Chapter 3. Antimagic Gl'aphs

Size: px
Start display at page:

Download "Chapter 3. Antimagic Gl'aphs"

Transcription

1 Chapter 3 Antimagic Gl'aphs

2 CHAPTER III ANTIMAGIC GRAPHS 3.1 Introduction In 1970 Kotzig and Rosa [81] defined the magic labeling of a graph G as a bijection f from VuE to {1,2,... IV u EI } such that for all edges xy, f(x) + f(y) + f(xy) is constant. In 1990 Hartsfield and Ringel [65] introduced antimagic labeling. Let G (V,E) be a (p,q) graph. Let f : E -+ {1,2,..., q} be a bijection. For each vertex v in V define f+(v) sum of the labels of the edges incident at v. If for any two distinct vertices u,v, f+(u) 1 f+ (v) then f is called an antimagic labeling. A graph is said to be antimagic if it admits an antimagic labeling. Let us investigate some antimagic graphs. 3.2 On Cycle Related Graphs First we prove In this section we give some results on cycle related graphs. Theorem 3.2.1: The crown C n 0 K 1 is antimagic for all n.. Proof: Let {v 1, v 2,...,v n ' w 1 ' w 2 '...,w n } be the vertex set of G Cn0 K1, Let {ei 11 ~ i ~ n} {vi Vi + 1 II:::; i ~ n where vn +1 v1} Label the edges of C n as follows.

3 f(ej) i, 1 ~ i ~ n Let us relabel the vertir.es Vj +1 by ui, 1 ~ i ~ n. Let wi be the pendant vertex adjacent with Uj, 1 ~ i ~ n, Label the edges Uj wi such that f(uj, wi) 2n - ( i - 1 ), 1 ~ i ~ n. Since each wi's are end vertices, f+ (Wj) f+ (Uj) 2n - ( i - 1 ), 1 ~ i ~ n. f( Ui, wi) + f (ej) + f(ei+1) 2n - (i - 1 ) + i + i + 1 2n i, 1~i~n-1 f(u n, W n ) + f(e 1 ) + f(e n ) 2n - (n -1 ) n 2n + 2 Clearly f+(u) *- f+(v) for all u, v E V(G) Hence C n 0 K 1 is antimagic for all n o.9l1ustration: C 11 0 K 1 is antimagic. W 6 6 we v 7 W g w w 2 w 11 w 1 48

4 .9l1ustration : C 6 0 K 1 is antimagic. 10 ~,3 1 7 W 6 Remark: This result otherwise can be stated that C n 0 P1is antimagic. Then naturaly one may ask whether C n 0 Pm is antimagic. We have the following Theorem 3.2.2: C n 0 Pm is antimagic if either m nand m n +1. Proof: Case (i) Suppose m n Let v 1 v 2...,v n be the vertices of C n The set of edges are defined as e j {vjvj + l' 1 ~ i ~ n -1 and v n v1e n } Label the edges of C n by f( ej ) i, 1 ~ i ~ n Hence the edge labels are 1, 2,..., n. Next relabel the cycle vertices of C n as follows, ie., wi Vj+1' i 1,2,..., n -1 and w n v1 49

5 Let Pn be a path on n vertices. We can obtain C n 0 Pn by attaching Pn to each vertex of Cn' Note that C n 0 Pn is a graph with n(n +1) vertices and 2n 2 edges. Let uj j, i, j 1, 2,..., n be the path vertex adjacent with wi, i 1, 2,..., n. Label the remaining edges of C n 0 Pn as follows f (wj, u j j ) n + (2i - 2) n - (i - 2) + ( j - 1), 1 ~ j ~ n, 1 ~ i ~ n f (u jj,' U i j + 1) n + 2i n - i - ( j - 1), 1~ j ~ n -1, 1~ i ~ n Then the set of edge labels are {1, 2,..., n, n + 1,..., 2n 2 } Now f(w j, Uj 1 ) + f (wj, U j 2 ) f (Wi' Uj n ) f+ (w 1 ) n [ n + (2i - 2) n - (i - 2)] + [n (n -1)] /2, n 2 (2i -1) - n (i - 2) + ( n (n - 1) ) /2 [n (n - 1)] / 2 + 2n - n 2 + i n (2n - 1) (3n - n 2 ) / 2 + i n (2n - 1), 3 + n 2 + n (n + 1)] / 2 (3n 2 + n + 6) / 2 2 ~ i ~ n-1 2 ~i~n-1. f+ (w n ) f+ (Wi) f+ (Ui1) f+ (Ujn) (n +1) + n [n + (2n-2) n - (n - 2)] + [n (n - 1)] / 2 n + n 2 (2n - 2) + 2n + (n 2 - n) /2 ( 4n 3-3n 2 + 5n ) / 2 (i + 1) + i + (3n - n 2 ) /2 + i n (2n - 1) (2 + 3n - n 2) / 2 + i ( 2 n 2 - n + 2), 2 ~ i ~ n - 1 2n + (4i - 2) n - (2i - 2), 2 + i (4n - 2), 1~ i ~ n 1~ i ~ n 2n + (4i - 2) n + (3-2i) 50

