Running at Non-relativistic Speed

Size: px
Start display at page:

Download "Running at Non-relativistic Speed"

Transcription

1 Running at Non-relativistic Speed Eric Bergshoeff Groningen University Symmetries in Particles and Strings A Conference to celebrate the 70th birthday of Quim Gomis Barcelona, September

2 Why always running fast?

3 why non-relativistic gravity? Newton-Cartan (NC) gravity is Newtonian gravity in arbitrary frame Cartan (1923)

4 non-relativistic strings/branes Motivation Gomis, Ooguri (2000); Gomis, Kamimura, Townsend (2004) condensed matter physics Son et al. ( ) gauge-gravity duality Christensen, Hartong, Kiritsis Obers and Rollier ( ) NC supergravity Pestun (2007); Festuccia, Seiberg (2011) Hořava-Lifshitz gravity Hořava (2009); Hartong, Obers (2015)

5 How do we construct Non-relativistic Gravity? (1) gauging a non-relativistic algebra (2) taking a non-relativistic limit (3) using a non-relativistic conformal tensor calculus

6 Outline NC Gravity from gauging Bargmann

7 Outline NC Gravity from gauging Bargmann NC Gravity as a NR Limit of Einstein Gravity

8 Outline NC Gravity from gauging Bargmann NC Gravity as a NR Limit of Einstein Gravity NC Gravity and a NR CFT

9 Outline NC Gravity from gauging Bargmann NC Gravity as a NR Limit of Einstein Gravity NC Gravity and a NR CFT Future Directions

10 Outline NC Gravity from gauging Bargmann NC Gravity as a NR Limit of Einstein Gravity NC Gravity and a NR CFT Future Directions

11 Einstein Gravity In the relativistic case free-falling frames are connected by the Poincare symmetries: space-time translations: δx µ = ξ µ Lorentz transformations: δx µ = λ µ ν x ν In free-falling frames there is no gravitational force in arbitrary frames the gravitational force is described by an invertable Vierbein field e µ A (x) µ = 0,1,2,3; A=0,1,2,3

12 Non-relativistic Gravity In the non-relativistic case free-falling frames are connected by the Galilean symmetries: time translations: δt = ξ 0 space translations: δx i = ξ i i = 1,2,3 spatial rotations: Galilean boosts: δx i = λ i j x j δx i = λ i t In free-falling frames there is no gravitational force

13 Newtonian gravity versus Newton-Cartan gravity in frames with constant acceleration (δx i = 1 2 ai t 2 ) the gravitational force is described by the Newton potential Φ( x) Newtonian gravity in arbitrary frames the gravitational force is described by a temporal Vierbein τ µ (x), spatial Vierbein e µ a (x) plus a vector m µ (x) µ = 0,1,2,3; a=1,2,3 Newton-Cartan (NC) gravity

14 The Galilei Algebra versus the Bargmann algebra Einstein gravity follows from gauging the Poincare algebra The Galilei algebra is the contraction of the Poincare algebra does NC gravity follow from gauging the Galilei algebra? Can NC gravity be obtained by taking the non-relativistic limit of Einstein gravity? No! one needs Bargmann instead of Galilei and Poincare U(1)!

15 Gauging the Bargmann algebra [J ab,p c ] = 2δ c[a P b], [J ab,g c ] = 2δ c[a G b], [G a,h] = P a, [G a,p b ] = δ ab Z, a = 1,2,...,d symmetry generators gauge field parameters curvatures time translations H τ µ ζ(x ν ) R µν (H) space translations P a a e µ ζ a (x ν ) R a µν (P) Galilean boosts G a a ω µ λ a (x ν ) R a µν (G) spatial rotations J ab ab ω µ λ ab (x ν ) R ab µν (J) central charge transf. Z m µ σ(x ν ) R µν (Z)

16 Imposing Constraints R µν a (P) = 0, R µν (Z) = 0 : solve for spin-connection fields R µν (H) = [µ τ ν] = 0 τ µ = µ τ : foliation of Newtonian spacetime ( zero torsion ) R µν ab (J) = 0 (flat space) : optional R 0(a,b) (G) 0 : only non-zero components left

