorter and more meaningful than full vector output. I am not interested in intermediate results of your code. When you find a result using facts from the book, then always mention what you are using. For example, it will not be enough to say This matrix is so-and-so even if that is true. You need to give a reason why you believe so. If you are proving something, write down what and how. It doesn t take much time, but it helps you and me understand what you re writing and tells me that you know what you re talking about. A happy grader is a thorough and exact grader, you know. ;-) On this homework set, many people encountered these issues: When estimating the order of convergence in problem 1, don t guess or use trial-and-error. Instead, solve for α using the logarithm. 1

2 When looking for an alternative expression in problem 2, using Taylor series only counts if you can put an explicit bound on the error in that approximation and argue that it doesn t change the final graph visibly. When finding roots in the last two problems, you need to do two things before running your code: Make sure you re finding all the roots of the functions. A plot is not sufficient! You need to show that there can t be any more roots other than the ones you re trying to find. Write down how you obtained your guesses for the initial interval (bisection) or starting value (Newton). A plot is a valid help here, by the intermediate value theorem. See below for examples. 1. Problem 6, p.28 We are attempting to find α and λ such that Taking the logarithm of this, we obtain e n+1 λ e n α. log e n+1? y log λ? b + α? a log e n? x (1) If we look closely, we can see that this reduces the problem to finding a line (given by slope a and y-intercept b). We need to find two parameters, and since we have three data points for each method, we may write two equations of the form (1) to find them: log e 2 = log λ +α log e 1, log e 3 = log λ +α log e 2. Subtracting the two, we find Knowing α, we solve the first one for λ: log e 2 log e 3 log e 1 log e 2 = α. log λ = log e 2 α log e 1, λ = exp(log e 2 α log e 1 ). This yields: From these calculations it seems the orders of convergence are roughly 2, 4 and 3, respectively. Here s some code to perform this computation: function p1 verify_order_of_convergence( Method 1, [4.0e-2, 9.1e-4, 4.8e-7], 2) verify_order_of_convergence( Method 2, [3.7e-4, 1.2e-15, 1.5e-60], 3.9) 2

3 verify_order_of_convergence( Method 3, [4.3e-3, 1.8e-8, 1.4e-24], 3) function verify_order_of_convergence(label, seq, order) disp(label) alpha = (log(seq(2))-log(seq(3))) / (log(seq(1))-log(seq(2))) lambda = exp(log(seq(2))-alpha*log(seq(1))) 2. Problem 9, p.52 a) 1.4e-15 "1-cos.dat" 1.2e-15 1e-15 8e-16 6e-16 4e-16 2e e-08-4e-08-3e-08-2e-08-1e e-08 2e-08 3e-08 4e-08 5e-08 Code: function p3 p3_do_plot(-5e-8, 5e-8, 1000) pause function do_plot(a, b, n) x = linspace(a, b, n); y = 1-cos(x); plot(x,1-cos(x)); b) Plot sin 2 x and note that it looks a bit like the above. Remember or, for our case, cos(α + β) = cos(α)cos(β) sin(α)sin(β) cos(2x)=cos 2 x sin 2 x. (2) 3

4 Also remember 1=cos 2 x + sin 2 x. (3) Now compute (3) (2): 1 cos(2x) =2sin 2 (x), which, after substituting ξ = 2x, yields 1 cos(ξ) =2sin 2 (ξ/2) and a much cleaner plot: 1.4e-15 "1-cos.dat" 2*sin(x/2)**2 1.2e-15 1e-15 8e-16 6e-16 4e-16 2e e-08-4e-08-3e-08-2e-08-1e e-08 2e-08 3e-08 4e-08 5e Problem 13, p.52 a) g(x) f(x)= cos2 x 1+sin x (1 sin x)= cos2 x (1 sin x)(1 + sin x) = cos2 x (1 sin 2 x) = sin x 1 + sin x In preparation for b) and c), we create this table: x sin(x) cos 2 (x) π/ π/2-1 0 b) Near π/2, sin(x) 1, so f(x) = 1 sin(x) subtracts two values of order 1 to obtain a result very close to zero, and so it will encounter significant cancellation error. The logical choice is g(x) = cos 2 (x)/(1 + sin(x)), for which we observe no such phenomena. c) Near 3π/2, sin(x) 1, so the denominator of g (which is 1+sin x) will encounter cancellation error. 4. Problem 6, p.69 The length of the initial interval is b a. After each iteration, the length of the interval is halved, so we have b a 2 1 after the first, b a 2 2 after the second,, b a 2 n after the nth. 4

