The problem of the motion of a particle attracted by two fixed centers. moving under the influence of two fixed centers of Coulomb attraction as a

Size: px
Start display at page:

Download "The problem of the motion of a particle attracted by two fixed centers. moving under the influence of two fixed centers of Coulomb attraction as a"

Transcription

1 466 PHYSICS: E. U. CONDON electron interaction with the molecule by that between the electron and equivalent dipole, one has that vibration transitions associated with electronic excitation of the molecule will be the same whether the process is radiative or a result of a collision. This is the justification of the argument of Birge and Sponer in discussing the experiments of Hogness and Lunn. Using th}is same analysis of the collision problem, it is clear that the action of a colliding electron on a molecule in exciting vibration transitions without electron excitation, the fourth type of coupling in the list, is a consequence of the non-vanishing of the same matrix components as those which measure the probability of vibration transitions in' infra-red, vibration-rotation bands. The correlation is, however, not a sharp one, for in the collision process the electric moments of higher order of the molecule may be active. * NATIONAL PSCUSARCH FZLLOW. 1 Franck, Trans. Faraday Soc., 1925; Dymond, E. G., Zeits. Phys., 34, 553 (1925); Kuhn, H., Zeits. Phys., 39, 77 (1926). 2 Birge and Sponer, Phys. Rev., 28, 259 (1926). 8Condon, E., Ibid., 28, 1182 (1926). 4 Harries, W., Preliminary report at meeting of the Deutschen Physikalischen Gesellschaft, Hamburg, Feb. 6, S.chrodinger, Ann. Phys., 79, 514 (1926). 6s Compare treatment and discussion in Phys. Rev., 28, 1182 (1926). 7 Born, Zeits. Phys., 38, 803 (1926). WA VE MECHANICS AND THE NORMAL STATE OF THE HYDROGEN MOLECULE By EDWARD UHLUR CONDON* MuNIcH, GERmANY Commnicated April 18, 1927 The problem of the motion of a particle attracted by two fixed centers of force according to the Coulomb force law can be treated by classical mechanics and has been used in quantum theory by Pauli and Niessen for a theory of the hydrogen molecule ion.' In the quantum mechanics, where the energy levels are determined as the "eigenwerte" of Schr6dinger's equation, the variables are separable and the boundary value problem is easily set up. But thus far a satisfactory treatment of the differential equations involved is lacking. Burrau2 has recently carried out a numerical integration of the problem for the lowest energy level of an electron moving under the influence of two fixed centers of Coulomb attraction as a function of the distance apart of these centers. In this paper, Burrau's

2 Voi. 13, 1927 PHYSICS: E. U. CONDON 467 data are used to give a semi-quantitative discussion of the neutral hydrogen molecule. His values are: Nuclear separation Electronic energy The unit of separation is the Bohr 11 orbit radius of hydrogen atom, that of energy is the ionization potential of atomic hydrogen. In all this work the tacit assumption is made that, because of the large masses of the nuclei, the problem can be solved regarding the nuclei as fixed at a distance which is one of the parameters of the problem. When the energy of the electronic motion as a function of the distance is known, the energy of the Coulomb repulsion of the fixed nuclei is added and so the variation of the total energy of the non-rotating non-vibrating molecule with nuclear distance is found. The minimum of this curve is taken as the "equilibrium" separation of the nuclei and the value of the minimum is taken as the energy of the molecule in that electronic state. (More correctly, the small amount '/2hv is to be added to the minimlum value.) If the nuclei are no longer regarded as fixed this curve is regarded as giving the "law of force" governing the rotational and vibrational motions of the molecule. That this is the correct procedure in the classical mechanics was shown by Born and Heisenberg:8 that it remains correct in the quantum mechanics has not yet been definitely proved. There is no reason to believe, however, that it is not correct, and it will be used here without further justification. When the nuclei of a hydrogen molecule ion are far apart one is dealing virtually with a free hydrogen atom and a proton. The electronic energy is then mainly that of the Coulomb interaction between the proton and the electronic charge of the atom. If the-atom were not Stark-affected by the proton, this would be just equal to the nuclear repulsion and the total energy would be simply R for all values of the nuclear separation (all values are negative), where R is the Rydberg constant. But the proton induces a polarization of the H-atom and, therefore, the energy of protonelectron interaction is greater than that of proton-proton. On the other hand, when the nuclear separation is zero and the electron moves under the influence of a double central charge, the energy is that of the lowest state of ionized helium. Burrau's numerical integrations supply values of the electronic energy for intermediate electronic separations. When the nuclear repulsive energy (curve b, Fig. 1) is added to Burrau's values there results curve a, figure 2, which is Burrau's curve for H+. The equilibrium separation is 2 units (i.e., 2 times the radius of the Bohr 11 hydrogen orbit) and the minimum energy is R = volts. The heat of dissociation is 0.204R = 2.76 volts. Bnrrau checks the value with experiment by an indirect comparison with the ionization potential of H2 as discussed later in this paper.

