Questions Q1. * A circuit is set up as shown in the diagram. The battery has negligible internal resistance.

Size: px
Start display at page:

Download "Questions Q1. * A circuit is set up as shown in the diagram. The battery has negligible internal resistance."

Transcription

1 Questions Q1. * A circuit is set up as shown in the diagram. The battery has negligible internal resistance. (a) Calculate the potential difference across the 40 Ω resistor. (2) Potential difference =... (b) A thermistor is connected in parallel with the 40 Ω resistor as shown. The thermistor is initially at a temperature of 100 C and its resistance is 20 Ω. As the thermistor cools down, its resistance increases.

2 Explain what happens to the current through the battery as the temperature of the thermistor decreases. (3) (Total for Question = 5 marks) Q2. The following circuit is used to monitor the temperature in a greenhouse. The battery has no internal resistance. (a) The graph shows how the resistance of the thermistor varies with temperature.

3 (i) Use the graph to find the resistance of the thermistor at 20 C. (1) Resistance =... (ii) Calculate the reading on the voltmeter when the thermistor is at 20 C. (3) Reading on the voltmeter =... (b) Explain what will happen to the reading on the voltmeter as the temperature of the greenhouse decreases. (2) (Total for Question = 6 marks) Q3. (a) A kettle is rated at 1 kw, 220 V. Calculate the working resistance of the kettle. (2) Resistance =... (b) When connected to a 220 V supply, it takes 3 minutes for the water in the kettle to reach boiling point.

4 Calculate how much energy has been supplied. (2) Energy =... (c) Different countries supply mains electricity at different voltages. Many hotels now offer a choice of voltage supplies as shown in the photograph. (i) By mistake, the kettle is connected to the 110 V supply. Assuming that the working resistance of the kettle does not change, calculate the time it would take for the same amount of water to reach boiling point. (3) Time =... (ii) Explain what might happen if a kettle designed to operate at 110 V is connected to a 220 V supply. (2)

5 (Total for Question = 9 marks) Q4. Select one answer from A to D and put a cross in the box ( ) The battery in the circuit has negligible internal resistance and an e.m.f. of 12 V. The potential difference across the parallel combination is A 0V B 4V C 6V D 8V (Total for Question = 1 mark) Q5. The diagram shows a circuit set up by a student.

6 (a) Both voltmeters have a resistance of 10 MΩ. The reading on V1 is 6 V and the reading on V2 is zero. Explain these readings. (2) (b) The student replaces the 10 Ω resistor of unknown resistance R. The reading on V1 is now 4 V. Calculate the value of R (3) R =... (Total for Question = 5 marks)

7 Q6. The diagram shows a uniform wire XY across which a potential difference V0 is applied. Which of the following correctly shows the output potential difference across XZ? (Total for Question = 1 mark) Q7. A combination of resistors is connected to a 12 V supply of negligible internal resistance. The potential difference between points A and B is A 4V B 6V C 8V D 12 V

8 (Total for question = 1 marks) Q8. The diagram shows a potential divider circuit that contains a negative temperature coefficient thermistor. The temperature of the room containing the circuit increases. Select the row of the table that correctly shows the changes in readings on the meters. (Total for question = 1 mark) Examiner's Report Q1. (a) Another calculation which was generally well answered. Candidates need to be suspicious of answers that give a p.d. greater than the e.m.f. of the battery! A lot of candidates chose to do this calculation by finding the current in the circuit and then the p.d. across the 40 Ω resistor. A small but significant number of candidates found the current using just the 80 Ω resistor with the

9 9V. This shows that some candidates have a very poor grasp of even the most simple of circuits. (b) Answers generally lacked sufficient detail. Only a minority of candidates seemed able to methodically work their way through the argument, including all the relevant steps such as the essential one that the e.m.f./p.d. had to be constant for a larger total resistance to result in a smaller current. Candidates needed to think about what happened to the parallel combination first and after that, the effect on the total resistance. All too often these two stages were missed and there were references to resistance increasing which were too vague. Results Plus: Examiner Comments The first sentence is a repeat of what is given in the question. The answer effectively begins half way along the second line. There is a correct reference to the p.d. staying constant but there is insufficient detail as to how the candidate has come to the conclusion that the total resistance will increase. Again, there are three marks so three different points must be made. Q2. This was a relatively straightforward question, using potential dividers and thermistors. Nearly all candidates were able to read the value of resistance of the graph. Although, only the most able candidates are able to cope with the concept of a potential divider, this question can be correctly answered by finding the total resistance, then the current and finally the potential difference across the 1 kilo-ohm resistor.

