EKV Modelling of MOS Varactors and LC Tank Oscillator Design

Size: px
Start display at page:

Download "EKV Modelling of MOS Varactors and LC Tank Oscillator Design"

Transcription

1 EKV Modelling of MOS Varactors and LC Tank Oscillator Design Wolfgang Mathis TET Leibniz Universität Hannover Jan-K. Bremer NXP Hamburg MOS-AK Workshop April 01, Dresden

2 Content: Motivation: VCO VCO Design Process LC Tank VCO Model MOS Varactor Models Varactors incorporated into VCOs Conclusions

3 Motivation: VCO (voltage controlled oscillator) Demodulator in Processors frequency division and multiplication Input signal Frequency multiplier Divided output signal

4 Motivation: VCO MOS varactor CV-characteristic differential pair baised LC Tank VCO linear tuning range

5 VCO Design Process VCO design toolbox: f center =.4 GHz Tuning Range 15% V supply =.5 V VCO design process is not a simple task nonlinear behavior state space Variation of one circuit parameter specifications - Variation of the frequency or amplitude of the output signal - Generation of stable oscillations simulation Systematical design flow (incl. nonlinear behavior) better initial values Estimation of the resulting tuning range Finding the starting point of a stable oscillation Calculation of the output amplitude Stability analysis Optimization Systematical design flow Nonlinear modeling Our toolbox Experience Literature Measurements Hand calculations initial values

6 Circuit Simulation Transient analysis: ( il uc coordinates) dx Bx ( ) Fxut (, ( )) dt = + initial values DC operational points Small signal analysis: (time domain) dx% F F Bx ( op) = ( xop, U0) x% + ( xop, U0) u% dt x u Small signal analysis: (frequency domain) F F sb( xop) X% = ( xop, U0) X% + ( xop, U0) U% x u ( xop : Operational Point) Limit Cycles

7 LC Tank VCO Model C t (v t,v tune ) C t (v t,v tune ) differential pair baised LC Tank VCO i d (v t ) describing equations

8 Nonlinear Circuit Model for a LC Tank VCO v t C(v t,v tune ) v t Circuit Analysis

9 Nonlinear Circuit Model for a LC Tank VCO Tank resistance: R t = Rvp, Rip, Risubp,, R0 1 Current of the differential pair: v i ( v ) I 1 d v t t t = bias νn ν n A.Bunomo, Determining the Oscillation of differential VCOs, 003 dv 1 1 t d t dt RtCt( vt, Vtune) Ct( vt, Vtune) vt = Ct ( vt, Vtune) + dil 1 i L 0 0 dt L t i ( v ) Equivalent circuit of the inductor: C t (v t,v tune )?

10 D=S=B MOS Varactor Structure and CV-characteristic R. L. Bunch and S. Raman, Large- Signal Analysis of MOS Varaktors in CMOS G m LC VCOs Source-Drain-Bulk are short-circuited and connected to V tune Advantages: Made from standard MOS-cell Falling and rising edge of the CVcharacteristic can be used Disadvantages: Strongly nonlinear tuning characteristic

11 Accumulation Mode MOS Varactor Structure and CV-characteristic R. L. Bunch and S. Raman, Large- Signal Analysis of MOS Varaktors in CMOS G m LC VCOs, IEEE J. SC-38, 003 the p + regions of drain and source are replaced with n + regions Advantages: Wider transition from C min to C max as inversion mode varactors Best C max / C min ratio Lowest parasitic resistance Disadvantages: Not made from standard MOS-cell Nonlinear tuning characteristic

12 Inversion Mode MOS Varactor Structure and CV characteristic PMOS Source-Drain are short-circuited and Bulk is connected to supply voltage (PMOS) or ground (NMOS) Advantages: Consist of standard MOS transistor Monotone slope Good C min /C max ratio Disadvantages: R. L. Bunch and S. Raman, Large-Signal Analysis of MOS Varaktors in CMOS G m LC VCOs Very sharp transition from C min to C max Susceptible to induced substrat noise Nonlinear characteristic à difficult modelling

13 Intrinsic MOS Capacitances EKV (quasi-static) Intrinsic capacitances: C Q where Q = C V q x x y = ± x OX t x Vy x, y = g, d, s, b (Normalized) intrinsic node charges: EKV model valid in the whole inversion region q q d D q qs s xrev + 6xrevxfor + 4xrevxfor + x for 1 = n q 15 ( x ) for x + rev xfor + 6xfor xrev + 4xfor xrev + x rev 1 = n q 15 ( x ) for x + rev ( ) nq QqB b = γ VP + φ+ 10 qi V t n s Q d q ( Q + ) i x for for n with: = ln 1+ q 1 = + 4 = 1+ g i e for v v p s V total charge: p γ + φ ( φ : = φ ) fermi ( Q + Q + Q Q ) Q = + s i x d rev rev = ln 1+ 1 = + 4 b OX p d M. Bucher, C. Lallement, C. Enz, F. Théodoloz, and F. Krummenacher, The EPFL-EKV MOSFET model for circuit simulation, Technical Report, Kluwer, 1999 i e rev v v