6 G 3;)<;; i (4n - 2), 1:::; i :::; n f+ (Uj j) 3n + (6i - 2) n - [3i + U- 1) - 3], 1:::; i :::; n, n + (6n -3) i - ( j - 4), 1:::; i :::; n, 2:::;j:::;n-1 2:::;j:::;n-1 Clearly f+ (u) of f+ (v) V U, V E V (C n 0 Pn) :. C n 0 Pn is antimagic..9llustration : C s 0 Psis antimagic t~~~~ Case (ii) m n + 1 If we replace m by n + 1 in the above setup we can get C n 0 Pn+1 is antimagic. 0 51

7 r!/);w11aifl' Theorem 3.2.3: The double crown C n 0 ~ is antimagic for all odd n, n ~ 3. Proof: Let C n be a cycle. Let V 1 'V 2 '...,v n be the vertices of Cn' Let ~ be the complete graph on two vertices. Now attach ~ to each vertex of the cycle Cn' The newly obtained graph is denoted by C n 0 K 2. Note that C n 0 K 2 is a graph with 3n vertices and 4n edges. Let aj, b i, i 1,2,,n be the vertices adjacent to the rim vertices of Cn' Let{ejl i 1,2,,n}{VjVj+11 i1,2,...,n-1}and e n v n v 1 be the cycle edge and {(aj, bj), (Vj, aj), (Vj, bj), i 1 to n be the other edges of C n 0 K 2 Define f on the edge set of C n 0 K 2 as follows f (a 1,b 1 ) (i+1)/2 ifiisodd n+1 i {--+- if i is even 2 2 2n f (aj,bj) f (vj,aj) f(v1,a1) f (vi, bj) f(v 1,b 1 ) n + (i -1), 2n + (i -1), 3n 3n + (i -1), 4n 25 is n 2 5 i 5 n 2 5 i 5 n Now f+ (Vj) (i +1) I 2 + (n + 2) 12+ (i - 1) 12 ie f+ (vi) f+ (V1) + 2n + (i -1) + 3n + (i -1) [6 i +11 n -3] 12. [6 i +11 n - 3] /2, 2 5 i 5 n f (en) + f (e1) + f(v 1 ' a 1 ) + f(v 1 ' b 1 ) (n +1) /2 + (1 + 1) I 2 + 3n + 4n 52

8 CR~3 r!!jgw'wfu/ ~ (15n + 3) /2 f+ (aj) f(vj, aj) +f(aj, bj) f+ (a 1 ) 5n, f+ (b 1 ) 6n 2n + (i - 1) + n + (i - 1) 3n + 2i - 2, 2 ~ i ~n f+ (b j) f (aj, bj) + f(vj, b j ) 4n + 2i - 2, 2 ~ i ~ n. Clearly f+ (u) 1:- f+ (v) Vu, V E V (C n 0 K 2 ). Hence C n 0 K 2 is antimagic for all odd n. 0..9Ilustration: C 11 0 K 2 is antimagic. by bg