10 Unfortunately, most candidates who chose to follow this route did not find the total resistance and did a current calculation using one of the resistances, instead of the total resistance. A significant number of candidates calculated a p.d. greater than 6 V and did not think that this was wrong. For the last part, it was necessary for candidates to identify that, it was the resistance of the thermistor that increased.

11 Results Plus: Examiner Comments This candidate found a current using just the thermistor's resistance. In the last part, there is no mention of the thermistor.

12

13 Results Plus: Examiner Comments An example where the reading on the voltmeter is greater than 6 V. The last part shows that the candidate has little understanding about potential dividers. Results Plus: Examiner Tip Check if your answer is sensible. The p.d. across one component in a circuit can't be greater than the p.d. of the supply. Q3. (a) -(b) Both parts were generally well answered, with the majority of candidates scoring full marks. Many candidates chose to answer (b) using E =VIt rather than the more simple E =Pt. (c) There were many methods seen in answer to this question, with quite a few candidates scoring three marks for the calculation. The common wrong answer was three minutes, because candidates did not realise that reducing the p.d. would also reduce the current. The question was about energy/power and so candidates need to think in terms of a power equation. The last part of the question again required candidates to refer to an equation, preferably E = V2/R but V=IR was accepted. Despite the question saying that resistance stayed the same, many candidates tried to answer this in terms of increased resistance.

14 Results Plus: Examiner Comments A very complex way to get to the answer but it is correct. This also scored two marks for the last part because there is a reference to an equation. Q4. No Examiner's Report available for this question

15 Q5. (a) About a quarter of answers gained at least one mark, with half of those getting the second mark as well. Those who approached this by carrying out circuit calculations often found it quite straightforward. For the remainder, a number of incomplete approaches and misconceptions were seen, with little understanding of the use of voltmeters with very high resistance. Some candidates simply said that if one reading is 6 V the other must be 0 V to give a total of 6 V, but this information was all in the question. Candidates frequently considered the parallel section of the circuit in isolation and suggested that the voltmeter had no current because all the current flowed through the 10 W resistor instead, and did not realise that there was essentially no current in the whole circuit. There were a number of references to voltage flowing and also to current flowing as far as V1 and then stopping. Results Plus: Examiner Comments This candidate has mentioned that V1 is high, but has not made it clear that it is very high in comparison to the parallel combination which contains an equally high resistance. The statement that potential is 'getting absorbed' is not an adequate description. Results Plus: Examiner Tip

16 When comparing things it is generally necessary to make a contextual reference to each of them in the response. Results Plus: Examiner Comments This response fails to recognise that the potential difference across parallel components is equal and is attempting to suggest the reading on V2 is zero because its current is zero due to the current going through the resistor instead. It is comparing the resistor and its voltmeter and ignoring V1. Candidates are expected to know that a voltmeter has a very high resistance specifically to ensure it draws very little current. (b) This was slightly less well answered than part (a), with about a quarter of answers gaining at least one mark, and a quarter of those also getting the second and third marks. The most common way to get a single mark was finding the resistance of the parallel section of the circuit, although most candidates thought this was the final answer required, ignoring V2, or perhaps thinking it had been removed. Some candidates got the final answer after assuming the current in the circuit divided equally between the parallel branches, although this is not always the case.

17 Results Plus: Examiner Comments This is a typical response in which the candidate has just found the resistance of the parallel section of the circuit, as if the resistor and V2 had both been removed and replaced by the new resistance R. Results Plus: Examiner Tip Be careful to correctly identify the context. In this case, altering the original circuit diagram or drawing a new one would have clarified the situation. Results Plus: Examiner Comments This candidate has also only calculated the new resistance of the parallel section, but by the alternative method of applying the ratio of the potential differences. Q6.

18 Q7. No Examiner's Report available for this question Q8. No Examiner's Report available for this question Mark Scheme Q1. Q2.