5 Once we know that the length of our candidate interval is shorter than ε, our tolerance, i.e. b a 2 n <ε, we are done. We can now compute the number of iterations needed to achieve this precision: 5. Problem 16, p.70 b a 2 n < ε b a ε < 2 n b a log ε < n log 2 b a log ε log 2 < n. a) f(x)=e x +x 2 x 4. Consider this function in two parts. f 1 (x) = e x f 2 (x) = x 2 +x+4=(x 1/2) 2 17/4 f(x) = f 1 (x) f 2 (x), so that the zeros we seek are the intersections of the graphs of f 1 and f 2, as shown below: 10 -x**2+x+4 exp(x) Using our knowledge of the behavior of the exponential function and of parabolas, it is not hard to see that there will be two zeros, one each in the intervals [ 2, 1] and [1, 2]. Bisection search results are listed at the of the problem in one big batch. b) f(x)=x 3 x 2 10x+7. Theory says that this polynomial cannot have more than three zeros. Plot it: 5

6 20 x**3-x**2-10*x It s not hard to see that we have three candidate intervals, [ 4, 3], [0, 1] and [3, 4]. c) f(x)= x + log x. Once again consider this function as composed of two parts: f 1 (x) = ( x), f 2 (x) = log x, f(x) = f 2 (x) f 1 (x). Again, we can view the sought zeros as intersections of the graphs of two well-understood functions: 0.6 -( *x) log(x) We are led to believe that we should look in [0.8, 1] and [1, 1.2]. 6

7 Code: function p6 disp( ) disp( Part a) ) disp( ) bisect(-2, bisect(1, disp( ) disp( Part b) ) disp( ) bisect(-4, bisect(0, bisect(3, disp( ) disp( Part c) ) disp( ) bisect(0.8, bisect(1, function bisect(a, b, f) tol = 1e-6 fa = f(a); fb = f(b); disp( ) a b % intermediate value theorem must guarantee existence of a % zero in (a,b). if (fa*fb > 0) error( Potentially no zero in search interval. ) while (abs(b-a) > tol) c = (a+b)/2.; fc = f(c); if (fc*fa <= 0) b = c; fb = fc; else a = c; fa = fc; 7

8 disp( ) a b function y = f_part_a(x) y = exp(x)+x^2-x-4; function y = f_part_b(x) y = x^3-x^2-10*x+7; function y = f_part_c(x) y = *x+log(x); Results: Part a) a = -2 b = -1 a = b = a = 1 b = 2 a = b = Part b) a = -4 b = -3 a = b = a = 0 b = 1 a = b = a = 3 8

9 b = 4 a = b = Part c) a = b = 1 a = b = a = 1 b = a = b = Problem 14, p. 105 First note that the functions in this problem are the same as above, so we may recycle our arguments for how many roots there are and in which interval we expect them to lie. a) f(x) = e x + x 2 x 4, f (x) = e x + 2x 1. As above, we need one root each in the intervals [ 2, 1] and [1, 2]. Each time, we choose the left boundary of the interval as a starting point. Results for Newton s method are listed in one big batch at the. b) f(x) = x 3 x 2 10x + 7, f (x) = 3x 2 2x 10. The candidate intervals are [ 4, 3], [0, 1] and [3, 4]. Again, we choose the left boundary of the interval as a starting point. c) f(x) = x + log x, f (x) = /x. [0.8, 1] and [1, 1.2] are the candidate intervals, and again we choose the left boundary of each interval as a starting point. Results: Part a) Iteration:0 x:-2 f(x): e+00 Iteration:1 x: f(x): e-01 Iteration:2 x: f(x): e-03 Iteration:3 x: f(x): e-07 Iteration:0 x:1 f(x): e+00 Iteration:1 x: f(x): e-01 Iteration:2 x: f(x): e-03 Iteration:3 x: f(x): e-06 Iteration:4 x: f(x): e-12 Part b) Iteration:0 x:-4 f(x): e+01 9