3 468 PHYSICS: E. U. CONDON Turning now to the neutral molecule one expects, on the Pauli principle of assigning quantum numbers, that the two electrons will be in equivalent orbits. The starting point, therefore, for the approximate treatment of the problem is a model in which the two electrons have no mutual influence and each moves as it would if alone in the ground state of H2+ as given by Burrau. The electronic energy of this model at each distance is evidently just twice that for H2+. This curve of doubled H2+ values is given here as a of figure 1. Combined with the Coulomb proton-proton energy this yields curve b, figure 2, for the energy curve of the 8t neutral H2 molecule with uncoupled electrons. This gives an FIGURE 1 equilibrium separation of Electronic and nuclear energy in H2. a, units, i.e., a moment of inertia of Values for non-interacting electrons. b, 2.7 X gr. cm.2 The heat Coulomb energy of nuclear repulsion. of dissociation is 1.800R = c, Approximate electronic energy curve for interacting electrons. Units: ordinates, volts. 1 = Rydberg constant, abscissas, I = radius Naturally, such a model gives of first Bohr orbit in hydrogen atom. only a very rough approximation to the truth. But it is to be observed that the above model does set a definite lower limit on the moment of inertia of the molecule. For the electronic interaction, whatever its amount, will be positive and will decrease monotonously with increasing nuclear separation, since it is the repulsive potential of interacting-like charge. It acts to increase the ordinates of curve b, figure 1, by decreasing amounts and, therefore, shifts the minimum of the resultant curve to larger abscissas. This seems to be an important conclusion inasmuch as the lower limit here definitely given by quantum mechanics is greater than nine of the thirteen values obtained on various theoriesfrom specific heat data as presented in the recent thorough review of the the subject by Van Vleck and Hutchisson.4 Turning now to the electronic interaction, the analysis of Hund5 provides the important result that the electronic term of the lowest state of a molecule changes continuously from its value for a neutral atom of equal number of electrons to its value for the dissociated atoms, according to the new quantum mechanics. Herein lies an important difference between the old and the new quantum theory which is essential to the argument of this paper. That unexcited molecules dissociate into two unexcited