19 Q3.

20 Q4. Q5.

21 Q6. Q7. Q8. Powered by TCPDF (

Calculate the total resistance of this combination. (3)

Calculate the total resistance of this combination. (3) 1 The circuit shows a combination of three resistors. 22 Ω 47 Ω 620 Ω Calculate the total resistance of this combination. Total resistance = (Total for Question = 3 marks) 2 (a) Sketch a graph to show

More information

Questions Q1. Select one answer from A to D and put a cross in the box ( )

Questions Q1. Select one answer from A to D and put a cross in the box ( ) Questions Q1. Select one answer from A to D and put a cross in the box ( ) The resistance of a length of copper wire is 6 Ω. A second piece of copper wire has twice the length and twice the cross-sectional

More information

P2 Topic 3 - Using electricity Higher

P2 Topic 3 - Using electricity Higher Name: P2 Topic 3 - Using electricity Higher Date: Time: 32 minutes Total marks available: 32 Total marks achieved: Questions Q1. (a) The diagram shows an electric circuit with two resistors, R and S. (i)

More information

Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp?

Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp? Questions Q1. Select one answer from A to D and put a cross in the box ( ) Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament

More information

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move. SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

More information

Fig shows a battery connected across a negative temperature coefficient (NTC) thermistor. Fig. 24.1

Fig shows a battery connected across a negative temperature coefficient (NTC) thermistor. Fig. 24.1 Answer all the questions. 1. Fig. 24.1 shows a battery connected across a negative temperature coefficient (NTC) thermistor. Fig. 24.1 The battery has electromotive force (e.m.f.) 3.0 V and negligible

More information

AS and A Level Physics Cambridge University Press Tackling the examination. Tackling the examination

AS and A Level Physics Cambridge University Press Tackling the examination. Tackling the examination Tackling the examination You have done all your revision and now you are in the examination room. This is your chance to show off your knowledge. Keep calm, take a few deep breaths, and try to remember

More information

Topic 4 Exam Questions

Topic 4 Exam Questions IGCSE Physics Topic 4 Exam Questions Resistance Name: 44 marks Q.(a) A resistor is a component that is used in an electric circuit. (i) Describe how a student would use the circuit to take the readings

More information

Circuit Calculations practice questions

Circuit Calculations practice questions Circuit Calculations practice questions Name - 57 minutes 57 marks Page of 8 Q. A battery of emf 9.0 V and internal resistance, r, is connected in the circuit shown in the figure below. (a) The current

More information

Figure 1. Load resistance / Ω. Use data from Figure 1 to calculate the current in the load at the peak power. (3) Page 1 of 27

Figure 1. Load resistance / Ω. Use data from Figure 1 to calculate the current in the load at the peak power. (3) Page 1 of 27 Figure shows data for the variation of the power output of a photovoltaic cell with load resistance. The data were obtained by placing the cell in sunlight. The intensity of the energy from the Sun incident

More information

B [1] DF: decreases as greater proportion of voltage across fixed / 10 k Ω resistor no CE from first mark. B1 allow watt per amp

B [1] DF: decreases as greater proportion of voltage across fixed / 10 k Ω resistor no CE from first mark. B1 allow watt per amp Mark schemes B [] (a) (i) /R total = /(40) +/(0+5) = 0.0967 R total = 0.9 kω I = / 0.9 k =. ma (b) position pd / V AC 6.0 DF 4.0 CD.0 C.E. for CD (c) (i) AC: no change constant pd across resistors / parallel

More information

Total for question 3

Total for question 3 Question Use of resistors in parallel formula Use of resistors in series formula R = 68 Ω Example of calculation (/22 Ω) + (/620 Ω) = 0.047 Ω - Resistance for parallel section = 2.2 Ω 47 Ω + 2.2 Ω = 68.2

More information

(so total resistance in circuit decreases) and current increases. resistance of LDR and 12 Ω (in parallel)/across XY decreases

(so total resistance in circuit decreases) and current increases. resistance of LDR and 12 Ω (in parallel)/across XY decreases PhysicsAndMathsTutor.com 1 1. (a) resistors in series add to 20 Ω and current is 0.60 A accept potential divider stated or formula so p.d. across XY is 0.60 12 (= 7.2 V) gives (12 /20) 12 V (= 7.2 )V (b)

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 M1. (a) R = (1) = 0.031 Ω (1) (0.0305 Ω) (b) constant volume gives l 1 A 1 = l A [or l = l 1 and A = A 1 /] (1) R = =4R (1) [or calculation with l =.8 (m) and A = 3.9 (m ) (1)] gives R = 0.14 Ω (1)] [4]