10 Iteration:1 x: f(x): e+00 Iteration:2 x: f(x): e-01 Iteration:3 x: f(x): e-03 Iteration:4 x: f(x): e-07 Iteration:0 x:0 f(x): e+00 Iteration:1 x:0.7 f(x): e-01 Iteration:2 x: f(x): e-04 Iteration:3 x: f(x): e-10 Iteration:0 x:3 f(x): e+00 Iteration:1 x: f(x): e+00 Iteration:2 x: f(x): e-02 Iteration:3 x: f(x): e-04 Iteration:4 x: f(x): e-09 Part c) Iteration:0 x:0.8 f(x): e-03 Iteration:1 x: f(x): e-04 Iteration:2 x: f(x): e-06 Iteration:3 x: f(x): e-10 Iteration:0 x:1 f(x): e-02 Iteration:1 x:1.25 f(x): e-02 Iteration:2 x: f(x): e-03 Iteration:3 x: f(x): e-04 Iteration:4 x: f(x): e-06 Iteration:5 x: f(x): e-11 Code: function p6 disp( ) disp( Part a) ) disp( 1e-6); disp( 1e-6); disp( ) disp( Part b) ) disp( 1e-6); disp( 1e-6); disp( 1e-6); disp( ) disp( Part c) ) disp( 1e-6); disp( 1e-6); 10

11 % function newton(x, f, fprime, tol) i = 0; while abs(f(x)/fprime(x)) > tol disp(sprintf( Iteration:%d x:%.10g f(x):%.10e, i, x, f(x))) x = x - f(x)/fprime(x); i = i + 1; disp(sprintf( Iteration:%d x:%.10g f(x):%.10e, i, x, f(x))) % function y = f_part_a(x) y = exp(x)+x^2-x-4; function y = fp_part_a(x) y = exp(x)+2*x-1; % function y = f_part_b(x) y = x^3-x^2-10*x+7; function y = fp_part_b(x) y = 3*x^2-2*x - 10 ; % function y = f_part_c(x) y = *x+log(x); function y = fp_part_c(x) y = /x; 11

Review for Final Exam, MATH , Fall 2010

Review for Final Exam, MATH , Fall 2010 Review for Final Exam, MATH 170-002, Fall 2010 The test will be on Wednesday December 15 in ILC 404 (usual class room), 8:00 a.m - 10:00 a.m. Please bring a non-graphing calculator for the test. No other

More information

1 Limits and continuity

1 Limits and continuity 1 Limits and continuity Question 1. Which of the following its can be evaluated by continuity ( plugging in )? sin(x) (a) x + 1 (d) x 3 x 2 + x 6 (b) e x sin(x) (e) x 2 + x 6 (c) x 2 x 2 + x 6 (f) n (

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

Solution of Algebric & Transcendental Equations

Solution of Algebric & Transcendental Equations Page15 Solution of Algebric & Transcendental Equations Contents: o Introduction o Evaluation of Polynomials by Horner s Method o Methods of solving non linear equations o Bracketing Methods o Bisection

More information

O.K. But what if the chicken didn t have access to a teleporter.

O.K. But what if the chicken didn t have access to a teleporter. The intermediate value theorem, and performing algebra on its. This is a dual topic lecture. : The Intermediate value theorem First we should remember what it means to be a continuous function: A function

More information

Chapter 3: Root Finding. September 26, 2005

Chapter 3: Root Finding. September 26, 2005 Chapter 3: Root Finding September 26, 2005 Outline 1 Root Finding 2 3.1 The Bisection Method 3 3.2 Newton s Method: Derivation and Examples 4 3.3 How To Stop Newton s Method 5 3.4 Application: Division

More information

Outline. Math Numerical Analysis. Intermediate Value Theorem. Lecture Notes Zeros and Roots. Joseph M. Mahaffy,

Outline. Math Numerical Analysis. Intermediate Value Theorem. Lecture Notes Zeros and Roots. Joseph M. Mahaffy, Outline Math 541 - Numerical Analysis Lecture Notes Zeros and Roots Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Lecture Notes Zeros and Roots Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

Main topics for the First Midterm Exam

Main topics for the First Midterm Exam Main topics for the First Midterm Exam The final will cover Sections.-.0, 2.-2.5, and 4.. This is roughly the material from first three homeworks and three quizzes, in addition to the lecture on Monday,