4 VOL. 13, 1927 PHYSICS: E. U. CONDON 469 atoms as a result of vibrations of infinite amplitude has been shown empirically by Birge and Sponer.6 The first approximation to the electron interaction in unexcited helium has been computed by Unsold,7 by means of the wave mechanics, who finds 5.5 R for the whole atom, i.e., 1.5 R = 20.3 volts for the ionization potential. Empirically the value is _ 5.818R for the total energy. At large 1.1 distances the model goes over into two +. neutral hydrogen atoms. The electronic energy will, therefore, be asymptotically A 20 - equal to the Coulomb interaction of an electron and a proton, for it is made up of the repulsion of the two electrons and the attraction of each proton for the electron of b the other atom. Moreover, the situation is 3.0 now that of the interaction of two neutral units so that polarization deformation of 0 U each atom by the other will be much smaller than in the case of H2+. Inasmuch as 4.0l1l Burrau's work shows that at a distance of FIGURE units the electronic part of the H2+ Resultant energy curves in energy differs from the pure Coulomb by H2+ and H2. a, Burrau's curve about 0.1 R, it is safe to assume for the H2 for H2+. b, Curve for H2 for molecule a closer approach to Coulomb value non-interacting electrons. c, For infor abscissas Approximate curve greater than 3 units. for H2 with interacting electrons. The small termediate points, a natural assumption is to circle in the crook of curve b, reduce the doubled Burrau value in the ratio represents the equilibrium posi :8.00 in order to secure agreement with tion and energy on Hutchisson's helium. If this is done it is found that the classical crossed-orbit model of.sligcrejisototecoulomb curve H2. Units: same as figure I resuoohlt Curve joins on togthe hasbeen(note different scales of ordinates smoothly. Curve c of figure 1 has been for H2 and H2+) drawn from the theoretical values so reduced up to the value for 2.4 and joined on to a Coulomb curve for abscissa values of 3 and greater. The result of combining c and b of figure 1 is to give c of figure 2 as the energy curve for the hydrogen molecule. The minimum of this curve corresponds to a moment of inertia of 4.26 X gr. cm.2, and to a heat of dissociation of 4.4 volts. The latter value agrees to within 0.1 volt with the band spectrum value of Witmer and of Dieke and Hopfield.8 These figures should be compared with a moment of inertia of 4.91 X gr. cm.2 and R heat of dissociation found by Hutchisson9 from a cross orbit model of H2 on classical quantum theory. Another interesting consequence follows from the relation of the H2

5 470 PHYSICS: E. U. CONDON energy curve to that of H2+. According to a principle put forward by Franck, changes involving the electrons in a molecule will affect the nuclei mainly indirectly through the change in molecular binding.10 According to this view, the most probable event in an electron collision experiment by means of which an electron is removed from H2, is the removal of an electron while the nuclei are at a distance of units. This requires an amount of energy given by the difference between R and the ordinate of the H2+ curve at 1.350, namely R. This is the theoretical apparent ionization potential and amounts to 1.2 R or 16.2 volts in good agreement with the mean experimental value 16.1 given by Franck and Jordan." On the other hand, the true energy of the process H2 - H2+ + e-, where H2+ is in the lowest state, is the difference between the ordinates of the minima of the H2 and H2+ curves, i.e., 1.12 R = 15.2 volts, comparing favorably with value of Witmer and of Dieke and Hopfield from the ultra-violet band spectrum of H2. The theoretical value of the frequency of vibration, depending on the curvature of the curve at its minimum, is naturally more uncertain. Calculation shows that the curve gives a frequency of vibration of 5300 cm.-', about 20% higher than the value 4360 cm.-' from experiment.8 As for the moment of inertia, while it is larger than most of the values from specific heat theories, it is in accord with the larger values which have been found by Richardson and Tanaka'2 from analysis of the hydrogen bands. In conclusion it seems proper to emphasize that Burrau's calculation of H2+ and the extension here to H2 constitute the first quantum-theoretic quantitative discussion of the binding of atoms into molecules by electrons-the valence forces of chemistry. The quantitative success of the new quantum mechanics in the face of- the classical theory's failure must serve to lend strong support to the new methods. * NATIONAL RussARCH FJLLLOW. 1 For a review of the status of the Hi+ and H2 problems prior to the new quantum mechanics see Van Vleck, Quantum Principles and Line Spectra, p. 88. Also dis. cussion by Kemble in last chapter of National Research Council Report on "Molecular Spectra in Gases." 'Burrau, Danske Vidensk. Selskab. Math.-fys. Meddel., 7, 14, Copenhagen (1927). 8 Bom and Heisenberg, Ann. Physik, 74, 1 (1924). 4Van Vleck and Hutchisson, Physic. Rev., 28, 1022 (1926). 6 Hund, Zs. Physik, 40, 742 (1927). 6 Birge and Sponer, Physic. Rev., 28, 259 (1926). 7 Unsold, Ann. Physik, 82, 355 (1927). 8 Witmer, Physic. Rev., 28,1223 (1926); Dieke and Hopfield, Zs. Physik, 40, 299 (1926). 9 Hutchisson, Physic. Rev., 29, 270 (1927). 10 Franck, Trans. Far. Soc., 21, part 3 (1925). See also discussion by Birge, p. 248 of National Research Council Report on "Molecular Spectra in Gases," and quantum mechanical treatment by Condon, these PROCJEDINGS, 13, 462 (1927). 11 Franck and Jordan, Anregung der Quantenspringe durch Stosse. 12 Richardson and Tanaka, Proc. Roy. Soc., 106A, 663 (1924).