More information

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes Module 1, Add on math lesson Simultaneous Equations 45 minutes eacher Purpose of this lesson his lesson is designed to be incorporated into Module 1, core lesson 4, in which students learn about potential

More information

Foundation Unit 16 topic test

Foundation Unit 16 topic test Name: Foundation Unit 16 topic test Date: Time: 40 minutes Total marks available: 34 Total marks achieved: Questions Q1. (a) Simplify c + c + c + c (1) (b) Simplify 6 m 5 (1) (c) Simplify 2e 3f + 7e 5f

More information

The equation which links current, potential difference and resistance is:

The equation which links current, potential difference and resistance is: An electrical circuit is shown in the figure below. The current in the circuit is direct current. What is meant by direct current? Tick one box. Current that continuously changes direction. Current that

More information

Resistor Network Answers

Resistor Network Answers Resistor Network Answers 1. (a) pd = 3.6 1 Example of answer; p.d. = 0.24 A 15 Ω = 3.6 (b) Calculation of pd across the resistor [6.0 3.6 = 2.4 ] Recall = I R I 1 calculated from their pd / 4Ω [correct

More information

Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors Lab 4 Series and Parallel Resistors What You Need To Know: The Physics Last week you examined how the current and voltage of a resistor are related. This week you are going to examine how the current and

More information

Some students failed to realise that the force in the diagram and resistance force in the graph referred only to the ship and not to the tugboat.

Some students failed to realise that the force in the diagram and resistance force in the graph referred only to the ship and not to the tugboat. Physics GA 1: Written examination 1 GENERAL COMMENTS The number of students who sat for the Physics examination 1 was 6846. With a mean score of 64 per cent, students generally found the paper to be quite

More information

CS C1 H Ionic, covalent and metallic bonding

CS C1 H Ionic, covalent and metallic bonding Name: CS C1 H Ionic, covalent and metallic bonding Date: Time: 39 minutes Total marks available: 39 Total marks achieved: Questions Q1. Chlorine and carbon (a) Chlorine has an atomic number of 17. Chlorine-35

More information

Answer Acceptable answers Mark. Answer Acceptable answers Mark

Answer Acceptable answers Mark. Answer Acceptable answers Mark 1(a)(i) component ammeter coil of wire battery magnet voltmeter one mark for each correct tick deduct 1 mark for each extra tick 1(a)(ii) Explanation linking any two of wind (speed) is not constant voltage

More information

Examiners Report June 2010

Examiners Report June 2010 Examiners Report June 2010 GCE Physics 6PH02 Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH ii Edexcel is one of the leading examining

More information

About the different types of variables, How to identify them when doing your practical work.

About the different types of variables, How to identify them when doing your practical work. Learning Objectives You should learn : About the different types of variables, How to identify them when doing your practical work. Variables Variables are things that vary and change Variables In any

More information

Electrical Circuits Question Paper 8

Electrical Circuits Question Paper 8 Electrical Circuits Question Paper 8 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type lternative to Practical Booklet Question Paper 8

More information

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law, Exercises Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Answer 3.1: Emf

More information

earth live neutral (ii) What is the colour of the insulation around the wire labelled T? blue brown green and yellow

earth live neutral (ii) What is the colour of the insulation around the wire labelled T? blue brown green and yellow Q. (a) The diagram shows the inside of a three-pin plug. What name is given to the wire labelled S? Draw a ring around the correct answer. earth live neutral () What is the colour of the insulation around

More information

Name: New Document 1. Class: Low Demand. Date: 113 minutes. Time: 112 marks. Marks: Comments: Page 1 of 45

Name: New Document 1. Class: Low Demand. Date: 113 minutes. Time: 112 marks. Marks: Comments: Page 1 of 45 New Document Low Demand Name: Class: Date: Time: 3 minutes Marks: 2 marks Comments: Page of 45 A student wants to investigate how the current through a filament lamp affects its resistance. (a) Use the

More information

GCE PHYSICS B. PHYB2 Physics keeps us going Report on the Examination June Version: 1.1

GCE PHYSICS B. PHYB2 Physics keeps us going Report on the Examination June Version: 1.1 GCE PHYSICS B PHYB2 Physics keeps us going Report on the Examination 2455 June 2014 Version: 1.1 Further copies of this Report are available from aqa.org.uk Copyright 2014 AQA and its licensors. All rights