More information

Chapter 1. Root Finding Methods. 1.1 Bisection method

Chapter 1. Root Finding Methods. 1.1 Bisection method Chapter 1 Root Finding Methods We begin by considering numerical solutions to the problem f(x) = 0 (1.1) Although the problem above is simple to state it is not always easy to solve analytically. This

More information

Unit 2: Solving Scalar Equations. Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright

Unit 2: Solving Scalar Equations. Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright cs416: introduction to scientific computing 01/9/07 Unit : Solving Scalar Equations Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright 1 Introduction We now

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES 2 LIMITS AND DERIVATIVES LIMITS AND DERIVATIVES 2.2 The Limit of a Function In this section, we will learn: About limits in general and about numerical and graphical methods for computing them. THE LIMIT

More information

Lecture 5. September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico

Lecture 5. September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico Lecture 5 September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico 1 Review: Office hours at regularly scheduled times this week Tuesday: 9:30am-11am Wed: 2:30pm-4:00pm

More information

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture No. # 10 Convergence Characteristics of Newton-Raphson Method

More information

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella 1 Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella In this summer assignment, you will be reviewing important topics from Algebra I that are crucial

More information

Math 471. Numerical methods Root-finding algorithms for nonlinear equations

Math 471. Numerical methods Root-finding algorithms for nonlinear equations Math 471. Numerical methods Root-finding algorithms for nonlinear equations overlap Section.1.5 of Bradie Our goal in this chapter is to find the root(s) for f(x) = 0..1 Bisection Method Intermediate value

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 Petros Koumoutsakos, Jens Honore Walther (Last update: April 16, 2018) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits Lecture for Week 2 (Secs. 1.3 and 2.2 2.3) Functions and Limits 1 First let s review what a function is. (See Sec. 1 of Review and Preview.) The best way to think of a function is as an imaginary machine,

More information

Pre-Calculus Notes from Week 6

Pre-Calculus Notes from Week 6 1-105 Pre-Calculus Notes from Week 6 Logarithmic Functions: Let a > 0, a 1 be a given base (as in, base of an exponential function), and let x be any positive number. By our properties of exponential functions,

More information

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes Please complete this cover page with ALL CAPITAL LETTERS. Last name......................................................................................

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 7 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

Lecture 7. Root finding I. 1 Introduction. 2 Graphical solution

Lecture 7. Root finding I. 1 Introduction. 2 Graphical solution 1 Introduction Lecture 7 Root finding I For our present purposes, root finding is the process of finding a real value of x which solves the equation f (x)=0. Since the equation g x =h x can be rewritten

More information

Numerical Solution of f(x) = 0

Numerical Solution of f(x) = 0 Numerical Solution of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@pdx.edu ME 350: Finding roots of f(x) = 0 Overview Topics covered in these slides

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

University of Toronto Solutions to MAT186H1F TERM TEST of Tuesday, October 15, 2013 Duration: 100 minutes

University of Toronto Solutions to MAT186H1F TERM TEST of Tuesday, October 15, 2013 Duration: 100 minutes University of Toronto Solutions to MAT186H1F TERM TEST of Tuesday, October 15, 2013 Duration: 100 minutes Only aids permitted: Casio FX-991 or Sharp EL-520 calculator. Instructions: Answer all questions.

More information

Typos/errors in Numerical Methods Using Matlab, 4th edition by Mathews and Fink

Typos/errors in Numerical Methods Using Matlab, 4th edition by Mathews and Fink MAT487 Fall 2004 David Hiebeler University of Maine http://www.math.umaine.edu/faculty/hiebeler Typos/errors in Numerical Methods Using Matlab, 4th edition by Mathews and Fink Please let me know if you

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

from Euclid to Einstein

from Euclid to Einstein WorkBook 2. Space from Euclid to Einstein Roy McWeeny Professore Emerito di Chimica Teorica, Università di Pisa, Pisa (Italy) A Pari New Learning Publication Book 2 in the Series WorkBooks in Science (Last

More information

Finding the Roots of f(x) = 0. Gerald W. Recktenwald Department of Mechanical Engineering Portland State University

Finding the Roots of f(x) = 0. Gerald W. Recktenwald Department of Mechanical Engineering Portland State University Finding the Roots of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

Finding the Roots of f(x) = 0

Finding the Roots of f(x) = 0 Finding the Roots of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

2 Analogies between addition and multiplication

2 Analogies between addition and multiplication Problem Analysis The problem Start out with 99% water. Some of the water evaporates, end up with 98% water. How much of the water evaporates? Guesses Solution: Guesses: Not %. 2%. 5%. Not 00%. 3%..0%..5%.