17 The Final Result The independent NC fields {τ µ,e µ a,m µ } transform as follows: δτ µ = 0, δe µ a = λ a be µ b +λ a τ µ, δm µ = µ σ +λ a e µ a The spin-connection fields ω µ ab and ω µ a are functions of e,τ and m There are two Galilean-invariant metrics: τ µν = τ µ τ ν, h µν = e µ ae ν bδ ab

18 The NC Equation of Motion Case I: R ab µν (J) = 0 τ µ e ν ar a µν (G) = 0 invariant under local central charge transformations Case II: R µν ab (J) 0 τ µ( ) R a µa (G)+2M b a R µa b (J)+τ µ M b M c a R ba c (J) = 0 invariant under rigid central charge transformations after gauge-fixing NC e.o.m. becomes Φ = 0 Note: M a m a note: there is no action that gives rise to this equation of motion

19 Outline NC Gravity from gauging Bargmann NC Gravity as a NR Limit of Einstein Gravity NC Gravity and a NR CFT Future Directions

20 Can we obtain NC Gravity by taking a non-relativistic limit of Einstein gravity?

21 The Newtonian Limit R µν 1 2 g µνr = κt µν R µν = κ ( T µν 1 d 2 g µνt ) R 00 = κ d 3 d 2 T asumption: weak and slowly varying gravitational field Φ = κ d 3 d 2 ρ taking a non-relativistic limit and using an arbitrary frame are two different things!

22 Inönü Wigner Contraction [ PA,M BC ] = 2ηA[B P C], [ MAB,M CD ] = 4η[A[C M D]B] plus Z P 0 = 1 2ω H +ωz, Z = 1 2ω H ωz, P a = P a, M ab = J ab, M a0 = ωg a Taking the limit ω gives the Bargmann algebra: [ Pa,J bc ] = 2δa[b P c], [ Jab,J cd ] = 4δ[a[c J d]b], [ Ga,J bc ] = 2δa[b G c], [ H,Ga ] = Pa, [ Pa,G b ] = δab Z

23 Relativistic Gravity U(1) The independent fields {E µ A,M µ } of Poincare U(1) transform as follows: δe µ A = ξ ρ ρ E µ A +E ρ A µ ξ ρ +λ A BE µ B, δm µ = ξ ρ ρ M µ + µ ξ ρ M ρ + µ Λ, A = 0,1,2,...,d R µν A (E) = 2 [µ E ν] A 2Ω [µ A B E ν] B = 0 Ω µ AB = Ω µ AB (E) F µν (M) = 2 [µ M ν]

24 Taking the Limit Jensen, Karch (2014); Rosseel, Zojer + E.B. (2015) Inspired by the contraction of the Poincare U(1) to the Bargmann algebra we introduce a parameter ω and define E µ A = δ A 0 ( ωτµ + 1 2ω m ) µ +δ A a e a µ, M µ = ωτ µ 1 2ω m µ, where in the limit ω the fields {τ µ,e µ a,m µ } become the NC fields This indeed yields the transformation rules of NC gravity!

25 A subtlety one must take limit in δδφ and δφ Rosseel, Zojer + E.B. (2015) Some of the NC constraints follow directly by taking the non-relativistic limit of the Einstein constraints The remaining ones follow from the requirement that the limit of the transformation rules is well-defined orbit of constraints must be finite

26 Outline NC Gravity from gauging Bargmann NC Gravity as a NR Limit of Einstein Gravity NC Gravity and a NR CFT Future Directions

27 The Relativistic Conformal Tensor Calculus Conformal = Poincare + D (dilatations) + K µ (special conf. transf.) conformal gravity gauging of conformal algebra δb µ = Λ a K (x)e µ a, f µ a = f µ a (e,ω,b) rigid conformal symmetries follows from δe µ a = ξ λ (x) λ e µ a + µ ξ λ (x)e λ a +Λ ab (x)e µ b +Λ D (x)e µ a = 0 ξ µ (x) = a µ λ µν x ν λ D x µ +λ ν ( K x µ x ν 1 2 δµ ν x 2)

28 Poincare invariant CFT of real scalar Poincare gravity = conformal gravity + compensating scalar φ L = 1 2 φ µ µ φ, with δφ = wλ D φ L = 1 2 φ(da ) c (D a ) c φ φ=1,bµ=0 L = R L = R and (e µ a ) P = φ(e µ a ) C plus (e µ a ) C = δ µ a L = 1 2 φ µ µ φ

29 A Non-relativistic Conformal Tensor Calculus The contraction of the conformal Algebra is the Galilean Conformal Algebra (GCA) which has no central extension! z = 2 Schrödinger = Bargmann + D (dilatations) + K (special conf.) [H,D] = zh, [P a,d] = P a z = 1: conformal algebra, z 2 : no special conf. transf.