More information

Circuit Lab Free Response

Circuit Lab Free Response Circuit Lab Free Response Directions: You will be given 40 minutes to complete the following written portion of the Circuit Lab exam. The following page contains some helpful formulas that you may use

More information

2009 Assessment Report Physics GA 1: Written examination 1

2009 Assessment Report Physics GA 1: Written examination 1 2009 Physics GA 1: Written examination 1 GENERAL COMMENTS The number of students who sat for the 2009 Physics examination 1 was 6868. With a mean score of 68 per cent, students generally found the paper

More information

Name: New Document 1. Class: Date: 54 minutes. Time: 54 marks. Marks: Comments: Page 1 of 22

Name: New Document 1. Class: Date: 54 minutes. Time: 54 marks. Marks: Comments: Page 1 of 22 New Document Name: Class: Date: Time: 54 minutes Marks: 54 marks Comments: Page of 22 (a) Uranium has two natural isotopes, uranium-235 and uranium-238. Use the correct answer from the box to complete

More information

Cambridge General Certificate of Education Ordinary Level 5054 Physics June 2013 Principal Examiner Report for Teachers

Cambridge General Certificate of Education Ordinary Level 5054 Physics June 2013 Principal Examiner Report for Teachers PHYSICS Cambridge General Certificate of Education Ordinary Level Paper 5054/11 Multiple Choice Question Number Key Question Number Key 1 A 21 A 2 A 22 C 3 D 23 C 4 B 24 D 5 C 25 D 6 C 26 B 7 A 27 C 8

More information

Answers to examination-style questions. Answers Marks Examiner s tips

Answers to examination-style questions. Answers Marks Examiner s tips End-of-unit (a) (i) 94 protons This is the proton number Z. (ii) 45 neutrons Number of neutrons is found from (nucleon number proton number) = (A Z) = 239 94 (iii) 93 electrons A neutral atom would have

More information

Parallel Resistors (32.6)

Parallel Resistors (32.6) Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Parallel Resistors (32.6)

More information

Parallel Resistors (32.6)

Parallel Resistors (32.6) Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors The important thing to note is that: the two left ends of the resistors are at the same potential. Also, the two

More information

Physics Department. CfE Higher Unit 3: Electricity. Problem Booklet

Physics Department. CfE Higher Unit 3: Electricity. Problem Booklet Physics Department CfE Higher Unit 3: Electricity Problem Booklet Name Class 1 Contents Exercise 1: Monitoring and measuring a.c. Exercise 2: Current, voltage, power and resistance Exercise 3: Electrical

More information

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:

More information

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L. 1 (a) A charged capacitor is connected across the ends of a negative temperature coefficient (NTC) thermistor kept at a fixed temperature. The capacitor discharges through the thermistor. The potential

More information

Electrical Circuits Question Paper 4

Electrical Circuits Question Paper 4 Electrical Circuits Question Paper 4 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type lternative to Practical Booklet Question Paper 4

More information

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

More information

Capacitance Consolidation

Capacitance Consolidation Capacitance Consolidation Q1.An uncharged 4.7 nf capacitor is connected to a 1.5 V supply and becomes fully charged. How many electrons are transferred to the negative plate of the capacitor during this

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com Electricity May 02 1. The graphs show the variation with potential difference V of the current I for three circuit elements. PhysicsAndMathsTutor.com When the four lamps are connected as shown in diagram

More information

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet Farr High School HIGHER PHYSICS Unit 3 Electricity Question Booklet 1 MONITORING ND MESURING.C. 1. What is the peak voltage of the 230 V mains supply? The frequency of the mains supply is 50 Hz. How many

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES Question 2 15 points total Distribution of points (a) i. 2 points Using Ohm s law: V = IR For a correct application of Kirchhoff s loop rule

More information

Examiners Report January GCE Physics 6PH02 01

Examiners Report January GCE Physics 6PH02 01 Examiners Report January 2012 GCE Physics 6PH02 01 Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company. We provide a wide range of qualifications

More information

Physics 2020 Lab 5 Intro to Circuits

Physics 2020 Lab 5 Intro to Circuits Physics 2020 Lab 5 Intro to Circuits Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction In this lab, we will be using The Circuit Construction Kit (CCK). CCK is a computer simulation that allows

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Cambridge International Advanced Subsidiary and Advanced Level 9702 Physics November 2016 Principal Examiner Report for Teachers. Question Key Number