More information

Section 1.4 Tangents and Velocity

Section 1.4 Tangents and Velocity Math 132 Tangents and Velocity Section 1.4 Section 1.4 Tangents and Velocity Tangent Lines A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition is very

More information

Section 3.1 Quadratic Functions

Section 3.1 Quadratic Functions Chapter 3 Lecture Notes Page 1 of 72 Section 3.1 Quadratic Functions Objectives: Compare two different forms of writing a quadratic function Find the equation of a quadratic function (given points) Application

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

TAYLOR POLYNOMIALS DARYL DEFORD

TAYLOR POLYNOMIALS DARYL DEFORD TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Ex: When you jump off a swing, where do you go? Ex: Can you approximate this line with another nearby? How would you get a better approximation? Ex: A cardiac monitor

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD BISECTION METHOD If a function f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs, then there exists at least one root between a and b. It is shown graphically as, Let f a be negative

More information

POWER ALGEBRA NOTES: QUICK & EASY

POWER ALGEBRA NOTES: QUICK & EASY POWER ALGEBRA NOTES: QUICK & EASY 1 Table of Contents Basic Algebra Terms and Concepts... 5 Number Operations... 5 Variables... 5 Order of Operation... 6 Translating Verbal and Algebraic Phrases... 7 Definition

More information

AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY

AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY 1. This packet is to be handed in on the first day of school. 2. All work must be shown in the space provided in the packet.

More information

Bisection and False Position Dr. Marco A. Arocha Aug, 2014

Bisection and False Position Dr. Marco A. Arocha Aug, 2014 Bisection and False Position Dr. Marco A. Arocha Aug, 2014 1 Given function f, we seek x values for which f(x)=0 Solution x is the root of the equation or zero of the function f Problem is known as root

More information

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014 Root Finding: Close Methods Bisection and False Position Dr. Marco A. Arocha Aug, 2014 1 Roots Given function f(x), we seek x values for which f(x)=0 Solution x is the root of the equation or zero of the

More information

a factors The exponential 0 is a special case. If b is any nonzero real number, then

a factors The exponential 0 is a special case. If b is any nonzero real number, then 0.1 Exponents The expression x a is an exponential expression with base x and exponent a. If the exponent a is a positive integer, then the expression is simply notation that counts how many times the

More information

Functions. If x 2 D, then g(x) 2 T is the object that g assigns to x. Writing the symbols. g : D! T

Functions. If x 2 D, then g(x) 2 T is the object that g assigns to x. Writing the symbols. g : D! T Functions This is the second of three chapters that are meant primarily as a review of Math 1050. We will move quickly through this material. A function is a way of describing a relationship between two

More information

Solutions of Equations in One Variable. Newton s Method

Solutions of Equations in One Variable. Newton s Method Solutions of Equations in One Variable Newton s Method Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole,

More information

3/4/2014: First Midterm Exam

3/4/2014: First Midterm Exam Math A: Introduction to functions and calculus Oliver Knill, Spring 0 //0: First Midterm Exam Your Name: Start by writing your name in the above box. Try to answer each question on the same page as the

More information

Math 10850, Honors Calculus 1

Math 10850, Honors Calculus 1 Math 0850, Honors Calculus Homework 0 Solutions General and specific notes on the homework All the notes from all previous homework still apply! Also, please read my emails from September 6, 3 and 27 with

More information

Extended Introduction to Computer Science CS1001.py. Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration

Extended Introduction to Computer Science CS1001.py. Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration Extended Introduction to Computer Science CS1001.py Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration Instructors: Benny Chor, Amir Rubinstein Teaching Assistants: Yael Baran,

More information

Optimization and Calculus

Optimization and Calculus Optimization and Calculus To begin, there is a close relationship between finding the roots to a function and optimizing a function. In the former case, we solve for x. In the latter, we solve: g(x) =