14 Simplified capacitance model EKV Neglecting the slight bias dependence of the slope factor C C gs gd = = C C ox ox ( x + for xrev) ( x + for xrev) x + rev x + rev x for x + for x + for xrev C n n 1 C n 1 C 1 q q gb 1 c gs c gs gd q gb = Cox n q Cox C C gd ox Normalized capacitance* C gb C gs / C gd NMOS transistor width = 100 µm V tune = 1V C bs / C bd C = ( n 1) C, C = ( n 1) C bs q gs bd q gd Gate voltage * Normalization to Cox

15 total varactor capacitance (N-MOS) Extrinsic (parasitic) MOS capacitances: with: F. Pregaldiny, C. Lallement, and D. Mathiot. A simple efficient model of parasitic capacitances of deep-submicron LDD MOSFETs. Solid- State Electronics, 00.

16 Simulation results NMOS varactor: EKV vs. Spectre RF (BSIM 3.3) 0.35 µm CMOS technology C35 from AMS (austria micro systems)

17 Simulation results NMOS varactor: EKV vs. Spectre RF (BSIM 3.3) 0.35 µm CMOS technology C35 from AMS (austria micro systems) But: even the simplified capacitance model is too complex for an analytical design method

18 Hyperbolic Tangent Approximation A. Grebennikov and F. Lin, An efficient CAD-oriented large-signal MOSFET model, IEEE Transactions on Microwave Theory and Techniques, 000 S v is defined as the slope of C v,total at the inflection point V G =V G,ip Parameters S v, C v,min, C v,max and V G,ip have to be identified from experimental data or circuit simulation The EKV based varactor capacitance model allows determination of analytical expressions for the parameters in dependency on individual design parameters Using a least square approximation algorithm we derived semi-analytical expressions for S v, C v,min, C v,max and V G,ip

19 Simulation results C v,min (V tune ), comparison of the EKV based analytical solution with the least square approximation Comparison of the EKV based analytical expression with the hyperbolic tangent approximation

20 Varactors incorporated into VCOs V tune =1 V V DD =3.3 V V tank (t) V tank (t)

21 Instantaneous varactor capacitance single-ended back-to-back varactor configuration Assuming complete symmetry between the two MOS-varactors: vt() t vt() t vx() t vy() t = Voff + Voff Complete varactor capacitance is a series connection of two MOSFETs: C ( v, V ) vinst, t tune = vt vt C1, Vtune C, Vtune vt vt C1, Vtune + C, Vtune Instantaneous capacitance of two NMOS varactors in back-to-back configuration

22 Average large signal capacitance The tuning sensitivity of a VCO is defined as: Simulation based design of Siprak/Roithmeier * Oscillation frequency (first order approximation): Averaged large signal capacitance: VCO amplitude v t is unknown a-priori trail and error * D. Siprak, A. Roithmeier, Varactor modeling methodology for simulation of the VCO tuning sensitivity, ICMTS, 004

23 Analysis of VCO tuning sensitivity Our modeling concepts allows: an analytical expression of the averaged large signal varactor capacitance C v,avg, analytical expression for the tuning sensitivity function in dependency on the tuning voltage Parameter: V t, max

24 Systematic nonlinear VCO design flow dv 1 1 i ( V ) t d t dt RtCt( vt, Vtune) Ct( vt, Vtune) Vt = Ct ( vt, Vtune) + dil 1 i L 0 0 dt L t Approximation of frequency and amplitude Calculation of starting point Stability analysis Bifurcation analysis Bremer, J.-K.; Zorn, C.; Przytarski, J.; Mathis, W.;, "A nonlinear systematic design flow for LC tank VCOs based on large signal capacitance modeling," ISCAS 009 Bremer, J.-K.; Reit, M.; Mathis, W., "Nonlinearity and Dynamics of RF Oscillators: Analysis and Design Implications", ISCAS 010 Averaging method Harmonic Balance Uses the stability analysis Analytical expressions Higher averaging orders Bremer, J.-K.; Zorn, C.; Przytarski, J.; Mathis, W. An efficient VCO Design Flow using the Method of Harmonic Balance ISTET 009 Initial values from BA Including higher harmonics Numerical solution