Cambridge International Advanced Subsidiary and Advanced Level 9702 Physics November 2016 Principal Examiner Report for Teachers. Question Key Number PHYSICS Cambridge International Advanced Subsidiary and Advanced Level Paper 9702/11 Multiple Choice Question Question Key Number Number Key 1 D 21 D 2 B 22 A 3 A 23 A 4 A 24 D 5 D 25 D 6 B 26 C 7 B 27

More information

Past Exam Questions Core Practicals Physics Paper 1

Past Exam Questions Core Practicals Physics Paper 1 Past Exam Questions Core Practicals Physics Paper Name: Class: Date: Time: 48 minutes Marks: 48 marks Comments: Page of 53 A student used the apparatus below to find out how the resistance of a light-dependent

More information

The child becomes electrically charged when he goes down the slide

The child becomes electrically charged when he goes down the slide P4 Revision Questions Q. The figure below shows a slide in a children s playground. (a) A child of mass 8 kilograms goes down the slide. The vertical distance from the top to the bottom of the slide is

More information

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf 1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A two-way switch S can connect the capacitors either to a d.c.

More information

Test Review Electricity

Test Review Electricity Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120-volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 666/0 Edexcel GCE Core Mathematics C Gold Level G Time: hour 0 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Candidates

More information

REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION JANUARY 2010 PHYSICS GENERAL PROFICIENCY EXAMINATION

REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION JANUARY 2010 PHYSICS GENERAL PROFICIENCY EXAMINATION CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION JANUARY 2010 PHYSICS GENERAL PROFICIENCY EXAMINATION Copyright 2010 Caribbean Examinations Council

More information

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER]

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER] NTIONL QULIFICTIONS CURRICULUM SUPPORT Physics Electricity Questions and Solutions James Page rthur Baillie [HIGHER] The Scottish Qualifications uthority regularly reviews the arrangements for National

More information

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K.

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K. XII PHYSICS LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [CURRENT ELECTRICITY] CHAPTER NO. 13 CURRENT Strength of current in a conductor is defined as, Number of coulombs

More information

PMT. AS Physics. PHYA1 Particles, Quantum Phenomena and Electricity Mark scheme June Version: 1.0 Final

PMT. AS Physics. PHYA1 Particles, Quantum Phenomena and Electricity Mark scheme June Version: 1.0 Final AS Physics PHYA Particles, Quantum Phenomena and Electricity Mark scheme 450 June 06 Version:.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

More information

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit. Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

More information

A-LEVEL PHYSICS A. PHA6T Investigative and Practical Skills in A2 Physics (ISA) Report on the Examination June Version: 0.

A-LEVEL PHYSICS A. PHA6T Investigative and Practical Skills in A2 Physics (ISA) Report on the Examination June Version: 0. A-LEVEL PHYSICS A PHA6T Investigative and Practical Skills in A2 Physics (ISA) Report on the Examination 2450 June 2014 Version: 0.1 Further copies of this Report are available from aqa.org.uk Copyright

More information

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah CHAPTER 5 BRIDGES AND THEIR APPLICATION Resistance Measurements 1 RESISTANCE MEASUREMENTS Conventional Ways of Measuring Resistance:- 1) Using a Ohmmeter Convenient but inaccurate, requires calibration

More information

COE. DC. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

COE. DC. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe COE. DC Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 battery of internal resistance r and e.m.f. E can supply a current of 6.0 to a resistor R as shown in Fig

More information

NATIONAL 5 PHYSICS ELECTRICITY

NATIONAL 5 PHYSICS ELECTRICITY NATIONAL 5 PHYSICS ELECTRICITY ELECTRICAL CHARGE CARRIERS AND CURRENT Electrical Charge Electrical charge exists in two distinct types positive charge and negative charge. It is also possible for an object

More information

UNIVERSITY OF MALTA THE MATRICULATION CERTIFICATE EXAMINATION INTERMEDIATE LEVEL. PHYSICS May 2012 EXAMINERS REPORT

UNIVERSITY OF MALTA THE MATRICULATION CERTIFICATE EXAMINATION INTERMEDIATE LEVEL. PHYSICS May 2012 EXAMINERS REPORT UNIVERSITY OF MALTA THE MATRICULATION CERTIFICATE EXAMINATION INTERMEDIATE LEVEL PHYSICS May 2012 EXAMINERS REPORT MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD Part 1: Statistical

More information

Clicker Session Currents, DC Circuits

Clicker Session Currents, DC Circuits Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases

More information

Examiners Report June IAL Physics WPH04

Examiners Report June IAL Physics WPH04 Examiners Report June 2017 IAL Physics WPH04 Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the UK s largest awarding body. We provide a wide range of qualifications

More information

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used).