30 Schrödinger Gravity Hartong, Rosseel + E.B. (2014) Gauging the z = 2 Schrödinger algebra we find that the independent gauge fields {τ µ,e a µ,m µ } transform as follows: δτ µ = 2Λ D τ µ, δe a µ = Λ a be b µ +Λ a τ µ +Λ D e a µ, a δm µ = µ σ +Λ a e µ The connection fields ω µ ab,ω µ a and the K-gauge field f µ are dependent The time projection τ µ b µ of b µ transforms under K as a a shift while the spatial projection e µ a b µ is dependent: R 0a (H) = 0 is conventional constraint R µν (H) = [µ τ ν] b [µ τ ν] = 0 b a represents (twistless) torsion!

31 Rigid Schrödinger Transformations δτ µ = µ ξ 0 (x)+2λ D (x)δ µ0 = 0, δe µ a = µ ξ a (x)+λ ab (x)δ µ b +Λ a (x)δ µ0 +Λ D (x)δ µ a = 0 ξ 0 (x) = b 2λ D t +λ K t 2, ξ a (x) = b a λ ab x b λ a t λ D x a +λ K tx a

32 NC Gravity and a NR CFT Case I: R µν ab (J) = 0 and b a = 0 (zero torsion) τ µ e ν ar µν a (G) = 0 and [µ τ ν] = φ = 0 and a φ = 0 w = 1 Case II: R µν ab (J) 0 and b a = 0 (zero torsion) τ µ( R µa a (G) NC +2M b R µa a b (J) NC +τ µ M b M c R ba a c (J) NC) = φ = 0 and a φ = 0 second compensating scalar χ for central charge transfs. occurs via M µ m µ µ χ

33 NC Gravity with Torsion Case III: R µν ab (J) 0 and b a 0 (torsion) Use the second compensating scalar χ to restore the invariance under Galilean boosts: δ(λ a ) a χ Mλ a 0 0 ϕ 2 M ( 0 a ϕ) a χ+ 1 M 2( a b ϕ) a χ b χ = 0 τ µ f µ b a τ µ ω a µ 2M a τ µ D µ b a M a M b D a b b = 0

34 Outline NC Gravity from gauging Bargmann NC Gravity as a NR Limit of Einstein Gravity NC Gravity and a NR CFT Future Directions

35 Outlook 4D Newton-Cartan supergravity? supersymmetric Hořava-Lifshitz non-relativistic superspace techniques Applications!

36

37

A Schrödinger approach to Newton-Cartan gravity. Miami 2015

A Schrödinger approach to Newton-Cartan gravity. Miami 2015 A Schrödinger approach to Newton-Cartan gravity Eric Bergshoeff Groningen University Miami 2015 A topical conference on elementary particles, astrophysics, and cosmology Fort Lauderdale, December 21 2015

More information

Applied Newton-Cartan Geometry: A Pedagogical Review

Applied Newton-Cartan Geometry: A Pedagogical Review Applied Newton-Cartan Geometry: A Pedagogical Review Eric Bergshoeff Groningen University 10th Nordic String Meeting Bremen, March 15 2016 Newtonian Gravity Free-falling frames: Galilean symmetries Earth-based

More information

Newton-Cartan Geometry and Torsion

Newton-Cartan Geometry and Torsion Newton-Cartan Geometry and Torsion Eric Bergshoeff Groningen University Supergravity, Strings and Dualities: A Meeting in Celebration of Chris Hull s 60th Birthday London, April 29 2017 why non-relativistic