THE STRUCTURE OF THE HELIUM ATOM. I

THE STRUCTURE OF THE HELIUM ATOM. I VOL. 13, 1927 PIIYSICS: J. C. SLATER 423 THE STRUCTURE OF THE HELIUM ATOM. I By J. C. SLATBR JUPmSRSON PHYsIcAL LABORATORY, CAMBRIDG%, MASS. Communicated April 26, 1927 The attempts to calculate the spectrum

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

The Application of the Quantum Mechanics to the Structure of the Hydrogen Molecule and Hydrogen Molecule-Ion and to Related Problems.

The Application of the Quantum Mechanics to the Structure of the Hydrogen Molecule and Hydrogen Molecule-Ion and to Related Problems. Subscriber access provided by FRITZ HABER INST DER MPI The Application of the Quantum Mechanics to the Structure of the Hydrogen Molecule and Hydrogen Molecule-Ion and to Related Problems. Linus. Pauling

More information

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 ATOMS Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 Spectroscopic notation: 2S+1 L J (Z 40) L is total orbital angular momentum

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Chapter 8 Problem Solutions

Chapter 8 Problem Solutions Chapter 8 Problem Solutions 1. The energy needed to detach the electron from a hydrogen atom is 13.6 ev, but the energy needed to detach an electron from a hydrogen molecule is 15.7 ev. Why do you think

More information

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1 Quantum Mechanics and Atomic Physics Lecture 22: Multi-electron Atoms http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last Time Multi-electron atoms and Pauli s exclusion principle Electrons

More information

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine We have already seen that molecules can rotate and bonds can vibrate with characteristic energies, each energy being associated with a particular

More information

Trends in the Periodic Table revisited! SCH4U1 SP04

Trends in the Periodic Table revisited! SCH4U1 SP04 Trends in the Periodic Table revisited! SCH4U1 SP04 Factors Affecting the Properties Many of the properties of the elements are related to the force of attraction between the nucleus and the electrons.

More information

The Quantum Mechanical Model

The Quantum Mechanical Model Recall The Quantum Mechanical Model Quantum Numbers Four numbers, called quantum numbers, describe the characteristics of electrons and their orbitals Quantum Numbers Quantum Numbers The Case of Hydrogen

More information

Chapter IV: Electronic Spectroscopy of diatomic molecules

Chapter IV: Electronic Spectroscopy of diatomic molecules Chapter IV: Electronic Spectroscopy of diatomic molecules IV.2.1 Molecular orbitals IV.2.1.1. Homonuclear diatomic molecules The molecular orbital (MO) approach to the electronic structure of diatomic

More information

64-311/5: Atomic and Molecular Spectra

64-311/5: Atomic and Molecular Spectra 64-311-Questions.doc 64-311/5: Atomic and Molecular Spectra Dr T Reddish (Room 89-1 Essex Hall) SECTION 1: REVISION QUESTIONS FROM 64-310/14 ε ο = 8.854187817 x 10-1 Fm -1, h = 1.0545766 x 10-34 Js, e