9 Construction 2.1: Let C 4 be a cycle on 4 vertices V 1 'V 2 'V 3,V4. Attach mi, i 1, 2, 3, 4 pendant vertices with Vi, such that m 1 $; m 2 $; m 3 $; m4 Then the resulting graph is denoted!:)y G. Clearly G has m 1 + m 2 + m 3 + Theorem 3.2.4: The Graph G as per the above construction is antimagic. Proof: Let vl' v2' V3' V4 be the vertices of C4 Let v1 l' V1 2' ' V1m 1 be the vertices attached with v1 V 2 l' V 2 2' ' V2 m2 be the vertices attached with v 2 V 3 l' V 3 2' ' V 3m3 be the vertices attached with v 3 v4 l' V4 2'..., V4 m. be the vertices attached with v4 Label the edges of G as follows f (vi, Vi +1) i, 1$;i$; 3,. f (v4'v 1 ) 4 f (V 1,V 1 j) 4 + j, 1 ~ j $; m 1 f (V 2,V 2 j) 4 + m 1 +j, 1 $; j $; m 2 f (v 3,V 3 j) 4 + m 1 + m 2 + j, 1 $;j $; m 3 f (V4,V 4 j) 4 + m 1 + m 2 + m 3 + j, 1 $; j $; m 4 The resulting edge labels are { 1, 2,..., 4 + m 1 + m 2 + m 3 + m4} Now f+ (v 1 j) 4 + j, 1 $; j $; m 1 f+ (v 2 j) 4 + m 1 + j, 1 ~ j $; m 2 f+ (v 3 j) 4 + m 1 + m 2 + j, 1 $;j $; m 3 f+ (v4j) 4 + m 1 + m 2 + m 3 + j, 1 $;j $; m 3 54

10 f+ (v 1 ) f (V 4J V 1 ) + f (v 1, V 2 ) + 2)(V j,v i ;) (m m ) /2 m, j1 m2 f+ (V 2 ) f (V 1, V 2 ) + f (V 2, V 3 ) + 2)(V 2, V 2j ) (ml + 9m 2 + 2m 1 m 2 + 6) /2 f+ (V 3 ) f (V 21 V 3 ) + f (V 3, V 4 ) + "L f (V 31 V 3j ) (m m 3 + 2m 1 m 3 + 2m 2 m ) / 2 f+ (v4) f(v 31 V 4 ) +f(v 4, V 1 ) + "L f (V 4,V 4j ) (m m 4 + 2m 1 m 4 +2m 2 m 4 + 2m 3 m 4 +14) /2 Clearly f+ (u) -:j:: f+ (v) \fu,v E V (G). Hence G is antimagic. j1 m3 j1 m. j1 Sllustration: C 4 with m 1 5, m 2 6, m 3 7, m

11 Next we consider the graph < Cn,t > consisting of t copies of C n sharing a vertex in common. Then we!lave the following theorem. Theorem : < C n, t> is antimagic V t ~ 1 and V n ~ 3 Proof: <Cn, t > has tn - (t - 1) vertices and (tn) edges. Let vi j, i 1,2,...,n, j 1,2,...t be the vertices of < Cn, t >. Let w V1j 1 ~ j ~ t be the common vertex. Let {ejj, 11 ~j~t, 1 ~i~n} {Vjjvj+111 ~j~t, 1~i~n-1} and en j vn j w Define fan E «C n, t» as follows f( ej j) f( en j) Now f+ (w) i + U- 1) n, n J, f(eij) +f(enj), 1~i~n-1, 1~j~t. j1,2,...,t. I I 2)(e jj ) +2)(e nj ) j1 j1 I I L[1+(j-1)n]+L(nj) nt2 + t j1 j1 f (ei-1j) + f (ejj) (i-1) + ( j-1) n + i + U-1) n 2i n U-1), 2 ~ i ~ n, 1~j~t. Clearly f+ (u) "* f+ (v) V u, v in V( < Cn, t> ) Hence < C n, t > is antimagic. 56

12 3llustration < C a, 6 > is antimagic Theorem 3.2.6: The grid C n x C n is antimagic for all even n. Proof: C n x C n has 2n 2 edges and n 2 vertices. Let the vertices of C n x C n be as follows, a 1 1 a 1 2 a 21 a 22 a 1 n a 2 n 57