More information

Massive and Newton-Cartan Gravity in Action

Massive and Newton-Cartan Gravity in Action Massive and Newton-Cartan Gravity in Action Eric Bergshoeff Groningen University The Ninth Aegean Summer School on Einstein s Theory of Gravity and its Modifications: From Theory to Observations based

More information

String Theory and Nonrelativistic Gravity

String Theory and Nonrelativistic Gravity String Theory and Nonrelativistic Gravity Eric Bergshoeff Groningen University work done in collaboration with Ceyda Şimşek, Jaume Gomis, Kevin Grosvenor and Ziqi Yan A topical conference on elementary

More information

arxiv: v1 [hep-th] 19 Dec 2015

arxiv: v1 [hep-th] 19 Dec 2015 UG 15 20 arxiv:1512.06277v1 [hep-th] 19 Dec 2015 A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities Hamid R. Afshar 1, Eric A. Bergshoeff 2, Aditya Mehra 3, Pulastya Parekh 3 and Blaise

More information

N-C from the Noether Procedure and Galilean Electrodynamics

N-C from the Noether Procedure and Galilean Electrodynamics gen. Vertical version with logotype under the N-C from the Noether Procedure and Galilean Electrodynamics Dennis Hansen 10th Nordic String Theory Meeting, Bremen 2016 The Niels Bohr Institute and Niels

More information

Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions

Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions Mehmet Ozkan in collaboration with Yi Pang (Texas A&M University) hep-th/1301.6622 April 24, 2013 Mehmet Ozkan () April 24,

More information

Symmetries of curved superspace

Symmetries of curved superspace School of Physics, University of Western Australia Second ANZAMP Annual Meeting Mooloolaba, November 27 29, 2013 Based on: SMK, arxiv:1212.6179 Background and motivation Exact results (partition functions,

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on

More information

Fefferman Graham Expansions for Asymptotically Schroedinger Space-Times

Fefferman Graham Expansions for Asymptotically Schroedinger Space-Times Copenhagen, February 20, 2012 p. 1/16 Fefferman Graham Expansions for Asymptotically Schroedinger Space-Times Jelle Hartong Niels Bohr Institute Nordic String Theory Meeting Copenhagen, February 20, 2012

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

A Short Note on D=3 N=1 Supergravity

A Short Note on D=3 N=1 Supergravity A Short Note on D=3 N=1 Supergravity Sunny Guha December 13, 015 1 Why 3-dimensional gravity? Three-dimensional field theories have a number of unique features, the massless states do not carry helicity,

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Holography for non-relativistic CFTs

Holography for non-relativistic CFTs Holography for non-relativistic CFTs Herzog, Rangamani & SFR, 0807.1099, Rangamani, Son, Thompson & SFR, 0811.2049, SFR & Saremi, 0907.1846 Simon Ross Centre for Particle Theory, Durham University Liverpool

More information

arxiv: v3 [hep-th] 30 Jan 2019

arxiv: v3 [hep-th] 30 Jan 2019 An Action for Extended String Newton-Cartan Gravity Eric A. Bergshoeff a, Kevin T. Grosvenor b, Ceyda Şimşek a, Ziqi Yan c a Van Swinderen Institute, University of Groningen Nijenborgh 4, 9747 AG Groningen,

More information

Connection Variables in General Relativity

Connection Variables in General Relativity Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Question 1: Axiomatic Newtonian mechanics

Question 1: Axiomatic Newtonian mechanics February 9, 017 Cornell University, Department of Physics PHYS 4444, Particle physics, HW # 1, due: //017, 11:40 AM Question 1: Axiomatic Newtonian mechanics In this question you are asked to develop Newtonian

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Experimental Tests and Alternative Theories of Gravity

Experimental Tests and Alternative Theories of Gravity Experimental Tests and Alternative Theories of Gravity Gonzalo J. Olmo Alba gonzalo.olmo@uv.es University of Valencia (Spain) & UW-Milwaukee Experimental Tests and Alternative Theories of Gravity p. 1/2

More information

The N = 2 Gauss-Bonnet invariant in and out of superspace

The N = 2 Gauss-Bonnet invariant in and out of superspace The N = 2 Gauss-Bonnet invariant in and out of superspace Daniel Butter NIKHEF College Station April 25, 2013 Based on work with B. de Wit, S. Kuzenko, and I. Lodato Daniel Butter (NIKHEF) Super GB 1 /