More information

Saunders) in line spectra. In applying this hypothesis to the structure. (1S, 2p, etc.), corresponding to those used (notation of Russell and

Saunders) in line spectra. In applying this hypothesis to the structure. (1S, 2p, etc.), corresponding to those used (notation of Russell and 158 PHYSICS: R. S. MULLIKEN 7 K. T. Compton and L. A. Turner, Phil. Mag., 48, 360 (1924); Physic. Rev., 25, 606 (1925); Compton, McCurdy and Turner, Physic. Rev., 24, 608 (1924); etc. 8 E. Hulthen, Nature,

More information

Exp. 4. Quantum Chemical calculation: The potential energy curves and the orbitals of H2 +

Exp. 4. Quantum Chemical calculation: The potential energy curves and the orbitals of H2 + Exp. 4. Quantum Chemical calculation: The potential energy curves and the orbitals of H2 + 1. Objectives Quantum chemical solvers are used to obtain the energy and the orbitals of the simplest molecules

More information

(4) The new Russell-Pauli-Heisenberg-Hund rules with the aid of. (1) The Rydberg-Ritz formula handed down from the empirical age

(4) The new Russell-Pauli-Heisenberg-Hund rules with the aid of. (1) The Rydberg-Ritz formula handed down from the empirical age V(?L. 13, 1927 PHYSICS: MILLIKAN AND BOWEN 531 2 Gibbs, R. C., and White, H. E., these PROCUEDINGS, 12, 448, 598, 675, 1926. Gibbs, R. C., and White, H. E., Physic. Rev., (a) 29, 426; (b) 29, 655, 1927.

More information

The structure of atoms.

The structure of atoms. The structure of atoms. What will be covered? 1. The nucleus 2. Atomic weight 3. Electronic structure 4. Electronic configuration of the elements 5. Valence 6. Hybridization 7. Periodic table Why do we

More information

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

More information

This idea had also occurred to us quite independently and for largely the. by Heisenberg4 that the multiplet separation is due to the difference

This idea had also occurred to us quite independently and for largely the. by Heisenberg4 that the multiplet separation is due to the difference 80 PHYSICS: BICHOWSK Y AND URE Y PROC. N. A. S. 1700, the variation depending mainly on the other atoms in the molecule. I am particularly indebted to Dr. W. W. Coblentz for his suggestions and personal

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3 Periodic Trends and Effective Nuclear Charge Imagine four atoms/ions: One has a nucleus with

More information

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Chapter 2. Atomic structure and interatomic bonding 2.1. Atomic structure 2.1.1.Fundamental concepts 2.1.2. Electrons in atoms 2.1.3. The periodic table 2.2. Atomic bonding in solids 2.2.1. Bonding forces

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Wave functions and quantization workshop CH112 Workshop 9, Spring 2003

Wave functions and quantization workshop CH112 Workshop 9, Spring 2003 Wave functions and quantization workshop CH112 Workshop 9, Spring 2003 http://quantum.bu.edu/notes/quantummechanics/wavefunctionsandquantizationworkshop.pdf Last updated Friday, October 31, 2003 16:33:01

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

HL Chemistry. Thursday August 20th Thursday, August 20, 15

HL Chemistry. Thursday August 20th Thursday, August 20, 15 HL Chemistry Thursday August 20th 2015 Agenda Warm Up: Electron Configuration Practice Review Topic 2.2 Electron Configuration and begin Topic 12.1 Atomic Structure Warm Up You have 10 minutes ONLY! GO!