More information

MATH 20B MIDTERM #2 REVIEW

MATH 20B MIDTERM #2 REVIEW MATH 20B MIDTERM #2 REVIEW FORMAT OF MIDTERM #2 The format will be the same as the practice midterms. There will be six main questions worth 0 points each. These questions will be similar to problems you

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda (afreda@deerfield.edu) ) Limits a) Newton s Idea of a Limit Perhaps it may be objected, that there is no ultimate proportion of

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula 1. Two theorems Rolle s Theorem. If a function y = f(x) is differentiable for a x b and if

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis Introduction to Numerical Analysis S. Baskar and S. Sivaji Ganesh Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai 400 076. Introduction to Numerical Analysis Lecture Notes

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Math Introduction to Numerical Methods - Winter 2011 Homework 2 Assigned: Friday, January 14, Due: Thursday, January 27,

Math Introduction to Numerical Methods - Winter 2011 Homework 2 Assigned: Friday, January 14, Due: Thursday, January 27, Math 371 - Introduction to Numerical Methods - Winter 2011 Homework 2 Assigned: Friday, January 14, 2011. Due: Thursday, January 27, 2011.. Include a cover page. You do not need to hand in a problem sheet.

More information

Midterm Review. Igor Yanovsky (Math 151A TA)

Midterm Review. Igor Yanovsky (Math 151A TA) Midterm Review Igor Yanovsky (Math 5A TA) Root-Finding Methods Rootfinding methods are designed to find a zero of a function f, that is, to find a value of x such that f(x) =0 Bisection Method To apply

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

How to use these notes

How to use these notes Chapter How to use these notes These notes were prepared for the University of Utah s Math 00 refresher course. They asssume that the user has had the Math 00 course Intermediate Algebra or its equivalent

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

Foundations of Math II Unit 5: Solving Equations

Foundations of Math II Unit 5: Solving Equations Foundations of Math II Unit 5: Solving Equations Academics High School Mathematics 5.1 Warm Up Solving Linear Equations Using Graphing, Tables, and Algebraic Properties On the graph below, graph the following

More information

One-to-one functions and onto functions

One-to-one functions and onto functions MA 3362 Lecture 7 - One-to-one and Onto Wednesday, October 22, 2008. Objectives: Formalize definitions of one-to-one and onto One-to-one functions and onto functions At the level of set theory, there are

More information

Algebra 2 Segment 1 Lesson Summary Notes

Algebra 2 Segment 1 Lesson Summary Notes Algebra 2 Segment 1 Lesson Summary Notes For each lesson: Read through the LESSON SUMMARY which is located. Read and work through every page in the LESSON. Try each PRACTICE problem and write down the

More information

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-713209 email: anita.buie@gmail.com 1 . Chapter 4 Solution of Non-linear

More information

Function Junction: Homework Examples from ACE

Function Junction: Homework Examples from ACE Function Junction: Homework Examples from ACE Investigation 1: The Families of Functions, ACE #5, #10 Investigation 2: Arithmetic and Geometric Sequences, ACE #4, #17 Investigation 3: Transforming Graphs,

More information

Root finding. Eugeniy E. Mikhailov. Lecture 05. The College of William & Mary. Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10

Root finding. Eugeniy E. Mikhailov. Lecture 05. The College of William & Mary. Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10 Root finding Eugeniy E. Mikhailov The College of William & Mary Lecture 05 Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10 Root finding problem Generally we want to solve the following canonical

More information

Review Sheet for Math 5a Final Exam. The Math 5a final exam will be Tuesday, May 1 from 9:15 am 12:15 p.m.

Review Sheet for Math 5a Final Exam. The Math 5a final exam will be Tuesday, May 1 from 9:15 am 12:15 p.m. Review Sheet for Math 5a Final Exam The Math 5a final exam will be Tuesday, May from 9:5 am :5 p.m. Location: Gerstenzang The final exam is cumulative (i.e., it will cover all the material we covered in

More information

Algebra III and Trigonometry Summer Assignment

Algebra III and Trigonometry Summer Assignment Algebra III and Trigonometry Summer Assignment Welcome to Algebra III and Trigonometry! This summer assignment is a review of the skills you learned in Algebra II. Please bring this assignment with you