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used). Page 1 Score Problem 1: (35 pts) Problem 2: (25 pts) Problem 3: (25 pts) Problem 4: (25 pts) Problem 5: (15 pts) TOTAL: (125 pts) To receive full credit, you must show all your work (including steps taken,

More information

Which of the following is the SI unit of gravitational field strength?

Which of the following is the SI unit of gravitational field strength? T5-2 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.

More information

10 N acts on a charge in an electric field of strength 250 N.C What is the value of the charge?

10 N acts on a charge in an electric field of strength 250 N.C What is the value of the charge? Year 11 Physics Electrical Energy in the Home Name: 1. Draw the electric field lines around a) a single positive charge b) between two opposite charged bodies c) two parallel plates + + + + + + + - - -

More information

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test Name... Set... Don.... manner~ man makptb Winchester College Physics 3rd year Revision Test Electrical Circuits Common Time 2011 Mark multiple choice answers with a cross (X) using the box below. I A B

More information

AQA GCSE Physics. 61 minutes. 61 marks. Q1 to Q5 to be worked through with tutor. Q6 to Q9 to be worked through independently.

AQA GCSE Physics. 61 minutes. 61 marks. Q1 to Q5 to be worked through with tutor. Q6 to Q9 to be worked through independently. AQA GCSE Physics Atomic Structure 4.4.: Atomic Structure Name: Class: Date: Time: 6 minutes Marks: 6 marks Comments: Q to Q5 to be worked through with tutor. Q6 to Q9 to be worked through independently.

More information

IMPORTANT Read these directions carefully:

IMPORTANT Read these directions carefully: Physics 208: Electricity and Magnetism Common Exam 2, October 17 th 2016 Print your name neatly: First name: Last name: Sign your name: Please fill in your Student ID number (UIN): _ - - Your classroom

More information

SIR MICHELANGELO REFALO

SIR MICHELANGELO REFALO SIR MICHELANGELO REFALO SIXTH FORM Annual Exam 2014 Subject: PHYSICS INT. 1 st Year Time: 2 hrs. Answer All Questions Where necessary assume the acceleration due to gravity, g = 10m/s 1) A basketball player

More information

Examiner s Report Pure Mathematics

Examiner s Report Pure Mathematics MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA MA TRICULATION EXAMINATION ADVANCED LEVEL MAY 2013 Examiner s Report Pure Mathematics Page 1 of 6 Summary

More information

Greek Letter Omega Ω = Ohm (Volts per Ampere)

Greek Letter Omega Ω = Ohm (Volts per Ampere) ) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Ohm s Law Book page Syllabus 2.10

Ohm s Law Book page Syllabus 2.10 Ohm s Law Book page 85 87 Syllabus 2.10 What s wrong with this circuit diagram? Task 2 Sketch a simple series circuit containing a cell and a bulb. On your circuit diagram, show an ammeter and voltmeter

More information

Examiners Report June IAL Physics WPH04 01

Examiners Report June IAL Physics WPH04 01 Examiners Report June 2015 IAL Physics WPH04 01 Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the UK s largest awarding body. We provide a wide range of qualifications

More information

DC Circuit Analysis + 1 R 3 = 1 R R 2

DC Circuit Analysis + 1 R 3 = 1 R R 2 DC Circuit Analysis In analyzing circuits, it is generally the current that is of interest. You have seen how Ohm s Law can be used to analyze very simple circuits consisting of an EMF and single resistance.