More information

The importance of constants

The importance of constants The importance of constants Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 September 22, 2008 Sourendu Gupta (TIFR Graduate School) The importance of constants QM I 1 / 13 Outline 1 Universal

More information

An analytical model for vibrational non-born Oppenheimer induced electron ejection in molecular anions

An analytical model for vibrational non-born Oppenheimer induced electron ejection in molecular anions JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 20 22 NOVEMBER 2002 An analytical model for vibrational non-born Oppenheimer induced electron ejection in molecular anions Jack Simons Chemistry Department

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Different energy levels

Different energy levels Different energy levels In the microscopic world energy is discrete www.cgrahamphysics.com Review Atomic electrons can only exist in certain discrete energy levels Light is made of photons When e s lose

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Molecular orbitals, potential energy surfaces and symmetry

Molecular orbitals, potential energy surfaces and symmetry Molecular orbitals, potential energy surfaces and symmetry mathematical presentation of molecular symmetry group theory spectroscopy valence theory molecular orbitals Wave functions Hamiltonian: electronic,

More information

Atom Model & Periodic Properties

Atom Model & Periodic Properties One Change Physics (OCP) MENU Atom Model & Periodic Properties 5.1 Atomic Mode In the nineteenth century it was clear to the scientists that the chemical elements consist of atoms. Although, no one gas

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Prof. Dr. I. Nasser atomic and molecular physics -551 (T-11) April 18, 01 Molecular-Orbital Theory You have to explain the following statements: 1- Helium is monatomic gas. - Oxygen molecule has a permanent

More information

A New Look at The Neutron and the Lamb Shift

A New Look at The Neutron and the Lamb Shift A New Look at The Neutron and the Lamb Shift by Roger Ellman Abstract The rest mass of the neutron is exactly equal to the rest mass of a proton plus that of an electron plus the mass equivalent of the

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

On the rotating electron

On the rotating electron Sopra l elettrone rotante, Nouv. Cim. (8) 3 (196), 6-35. On the rotating electron Note by FRANCO RASETI and ENRICO FERMI Translated by D. H. Delphenich The measurable elements of the electron are its electric

More information

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals ECE44 Nanoelectronics Lecture 7 Atomic Orbitals Atoms and atomic orbitals It is instructive to compare the simple model of a spherically symmetrical potential for r R V ( r) for r R and the simplest hydrogen

More information

Atoms and Periodic Properties

Atoms and Periodic Properties Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 01 (Chp 6,7): Atoms and Periodic Properties John D. Bookstaver St. Charles Community College

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Electron Configurations

Electron Configurations Ch08 Electron Configurations We now understand the orbital structure of atoms. Next we explore how electrons filling that structure change it. version 1.5 Nick DeMello, PhD. 2007-2016 2 Ch08 Putting Electrons

More information

Bohr model and Franck-Hertz experiment

Bohr model and Franck-Hertz experiment Bohr model and Franck-Hertz experiment Announcements: Will finish up material in Chapter 5. There will be no class on Friday, Oct. 18. Will announce again! Still have a few midterms see me if you haven

More information

Chapter 9. Atomic structure and atomic spectra

Chapter 9. Atomic structure and atomic spectra Chapter 9. Atomic structure and atomic spectra -The structure and spectra of hydrogenic atom -The structures of many e - atom -The spectra of complex atoms The structure and spectra of hydrogenic atom

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

Nicholas J. Giordano. Chapter 29. Atomic Theory. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.  Chapter 29. Atomic Theory. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 29 Atomic Theory Marilyn Akins, PhD Broome Community College Atomic Theory Matter is composed of atoms Atoms are assembled from electrons,

More information

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY Note: For all questions referring to solutions, assume that the solvent is water unless otherwise stated. 1. The nuclide is radioactive and decays by the

More information

Electronic Configuration of the Elements

Electronic Configuration of the Elements Electronic Configuration of the Elements As the number of electrons increases with the number of protons of a neutral atom, they occupy orbitals of increasing energy: The possibilities are: n l m l m s

More information

Second Semester Chemistry Study Guide

Second Semester Chemistry Study Guide Second Semester Chemistry Study Guide All of the information on this review is fair game for the final Some information will be more prevalent on the test (Think about which topics we spent more time on