25 Conclusion Systematical design flow An implementation of an analytical small signal capacitance model for inversion mode MOS varactors based on the EKV model was presented A large signal capacitance model for the included varactors in dependency of the output signal of the VCO including higher harmonics was presented Using this nonlinear modeling approach it is possible to set up a complete nonlinear VCO model that is only dependent of circuit and process parameters Outlook: Phase noise coupling

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

EKV MOS Transistor Modelling & RF Application

EKV MOS Transistor Modelling & RF Application HP-RF MOS Modelling Workshop, Munich, February 15-16, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology,

More information

MIXDES 2001 Zakopane, POLAND June 2001

MIXDES 2001 Zakopane, POLAND June 2001 8 th International Conference ADVANCEMENTS IN DC AND RF MOSFET MODELING WITH THE EPFL-EKV CHARGE BASED MODEL,;(' '(6,* J.-M. SALLESE *, W. GRABINSKI **, A.S. PORRET *, M. BUCHER +, C. LALLEMENT ++, F.

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

The PSP compact MOSFET model An update

The PSP compact MOSFET model An update The PSP compact MOSFET model An update Gert-Jan Smit, Andries Scholten, D.B.M. Klaassen NXP Semiconductors Ronald van Langevelde Philips Research Europe Gennady Gildenblat, Weimin Wu, Xin Li, Amit Jha,

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Advanced Compact Models for MOSFETs

Advanced Compact Models for MOSFETs Advanced Compact Models for MOSFETs Christian Enz, Carlos Galup-Montoro, Gennady Gildenblat, Chenming Hu, Ronald van Langevelde, Mitiko Miura-Mattausch, Rafael Rios, Chih-Tang (Tom) Sah Josef Watts (editor)

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

The HV-EKV MOSFET Model

The HV-EKV MOSFET Model The HV-EKV MOSFET Model Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland EPFL Team Yogesh Singh Chauhan, Costin Anghel, Francois Krummenacher, Adrian Mihai Ionescu and Michel Declercq CMC Meeting,

More information

Using the EKV Model for LC- VCO Op8miza8on. Maria Helena Fino Pedro Pereira Faculty of Science and Technology Lisbon- Portugal

Using the EKV Model for LC- VCO Op8miza8on. Maria Helena Fino Pedro Pereira Faculty of Science and Technology Lisbon- Portugal Maria Helena Fino Pedro Pereira Faculty of Science and Technology Lisbon- Portugal Outline Introduc8on Mo8va8on LC- VCO op8miza8on challenges Inductor op8miza8on EKV- based Varactor op8miza8on Overall

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors CMOS Devices PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors PN Junctions Diffusion causes depletion region D.R. is insulator and establishes barrier

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen Lecture 040 Integrated Circuit Technology - II (5/11/03) Page 040-1 LECTURE 040 INTEGRATED CIRCUIT TECHNOLOGY - II (Reference [7,8]) Objective The objective of this presentation is: 1.) Illustrate and

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 189 197 MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations S. EFTIMIE 1, ALEX. RUSU

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

VHDL-AMS Design of a MOST Model Including Deep Submicron and Thermal-Electronic Effects

VHDL-AMS Design of a MOST Model Including Deep Submicron and Thermal-Electronic Effects VHDL-AMS Design of a MOST Model Including Deep Submicron and Thermal-Electronic Effects Christophe Lallement, François Pêcheux, Yannick Hervé ERM-PHASE/ENSPS Pôle API, Parc d Innovations Bld S. Brant 67

More information

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations Analysis of MOS Cross-Coupled C-Tank Oscillators using Short-Channel Device Equations Makram M. Mansour Mohammad M. Mansour Amit Mehrotra Berkeley Design Automation American University of Beirut University

More information

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0 MOS Models & Parameter Extraction Workgroup Arbeitskreis MOS Modelle & Parameterextraktion XFAB, Erfurt, Germany, October 2, 2002 Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0 Matthias

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn POWER SUPPY INDUED JITTER MODEING OF AN ON- HIP OSIATOR Shahriar Rokhsaz, Jinghui u, Brian Brunn Rockethips Inc. (A Xilinx, Inc. Division) ABSTRAT This paper concentrates on developing a closed-form small

More information

Physics-based compact model for ultimate FinFETs

Physics-based compact model for ultimate FinFETs Physics-based compact model for ultimate FinFETs Ashkhen YESAYAN, Nicolas CHEVILLON, Fabien PREGALDINY, Morgan MADEC, Christophe LALLEMENT, Jean-Michel SALLESE nicolas.chevillon@iness.c-strasbourg.fr Research