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 1 Main Headings I Introduction and relativity pre Einstein II Einstein s principle of relativity and a new concept of spacetime III

More information

Classical aspects of Poincaré gauge theory of gravity

Classical aspects of Poincaré gauge theory of gravity Classical aspects of Poincaré gauge theory of gravity Jens Boos jboos@perimeterinstitute.ca Perimeter Institute for Theoretical Physics Wednesday, Nov 11, 2015 Quantum Gravity group meeting Perimeter Institute

More information

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Jens Boos jboos@perimeterinstitute.ca Perimeter Institute for Theoretical Physics Friday, Dec 4, 2015

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

Non-Abelian and gravitational Chern-Simons densities

Non-Abelian and gravitational Chern-Simons densities Non-Abelian and gravitational Chern-Simons densities Tigran Tchrakian School of Theoretical Physics, Dublin nstitute for Advanced Studies (DAS) and Department of Computer Science, Maynooth University,

More information

8.821 F2008 Lecture 05

8.821 F2008 Lecture 05 8.821 F2008 Lecture 05 Lecturer: McGreevy Scribe: Evangelos Sfakianakis September 22, 2008 Today 1. Finish hindsight derivation 2. What holds up the throat? 3. Initial checks (counting of states) 4. next

More information

New Massive Dual Gravity: beyond 3D

New Massive Dual Gravity: beyond 3D New Massive Dual Gravity: beyond 3D Eric Bergshoeff Groningen University Work in progress together with Jose Juan Fernandez, Jan Rosseel and Paul Townsend Miami, December 18 2011 Outline Introduction Outline

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Chapter 3: Duality Toolbox

Chapter 3: Duality Toolbox 3.: GENEAL ASPECTS 3..: I/UV CONNECTION Chapter 3: Duality Toolbox MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 8 As seen before, equipped with holographic principle, we can deduce N = 4

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Week 9: Einstein s field equations

Week 9: Einstein s field equations Week 9: Einstein s field equations Riemann tensor and curvature We are looking for an invariant characterisation of an manifold curved by gravity. As the discussion of normal coordinates showed, the first

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

Do You Need to Understand General Relativity to Understand Gravitation?

Do You Need to Understand General Relativity to Understand Gravitation? Do You Need to Understand General Relativity to Understand? Institute of Mathematical Sciences, Chennai IIAP-Bangalore 13 June 2006 Newton s Three Laws Figure: Newton s Laws. Newton The fundamental law

More information

Special Conformal Invariance

Special Conformal Invariance Chapter 6 Special Conformal Invariance Conformal transformation on the d-dimensional flat space-time manifold M is an invertible mapping of the space-time coordinate x x x the metric tensor invariant up

More information

Lecture: General Theory of Relativity

Lecture: General Theory of Relativity Chapter 8 Lecture: General Theory of Relativity We shall now employ the central ideas introduced in the previous two chapters: The metric and curvature of spacetime The principle of equivalence The principle

More information

Metric-affine theories of gravity

Metric-affine theories of gravity Introduction Einstein-Cartan Poincaré gauge theories General action Higher orders EoM Physical manifestation Summary and the gravity-matter coupling (Vinc) CENTRA, Lisboa 100 yy, 24 dd and some hours later...

More information

Galilean Exotic Planar Supersymmetries and Nonrelativistic Supersymmetric Wave Equations

Galilean Exotic Planar Supersymmetries and Nonrelativistic Supersymmetric Wave Equations arxiv:hep-th/060198v1 0 Feb 006 Galilean Exotic Planar Supersymmetries and Nonrelativistic Supersymmetric Wave Equations J. Lukierski 1), I. Próchnicka 1), P.C. Stichel ) and W.J. Zakrzewski 3) 1) Institute

More information

New superspace techniques for conformal supergravity in three dimensions

New superspace techniques for conformal supergravity in three dimensions New superspace techniques for conformal supergravity in three dimensions Daniel Butter, Sergei Kuzenko, Joseph Novak School of Physics, The University of Western Australia, ARC DECRA fellow email: gabriele.tartaglino-mazzucchelli@uwa.edu.au