13 Here each row and each column are repectively adjacent and a 1 j, an j, 1 ~ i ~ n are adjacent, aj l' aj n, 1~ i ~ n are adjacent. Define the labeling f on E (G) as follows, From * it is clear that 3i -2, (3n - 2) + (2i - 1), 1 ~ i ~ n. (3n - 2) + (r - 3) (2n -1) + 2i-1, 1 ~ i ~ n, 4 ~ r~ n.. * f (an n - l' an n ) 3n (n - 3) (2n - 1) + (2n - 1) To label the remaining edges Set K3n (n - 2) (2n - 1) 3n (n - 2) (2n - 1) (i i) f(aj l' aj+11) 3i -1, 1~i~n-1 f (aj 2, aj +1 2) I f (aj 3 ' a i + 1 3) I 3i, (3n - 3) (i - 1) 2, 1~i~n-1 1~i~n-1 f (aj r ' aj + 1r ), (3n - 3) + (r - 3) (2n -4) + (r - 2)3+(i -1) 2, 1~ i ~ n - 1, 4 ~ r ~ n. K+ i, (iv) f(ai1,ajn) K + n + [n- (i -1)], 1 ~ i ~ n. The set of edge labels are {1,2,...,2n 2 } 2 (K + n + 2) 58

14 Cff--.~3 ~~~wpf~ f+ (a 1 2) 3n + K + 5 f+ (a 1 j) K + ( 6 U- 2 ) + 5) n - (2j - 6), 3~ j ~ n - 1. Also f+ (aj 1) 2n + K + 8 (i - 1) +2, 2 ~ i ~ n-1 Also f+ (an j) (6 U- 1) + 5) n + K - (2j + 2), 2~ j ~ n-1 Thus f+ (a 1 n ) 4n 2 + 2k - 5n + 5 f+ (a 2 n ) K + 6n 2-10n + 11) f+ (a 3 n) K + 6n 2-10n + 16 f+ (a 4 n) K + 6n 2-10n + 21 Hence f+ (aj n) K + 6n 2-10n + 5i +1, 2 ~i~n-1 Also f+ (aj 2) 3n + 11 (i - 1) + 3, 2 ~i~n-1 Similarly f+ (aj 3) 14n + 8 (i - 1) -5, 2 ~i~n-1 f+ (aj 4) 22n + 8 (i-1) - 9, 2 ~i~n-1 f+ (aj 5) 30n + 8 (i-1) -13, 2 ~i~n-1 f+ (aj 6) 38n + 8 (i-1) -17, 2 ~i~n-1 f+ (aj 7) 46n + 8 (i-1) -21, 2 ~ i ~ n -1 In general f+ (aij) (8j -10) n + 8 (i -1) - (4U -1)-3), 2~i~n-1, 3~j~n-1. Thus f+ (u) 1:- f+ (v) V U,V E V(Cn x Cn ) :. C n x C n is antimagic 0 59

15 Sllustration: Cs X C s is antimagic. 113./ _ ~9 127 ( ~ ~~-t 23 I- 38 I 5 "- j ~_6~j 83 '- I ~-- ~---' ~ e _- I I-- I-- _._.-- I r!3 ~8 88 ~ "'-. ' ~5 60 I I ~_ ' f-- -- I l- I- ---I U HI \17 _ _ I ~-- 94 ~ / \ ~--\ 3L_-\-, L- 1 ~L_-\ 121 r!1 ~ 96 ~ On Path Related Graphs related graphs. In this section we study the role of antimagic labeling on path Theorem : The graph G Pn + K t is antimagic. Proof: Let v 1 ' v 2,..., v n be the n vertices of P n. Let w 1 ' w 2,.,Wt be the t isolated vertices of K t Join v 1 ' v 2,...,v n to each wi, 1~ i ~ t. The newly obtained graph is G Pn + ~. Clearly G has (n + t) vertices and (n t n) edges. 60