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

The K-Input Floating-Gate MOS (FGMOS) Transistor

The K-Input Floating-Gate MOS (FGMOS) Transistor The K-Input Floating-Gate MOS (FGMOS) Transistor C 1 V D C 2 V D I V D I V S Q C 1 C 2 V S V K Q V K C K Layout V B V K C K Circuit Symbols V S Control Gate Floating Gate Interpoly Oxide Field Oxide Gate

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Compact Modeling of Ultra Deep Submicron CMOS Devices

Compact Modeling of Ultra Deep Submicron CMOS Devices Compact Modeling of Ultra Deep Submicron CMOS Devices Wladyslaw Grabinski*, Matthias Bucher, Jean-Michel Sallese, François Krummenacher Swiss Federal Institute of Technology (EPFL), Electronics Laboratory,

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport 2011 Workshop on Compact Modeling Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport Christian Enz 1,2, A. Mangla 2 and J.-M. Sallese 2 1) Swiss Center for Electronics

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V-1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Digital Microelectronic Circuits ( )

Digital Microelectronic Circuits ( ) Digital Microelectronic ircuits (361-1-3021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,

More information

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M - 0 > V M - V Tn V SDp = V DD - V M = (V DD - V M ) V Tp Equate drain

More information

Sadayuki Yoshitomi. Semiconductor Company 2007/01/25

Sadayuki Yoshitomi. Semiconductor Company 2007/01/25 Sadayuki Yoshitomi. Semiconductor Company Sadayuki.yoshitomi@toshiba.co.jp Copyright 2006, Toshiba Corporation. ASP-DAC 2007 . Make the best of Electro-Magnetic (EM) simulation. Is EM simulator applicable

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model - Fall 00 Lecture 5 CMO Inverter MO Transistor Model Important! Lab 3 this week You must show up in one of the lab sessions this week If you don t show up you will be dropped from the class» Unless you

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS 5.1 The MOS capacitor 5.2 The enhancement-type N-MOS transistor 5.3 I-V characteristics of enhancement mode MOSFETS 5.4 The PMOS transistor and CMOS technology 5.5

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances for CMOS Voltage Controlled Oscillators

Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances for CMOS Voltage Controlled Oscillators IEICE TRANS. EECTRON., VO.E93 C, NO.6 JUNE 200 777 PAPER Special Section on Analog Circuits and Related SoC Integration Technologies Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Microelectronics Main CMOS design rules & basic circuits

Microelectronics Main CMOS design rules & basic circuits GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim mohamad.sawan@polymtl.ca M5418 6 & 7 September

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type WCM in Boston 15. June, 2011 M. Miura-Mattausch, M. Miyake, H. Kikuchihara, U. Feldmann and

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits M. Baraani Dastjerdi and H. Krishnaswamy CoSMIC Lab, Columbia University, New

More information

EKV based L-DMOS Model update including internal temperatures

EKV based L-DMOS Model update including internal temperatures ROBUSPIC (IST-507653) Deliverable D1.2 EKV based L-DMOS Model update including internal temperatures Yogesh Singh Chauhan, Costin Anghel, Francois Krummenacher, Adrian Ionescu and Michel Declercq Ecole

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design MOS igital ntegrated ircuits Analysis and esign hapter 4 Modeling of MOS ransistors Using SPE 1 ntroduction he SPE software that was distributed by U Berkeley beginning in the late 1970s had three built-in

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

SOI/SOTB Compact Models

SOI/SOTB Compact Models MOS-AK 2017 An Overview of the HiSIM SOI/SOTB Compact Models Marek Mierzwinski*, Dondee Navarro**, and Mitiko Miura-Mattausch** *Keysight Technologies **Hiroshima University Agenda Introduction Model overview

More information

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications Hitoshi Aoki and Haruo Kobayashi Faculty of Science and Technology, Gunma University (RMO2D-3) Outline Research Background Purposes

More information

Modeling of an Integrated Active Feedback Preamplifier in a 0.25 µm CMOS Technology at Cryogenic Temperatures

Modeling of an Integrated Active Feedback Preamplifier in a 0.25 µm CMOS Technology at Cryogenic Temperatures Modeling of an Integrated Active Feedback Preamplifier in a 0.25 µm CMOS Technology at Cryogenic Temperatures Shahyar Saramad, Giovanni Anelli, Matthias Bucher, Matthieu Despeisse, Pierre Jarron, Nicolas

More information

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )

More information

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations Makram M. Mansour Mohammad M. Mansour Amit Mehrotra Berkeley Design Automation American University of Beirut University

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information