More information

1 What is numerical analysis and scientific computing?

1 What is numerical analysis and scientific computing? Mathematical preliminaries 1 What is numerical analysis and scientific computing? Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations)

More information

Section 1.x: The Variety of Asymptotic Experiences

Section 1.x: The Variety of Asymptotic Experiences calculus sin frontera Section.x: The Variety of Asymptotic Experiences We talked in class about the function y = /x when x is large. Whether you do it with a table x-value y = /x 0 0. 00.0 000.00 or with

More information

MAT 210 Test #1 Solutions, Form A

MAT 210 Test #1 Solutions, Form A 1. Where are the following functions continuous? a. ln(x 2 1) MAT 210 Test #1 Solutions, Form A Solution: The ln function is continuous when what you are taking the log of is positive. Hence, we need x

More information

Day 15. Tuesday June 12, 2012

Day 15. Tuesday June 12, 2012 Day 15 Tuesday June 12, 2012 1 Properties of Function So far we have talked about different things we can talk about with respect to a function. So far if f : A B we have the following features: A domain:

More information

Figure 1: Graph of y = x cos(x)

Figure 1: Graph of y = x cos(x) Chapter The Solution of Nonlinear Equations f(x) = 0 In this chapter we will study methods for find the solutions of functions of single variables, ie values of x such that f(x) = 0 For example, f(x) =

More information

Proving languages to be nonregular

Proving languages to be nonregular Proving languages to be nonregular We already know that there exist languages A Σ that are nonregular, for any choice of an alphabet Σ. This is because there are uncountably many languages in total and

More information

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture - 09 Newton-Raphson Method Contd We will continue with our

More information

Section 2.6: Continuity

Section 2.6: Continuity Section 2.6: Continuity Problem 1 (a) Let f(x) = x 1 x 2 5x. Then f(2) = 1 6 and f(6) = 5, but there is no value of c between 2 6 and 6 for which f(c) = 0. Does this fact violate the Intermediate Value

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

5 Finding roots of equations

5 Finding roots of equations Lecture notes for Numerical Analysis 5 Finding roots of equations Topics:. Problem statement. Bisection Method 3. Newton s Method 4. Fixed Point Iterations 5. Systems of equations 6. Notes and further

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1 53 17. Lecture 17 Nonlinear Equations Essentially, the only way that one can solve nonlinear equations is by iteration. The quadratic formula enables one to compute the roots of p(x) = 0 when p P. Formulas

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

We can see that f(2) is undefined. (Plugging x = 2 into the function results in a 0 in the denominator)

We can see that f(2) is undefined. (Plugging x = 2 into the function results in a 0 in the denominator) In order to be successful in AP Calculus, you are expected to KNOW everything that came before. All topics from Algebra I, II, Geometry and of course Precalculus are expected to be mastered before you

More information

MATH 1040 Objectives List

MATH 1040 Objectives List MATH 1040 Objectives List Textbook: Calculus, Early Transcendentals, 7th edition, James Stewart Students should expect test questions that require synthesis of these objectives. Unit 1 WebAssign problems

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Daily Update. Dondi Ellis. January 27, 2015

Daily Update. Dondi Ellis. January 27, 2015 Daily Update Dondi Ellis January 27, 2015 CLASS 1: Introduction and Section 1.1 REMINDERS: Assignment: Read sections 1.1 and 1.2, and Student Guide (online). Buy a TI-84 or other graphing calculator satisfying

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

Advanced Calculus Questions

Advanced Calculus Questions Advanced Calculus Questions What is here? This is a(n evolving) collection of challenging calculus problems. Be warned - some of these questions will go beyond the scope of this course. Particularly difficult

More information

Lesson 59 Rolle s Theorem and the Mean Value Theorem

Lesson 59 Rolle s Theorem and the Mean Value Theorem Lesson 59 Rolle s Theorem and the Mean Value Theorem HL Math - Calculus After this lesson, you should be able to: Understand and use Rolle s Theorem Understand and use the Mean Value Theorem 1 Rolle s

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Problem Set 1 October 30, 2017

Problem Set 1 October 30, 2017 1. e π can be calculated from e x = x n. But that s not a good approximation method. The n! reason is that π is not small compared to 1. If you want O(0.1) accuracy, then the last term you need to include

More information