16 Define f on E (G) by f (Vj, Vj+1) f (v w) J, I j, 1 ~ j ~ n - 1 i n + U- 1), 1 ~ j ~ n, 1 ~ i ~ t. Now I f (V1,V 2 ) + ~)(V1Wi) i1 [nt 2 + nt + 2] / 2 [n t 2 + 3nt + 2n - 2t - 2] / 2 t f(vj_1,vj) +f(vj,vj + 1) + 'Lf(vj,w i ) i1 I (j -1 ) + j + 'L(in + j -1) i2 [nt 2 + (n - 2)t j (t + 2)] / 2, 2 ~ j ~ n, n 'Lf(vj,w j ) j1 n 'L(in+j-1) j1 (n 2 (2i + 1) - n) /2, 1~ i ~ t. Clearly f+ (u) I; f+ (v) V U, V E V (G). Hence G is antimagic. 0 $llustration: P3 + K s is antimagic. Then immediately we get the following corollary. 61

17 Corollary 3.3.1: Fans are antimagic. Proof: By theorem 3.1, Pn + K t is antimagic. When t 1, P n + K 1 P n + K 1 is antimagic. o Construction : Let F n be a fan. Take m isomorphic copies of F n Let w be an isolated vertex. Then the one point union of the centre vertex of each F i with w. is denoted as F~m). Note that F~m) has 2mn edges and m (n +1) + 1 vertices Theorem 3.3.3: The graph F~m) is antimagic. Proof: Let V [F~m)] {Uj} U {Vji} U {w}, 1 $ j $ m, 1 $ i $ n. Label the edges of F~m) f (Vj, Vj j) f ( Vj i' Vj i +1 ) f (Vj, w) as follows. 2n (j - 1) - ( j - 1) + i, 1 $ i $ n, 1$ j $ m. (2j-1)n-(j-1)+i, 1 $i$n-1,1 $j$m. 2mn - (j - 1), 1 $ j $ m. Now f+ (w) n Lf(Vj,w) j1 [m 2 (4n - 1) + m]./2 f (Vj, Vj 1 ) + f (Vj 1,' Vj 2 ) 2n (j - 1) - (j - 1) (2j - 1) n - (j-1) n + (4n - 2) j, 1 $ j $ m f (Vj, Vj n) + f (Vj n -1,Vj n) 1-n+j(4n-2), 1 $j$m t f( V j ' vjj +f( w, Vj) j 1 (j -1) (2n2 - n + 1) + 2mn +(1/2) [n (n + 1)], 1 $j $ m 62

18 f (Vj _ 1,Vj j) + f (Vj j. Vj j + 1 ) + f (Vj, Vj j ) (6n - 3) j - 4n i, 1 ~ j ~ m, Clearly f+ (u) 7:- f+ (v) \j U, v in V (F~m»). 2 ~ i ~ n-1. Hence F~m) is antimagic. o 3Ilustration: F~5) is antimagic. V45 V 21 v 1 v v22 v 43 v 42 v 4 W 39 v23 37 v 2 38 v 3 v 24 v 41 Theorem 3 3.4: Pn x C 3 is antimagic for even n. Proof: The graph G Pn x C 3 has 3n vertices and 6n - 3 edges. Let the vertices of G be { aj j, 11 ~ i ~ 3, 1 ~ j ~ n}. Let the edges of G be {aj j aj j+1 I 1 ~ i ~ 3, 1 ~ j ~ n - 1} u 63

19 { a1 j a2 j I 1:::; i :::; n} u {a 1 j a 3 j I 1:::; i :::; n} u {a 2 j a 3 j I 1:::; i :::; n}. Suppose n. 2r. Define fan E (G) as follows. f (a12i-l' a12i) 6i -5, 1 :::; i :::; r f(a12j a12j+1) 6i, 1:::;i :::; r - 1, f(a2 2i - l'a2 2i ) 6i -4, 1 :::; i :::; r f (a2 2i, a2 2i + 1) 6i -1, 1 :::; i :::; r - 1 f (a3 2i - 1,a3 2i) 6i -3, 1 :::; i :::; r f (a3 2i, a3 2i + 1) 6i -2, 1 :::; i :::; r - 1 f (a1 2i a. ) 3 (n - 1) + i, 1 :::; i :::; r - l' (2r - 1) + i, 1:::;i :::; r f (a12i,a3 2i ) 3 (2r - 1) + r + i, 1 :::; i :::; r f (a1j. a2 i ) (4n - 2) + 2(i - 1), 1 :::; i... n f (a2j, a3i) (4n - 1) + 2 (i - 1), 1 :::; i :::; n. Clearly the set of edge values are {1, 2,..., 6n - 3}. 1 + (4n - 2) + 3(n - 1) + 1 7n - 3 (4n - 2) + (4n - 1) n-1 (4n-1)+(6-3)+3(n-1)+1 7n 64