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

Note-A-Rific: Kirchhoff s

Note-A-Rific: Kirchhoff s Note-A-Rific: Kirchhoff s We sometimes encounter a circuit that is too complicated for simple analysis. Maybe there is a mix of series and parallel, or more than one power source. To deal with such complicated

More information

2012 Assessment Report

2012 Assessment Report 2012 Physics GA 3: Examination 2 GENERAL COMMENTS This examination was the final Unit 4 November examination for the VCE Physics Study Design. From 2013, a single examination covering both Units 3 and

More information

Electrical Circuits Question Paper 1

Electrical Circuits Question Paper 1 Electrical Circuits Question Paper 1 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type Alternative to Practical Booklet Question Paper

More information

MARK SCHEME MAXIMUM MARK: 40 SYLLABUS/COMPONENT: 0625/01. PHYSICS Paper 1 (Multiple Choice)

MARK SCHEME MAXIMUM MARK: 40 SYLLABUS/COMPONENT: 0625/01. PHYSICS Paper 1 (Multiple Choice) June 2003 INTERNATIONAL GSE MARK SHEME MAXIMUM MARK: 40 SYLLABUS/OMPONENT: 0625/0 PHYSIS Paper (Multiple hoice) Page Mark Scheme Syllabus Paper IGSE EXAMINATIONS JUNE 2003 0625 Question Number Key Question

More information

A Review of Circuitry

A Review of Circuitry 1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one

More information

Physics GA 1: Written examination 1

Physics GA 1: Written examination 1 Physics GA 1: Written examination 1 GENERAL COMMENTS This examination proved to be slightly more difficult than previous years as the mean score of % indicates, compared with a mean of 61% in 2000 and

More information

(a) (i) On the axes below, sketch a velocity-time graph for the motion of a raindrop. (2) (ii) Explain why terminal velocity is reached.

(a) (i) On the axes below, sketch a velocity-time graph for the motion of a raindrop. (2) (ii) Explain why terminal velocity is reached. 1 Raindrops reach terminal velocity within a few metres of starting to fall. (a) (i) On the axes below, sketch a velocity-time graph for the motion of a raindrop. Velocity Time (ii) Explain why terminal

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Gold Level G4 Time: 1 hour 30 minutes Materials required for examination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

Electrodynamics. Review 8

Electrodynamics. Review 8 Unit 8 eview: Electrodynamics eview 8 Electrodynamics 1. A 9.0 V battery is connected to a lightbulb which has a current of 0.5 A flowing through it. a. How much power is delivered to the b. How much energy

More information

Commentary on candidate 3 evidence (Batteries)

Commentary on candidate 3 evidence (Batteries) on candidate 3 evidence (Batteries) The evidence for this candidate has achieved the following s for each section of this course assessment component. 1 Aim An aim that describes clearly the purpose of

More information

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page ELECTRICITY 1. Name a device that helps to maintain a potential difference across a conductor. Cell or battery 2. Define 1 volt. Express it in terms of SI unit of work and charge calculate the amount of

More information

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT 2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage

More information

2014 Assessment Report. Physics Level 1

2014 Assessment Report. Physics Level 1 National Certificate of Educational Achievement 2014 Assessment Report Physics Level 1 90937 Demonstrate understanding of aspects of electricity and magnetism 90938 Demonstrate understanding of aspects

More information

This week. 3/23/2017 Physics 214 Summer

This week. 3/23/2017 Physics 214 Summer This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

More information

National 5 Physics. Language Wikipedia. Electricity

National 5 Physics. Language Wikipedia. Electricity National 5 Physics Catlin.Fatu@English Language Wikipedia Electricity Throughout the Course, appropriate attention should be given to units, prefixes and scientific notation. tera T 10 12 x 1,000,000,000,000

More information

This week. 6/2/2015 Physics 214 Summer

This week. 6/2/2015 Physics 214 Summer This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

More information

MATHEMATICS Paper 980/11 Paper 11 General comments It is pleasing to record improvement in some of the areas mentioned in last year s report. For example, although there were still some candidates who

More information

2013 DSE PHYSICS/ COMBINED SCIENCE (PHYSICS) IB-2 H K LAU W I TANG

2013 DSE PHYSICS/ COMBINED SCIENCE (PHYSICS) IB-2 H K LAU W I TANG 2013 DSE PHYSICS/ COMBINED SCIENCE (PHYSICS) IB-2 H K LAU W I TANG QUESTION 7 (a) c = f => 310 8 m s 1 = f (0.02 m) [1M] 1M for correct substitution f = 1.5 10 10 Hz or 15000 MHz [1A] - Mistook the speed

More information

Higher Unit 6a b topic test

Higher Unit 6a b topic test Name: Higher Unit 6a b topic test Date: Time: 60 minutes Total marks available: 54 Total marks achieved: Questions Q1. The point A has coordinates (2, 3). The point B has coordinates (6, 8). M is the midpoint

More information