More information

r R A 1 r R B + 1 ψ(r) = αψ A (r)+βψ B (r) (5) where we assume that ψ A and ψ B are ground states: ψ A (r) = π 1/2 e r R A ψ B (r) = π 1/2 e r R B.

r R A 1 r R B + 1 ψ(r) = αψ A (r)+βψ B (r) (5) where we assume that ψ A and ψ B are ground states: ψ A (r) = π 1/2 e r R A ψ B (r) = π 1/2 e r R B. Molecules Initial questions: What are the new aspects of molecules compared to atoms? What part of the electromagnetic spectrum can we probe? What can we learn from molecular spectra? How large a molecule

More information

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z Our first model of nuclei. The motivation is to describe the masses and binding energy of nuclei. It is called the Liquid Drop Model because nuclei are assumed to behave in a similar way to a liquid (at

More information

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability Atomic and Nuclear Structure George Starkschall, Ph.D. Lecture Objectives Describe the atom using the Bohr model Identify the various electronic shells and their quantum numbers Recall the relationship

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

6.1.5 Define frequency and know the common units of frequency.

6.1.5 Define frequency and know the common units of frequency. CHM 111 Chapter 6 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

(2, CARBONYL GROUP. C=-C double bond, (xx)2 a pair forming the second bond. The xx electrons MECHANISM OF LONG WA VE-LENGTH ABSORPTION OF THE

(2, CARBONYL GROUP. C=-C double bond, (xx)2 a pair forming the second bond. The xx electrons MECHANISM OF LONG WA VE-LENGTH ABSORPTION OF THE 312 PHYSICS: MCMURR Y AND MULLIKEN PROC. N. A. S. ' In accordance with the rule that isobars nearly never differ by one in their charge numbers, table 1 contains only three nuclei with both symbols, p

More information

Pauli s Derivation of the Hydrogen Spectrum with Matrix Representation

Pauli s Derivation of the Hydrogen Spectrum with Matrix Representation Pauli s Derivation of the Hydrogen Spectrum with Matrix Representation Andrew MacMaster August 23, 2018 1 Motivation At the time Pauli s derivation was published, the primary method of calculating the

More information

Advanced Theories of Atomic Structure: Atomic Orbitals

Advanced Theories of Atomic Structure: Atomic Orbitals Advanced Theories of Atomic Structure: Atomic Orbitals What are the more advanced theories of atomic structure? Richard Feynman, 1918 1988. Winner of the 1965 Nobel Prize in Physics. The modern scientific

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity Text Chapter 2, 8 & 9 3.1 Nature of light, elementary spectroscopy. 3.2 The quantum theory and the Bohr atom. 3.3 Quantum mechanics; the orbital concept. 3.4 Electron configurations of atoms 3.5 The periodic

More information

The Electronic Theory of Chemistry

The Electronic Theory of Chemistry JF Chemistry CH1101 The Electronic Theory of Chemistry Dr. Baker bakerrj@tcd.ie Module Aims: To provide an introduction to the fundamental concepts of theoretical and practical chemistry, including concepts

More information

The Charged Liquid Drop Model Binding Energy and Fission

The Charged Liquid Drop Model Binding Energy and Fission The Charged Liquid Drop Model Binding Energy and Fission 103 This is a simple model for the binding energy of a nucleus This model is also important to understand fission and how energy is obtained from

More information

MOLECULES. ENERGY LEVELS electronic vibrational rotational

MOLECULES. ENERGY LEVELS electronic vibrational rotational MOLECULES BONDS Ionic: closed shell (+) or open shell (-) Covalent: both open shells neutral ( share e) Other (skip): van der Waals (He-He) Hydrogen bonds (in DNA, proteins, etc) ENERGY LEVELS electronic

More information

CHAPTER 11 MOLECULAR ORBITAL THEORY

CHAPTER 11 MOLECULAR ORBITAL THEORY CHAPTER 11 MOLECULAR ORBITAL THEORY Molecular orbital theory is a conceptual extension of the orbital model, which was so successfully applied to atomic structure. As was once playfuly remarked, a molecue