More information

Off-shell conformal supergravity in 3D

Off-shell conformal supergravity in 3D School of Physics, The University of Western Australia, ARC DECRA fellow ANZAMP meeting, Mooloolaba, 28 November 2013 Based on: Kuzenko & GTM, JHEP 1303, 113 (2013), 1212.6852 Butter, Kuzenko, Novak &

More information

A Supergravity Dual for 4d SCFT s Universal Sector

A Supergravity Dual for 4d SCFT s Universal Sector SUPERFIELDS European Research Council Perugia June 25th, 2010 Adv. Grant no. 226455 A Supergravity Dual for 4d SCFT s Universal Sector Gianguido Dall Agata D. Cassani, G.D., A. Faedo, arxiv:1003.4283 +

More information

Scale-invariance from spontaneously broken conformal invariance

Scale-invariance from spontaneously broken conformal invariance Scale-invariance from spontaneously broken conformal invariance Austin Joyce Center for Particle Cosmology University of Pennsylvania Hinterbichler, Khoury arxiv:1106.1428 Hinterbichler, AJ, Khoury arxiv:1202.6056

More information

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Eduardo Rodríguez Departamento de Matemática y Física Aplicadas Universidad Católica de la Santísima Concepción Concepción, Chile CosmoConce,

More information

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The Classical String Theory Proseminar in Theoretical Physics David Reutter ETH Zürich April 15, 2013 Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up

More information

Symmetries, Groups Theory and Lie Algebras in Physics

Symmetries, Groups Theory and Lie Algebras in Physics Symmetries, Groups Theory and Lie Algebras in Physics M.M. Sheikh-Jabbari Symmetries have been the cornerstone of modern physics in the last century. Symmetries are used to classify solutions to physical

More information

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste An all-scale exploration of alternative theories of gravity Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste General Outline Beyond GR: motivation and pitfalls Alternative

More information

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Central extensions in flat spacetimes Duality & Thermodynamics of BH dyons New classical central extension in asymptotically

More information

Exact results in AdS/CFT from localization. Part I

Exact results in AdS/CFT from localization. Part I Exact results in AdS/CFT from localization Part I James Sparks Mathematical Institute, Oxford Based on work with Fernando Alday, Daniel Farquet, Martin Fluder, Carolina Gregory Jakob Lorenzen, Dario Martelli,

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity.

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity. Giinter Ludyk Einstein in Matrix Form Exact Derivation of the Theory of Special and General Relativity without Tensors ^ Springer Contents 1 Special Relativity 1 1.1 Galilei Transformation 1 1.1.1 Relativity

More information

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc Symmetry and Duality FACETS 2018 Nemani Suryanarayana, IMSc What are symmetries and why are they important? Most useful concept in Physics. Best theoretical models of natural Standard Model & GTR are based

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

Einstein Double Field Equations

Einstein Double Field Equations Einstein Double Field Equations Stephen Angus Ewha Woman s University based on arxiv:1804.00964 in collaboration with Kyoungho Cho and Jeong-Hyuck Park (Sogang Univ.) KIAS Workshop on Fields, Strings and

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

The Kac Moody Approach to Supergravity

The Kac Moody Approach to Supergravity Miami, December 13 2007 p. 1/3 The Kac Moody Approach to Supergravity Eric Bergshoeff E.A.Bergshoeff@rug.nl Centre for Theoretical Physics, University of Groningen based on arxiv:hep-th/0705.1304,arxiv:hep-th/0711.2035

More information

Holography and phase-transition of flat space

Holography and phase-transition of flat space Holography and phase-transition of flat space Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Workshop on Higher-Spin and Higher-Curvature Gravity, São Paulo, 4. November

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v3 10 Mar 2004 100871 Beijing, China Abstract In this paper, complex

More information

The Conformal Algebra

The Conformal Algebra The Conformal Algebra Dana Faiez June 14, 2017 Outline... Conformal Transformation/Generators 2D Conformal Algebra Global Conformal Algebra and Mobius Group Conformal Field Theory 2D Conformal Field Theory

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v2 23 Feb 2004 100871 Beijing, China Abstract In this paper, complex

More information

16. Einstein and General Relativistic Spacetimes

16. Einstein and General Relativistic Spacetimes 16. Einstein and General Relativistic Spacetimes Problem: Special relativity does not account for the gravitational force. To include gravity... Geometricize it! Make it a feature of spacetime geometry.