More information

Periodic Table trends

Periodic Table trends 2017/2018 Periodic Table trends Mohamed Ahmed Abdelbari Atomic Radius The size of an atom is defined by the edge of its orbital. However, orbital boundaries are fuzzy and in fact are variable under different

More information

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Structure: Electrons, Protons, Neutrons, Quantum mechanics

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The energy of the electron

More information

Course Goals for CHEM150

Course Goals for CHEM150 Course Goals for CHEM150 Students will use their understanding of electrostatics and Coulomb's Law to predict changes in potential energy for a given atomic/molecular system. Students will use their understanding

More information

Atomic Structure Chapter 4

Atomic Structure Chapter 4 Atomic Structure Chapter 4 Outline A History of the Atomic Model Electron Structure of the Atom Useful Element Notations Early Thoughts on the Structure of Matter Before the invention of high powered microscopes,

More information

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger PHYS 402, Atomic and Molecular Physics Spring 2017, final exam, solutions 1. Hydrogenic atom energies: Consider a hydrogenic atom or ion with nuclear charge Z and the usual quantum states φ nlm. (a) (2

More information

New Formula of Nuclear Force

New Formula of Nuclear Force International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1 New Formula of Nuclear Force Md. Kamal Uddin Abstract -It is well established that the forces between nucleons

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. What determines the UV-Vis (i.e., electronic transitions) band appearance? Usually described by HOMO LUMO electron jump LUMO

More information

Explaining Periodic Trends. Saturday, January 20, 18

Explaining Periodic Trends. Saturday, January 20, 18 Explaining Periodic Trends Many observable trends in the chemical and physical properties of elements are observable in the periodic table. Let s review a trend that you should already be familiar with,

More information

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY Warning: The mercury spectral lamps emit UV radiation. Do not stare into the lamp. Avoid exposure where possible. Introduction

More information

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison Matter and Materials ATOMIC BONDS Grade 11 2018 Sutherland high school Mrs. Harrison 1. Chemical Bonds Why would atoms want to bond? Atoms are not generally found alone. They are found as components of

More information

On the Molecular Spectrum of Hydrogen emitted by an Arc Discharge.

On the Molecular Spectrum of Hydrogen emitted by an Arc Discharge. On the Molecular Spectrum of Hydrogen emitted by an Arc Discharge. By Hirosi HASUNUMA. (Read July 19, 1937.) Introduction and Summary. In 1923 Kiuti(1) found that the molecular spectrum of hydrogen emitted

More information

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds Organic Chemistry Review Information for Unit 1 Atomic Structure MO Theory Chemical Bonds Atomic Structure Atoms are the smallest representative particle of an element. Three subatomic particles: protons

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

ATOM atomov - indivisible

ATOM atomov - indivisible Structure of matter ATOM atomov - indivisible Greek atomists - Democrite and Leukip 300 b.c. R. Bošković - accepts the concept of atom and defines the force J. Dalton - accepts the concept of atom and

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons.

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. Q1.(a) A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. In which part of the electromagnetic spectrum are these photons? What is

More information

Ch. 7- Periodic Properties of the Elements

Ch. 7- Periodic Properties of the Elements Ch. 7- Periodic Properties of the Elements 7.1 Introduction A. The periodic nature of the periodic table arises from repeating patterns in the electron configurations of the elements. B. Elements in the

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

Light (Particle or Wave)?

Light (Particle or Wave)? Sir Isaac Newton (1642-1727) Corpuscular Theory of Light Classical Laws of Mechanics (3 Laws of Motion) Greatest and most influential scientist to ever live Einstein kept a framed picture of him Light

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e -

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e - Types of Bondings Primary bonding: e- are transferred or shared Strong (100-1000 KJ/mol or 1-10 ev/atom) Ionic: Strong Coulomb interaction among negative atoms (have an extra electron each) and positive

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information