More information

2 Post-Keplerian Timing Parameters for General Relativity

2 Post-Keplerian Timing Parameters for General Relativity 1 Introduction General Relativity has been one of the pilars of modern physics for over 100 years now. Testing the theory and its consequences is therefore very important to solidifying our understand

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

Extensions of Lorentzian spacetime geometry

Extensions of Lorentzian spacetime geometry Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool LQP33 Workshop 15. November 2013 Manuel Hohmann

More information

A solution in Weyl gravity with planar symmetry

A solution in Weyl gravity with planar symmetry Utah State University From the SelectedWorks of James Thomas Wheeler Spring May 23, 205 A solution in Weyl gravity with planar symmetry James Thomas Wheeler, Utah State University Available at: https://works.bepress.com/james_wheeler/7/

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation...

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation... Delta-gravity Jorge Alfaro Pontificia Universidad Católica de Chile Segundo Encuentro CosmoConce Concepción, March 16, 2012 Table of contents Motivation........................................................

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Backreaction effects of matter coupled higher derivative gravity

Backreaction effects of matter coupled higher derivative gravity Backreaction effects of matter coupled higher derivative gravity Lata Kh Joshi (Based on arxiv:1409.8019, work done with Ramadevi) Indian Institute of Technology, Bombay DAE-HEP, Dec 09, 2014 Lata Joshi

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

Tensor Calculus, Relativity, and Cosmology

Tensor Calculus, Relativity, and Cosmology Tensor Calculus, Relativity, and Cosmology A First Course by M. Dalarsson Ericsson Research and Development Stockholm, Sweden and N. Dalarsson Royal Institute of Technology Stockholm, Sweden ELSEVIER ACADEMIC

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 04 Lecturer: McGreevy

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Anomalies, Conformal Manifolds, and Spheres

Anomalies, Conformal Manifolds, and Spheres Anomalies, Conformal Manifolds, and Spheres Nathan Seiberg Institute for Advanced Study Jaume Gomis, Po-Shen Hsin, Zohar Komargodski, Adam Schwimmer, NS, Stefan Theisen, arxiv:1509.08511 CFT Sphere partition

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

The Geometric Scalar Gravity Theory

The Geometric Scalar Gravity Theory The Geometric Scalar Gravity Theory M. Novello 1 E. Bittencourt 2 J.D. Toniato 1 U. Moschella 3 J.M. Salim 1 E. Goulart 4 1 ICRA/CBPF, Brazil 2 University of Roma, Italy 3 University of Insubria, Italy

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

One-loop renormalization in a toy model of Hořava-Lifshitz gravity 1/0 Università di Roma TRE, Max-Planck-Institut für Gravitationsphysik One-loop renormalization in a toy model of Hořava-Lifshitz gravity Based on (hep-th:1311.653) with Dario Benedetti Filippo Guarnieri

More information

Gravity as Machian Shape Dynamics

Gravity as Machian Shape Dynamics Gravity as Machian Shape Dynamics Julian Barbour Alternative Title: Was Spacetime a Glorious Historical Accident? Time will not be fused with space but emerge from the timeless shape dynamics of space.

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Theoretical Aspects of Black Hole Physics

Theoretical Aspects of Black Hole Physics Les Chercheurs Luxembourgeois à l Etranger, Luxembourg-Ville, October 24, 2011 Hawking & Ellis Theoretical Aspects of Black Hole Physics Glenn Barnich Physique théorique et mathématique Université Libre

More information

Chapter 4. COSMOLOGICAL PERTURBATION THEORY

Chapter 4. COSMOLOGICAL PERTURBATION THEORY Chapter 4. COSMOLOGICAL PERTURBATION THEORY 4.1. NEWTONIAN PERTURBATION THEORY Newtonian gravity is an adequate description on small scales (< H 1 ) and for non-relativistic matter (CDM + baryons after

More information