20 f (a 1 n - 1 ) + f (a 1 n, a 2 n) + f ( a 1 n, a 3 n) f (a 1 2r _ 1 a 1 2r )+(4n-2) + 2(n-2)+3(2r - 1) + 2r,, 14r + 6n r-12 4n (n - 1) + 4n (n - 1) + 6r n + 6r r - 11 [3 (2r - 1) + r + r] + [(4n - 1) + 2 (n -1 )]+ 6r - 3 (6r r) + 6n r r + 6n r f(a 1 2i' a 32 i) 6i i + 4n (i - 1) + 3 (2r - 1) +r + i 17i + 4n + 7r r + 17i -12, 1 ~ i ~ r - 1 f (a 1 2i' a 1 2i + 1) + f (a1 2i + l' a1 2i + 2 ) + f (a 1 2i + l' a 22 i + 1 ) + f (a1 2i+1' a32i+1) [6i + 6 (i + 1) - 5] + 4n (2i + 1-1) + 3 (n - 1) + (i +1) 17i + 7n 14r+17i, 1~i~ r-1 f (a 3 2i _ l' a 3 2i ) + f (a3 2i' a3 2i + 1) + f (a 22 i. a 32 i) + f (a1 2i> a3 2i ) 65

21 6i-3 + 6i-2 + 4n (2i -1) + 3(2n-1) + r + i 15r + 17i -11 f (a 3 2i, a 3 2i+1) + f (a 3 2i+1' a 3 2i+2) + f (a 2 2i+1' a3 2i+1) + f (a 1 2i+1' a3 2i+1) [6i (i + 1) - 3] + 4n (2i + 1-1) + 3 (2r - 1) + i + 1 ie.. 12i n i + 6r i +1 17i-2+4n+6r 14r+17i-2. 1~i~ r-1 f (a 2 2i _ 1. a 2 2i ) + f (a 2 2i. a 2 2i + 1) + f (a 1 2i. a 2 2i) + f (a 2 2i. a 32 i) 6i i n (2i - 1) + 4n (2i - 1) 12i n i n i 2 20i + 8n r + 20i -12, 1 ~ i ~ r - 1 f (a 2 i> a 2 2i + 1) + f (a 2 2i + l' a3 2i + 2) + f (a 1 2i + 1. a 2 2i + 1) + f (a2 2i + 1. a3 2i +1) 6i (i +1) n (2i +1-1) + (4n -1) + 2 (2i + 1-1) 12i n i + 4n i 20i + 8n r + 20i ~ i ~ r - 1 Clearly f+ (u) :f- f+ (v) V U V E V (G). Hence G is antimagic. 0 66

22 .9l1ustration: P12 X C 3 is antimagic Definition 3.3.1: Triangular snake is a connected graph in which all blocks are triangles and the block-cut point graph is a path. If it has n blocks then it is said to be of length n. 67

23 Theorem 3.3.5: Triangular snakes are antimagic. Proof: Let R n be a triangular snake with length n. Let V(R n ) {aj I0 ~ i ~ n} u {bj1' 1 ~ i ~ n} E(R n ) {ajai+1' 10 ~i~n-1} u {aj bj ~i~n-1} u {aj b i1 1~ i ~ n}. Define f on E (R n ) as follows, f(aj,ai+1) i+1, 0 ~i~n-1 f(aj,b i + 11 ) (n+1)+2i, 0 ~i~n-1 f(aj,b j1 ) n+2+2(i-1), 1~i~n. With the above labeling the set of edge values are {1.2,...,3n}. Now f+ (a o ) f (a o b 11 ) + (a o a1) (n+1)+1 n + 2 f (a n -1. an) + f (an. bn1 ) (n -1) + n (n - 1) 4n f(aj, aj1) +f(aj, aj + 1) +f(ai1' bi1 ) +f(aj, bj + 11) (i-1 +1)+(i+1)+(n+2)+2(i-1 )+n+1 +2i 2n + 6i +2, 1 ~ i ~ n - 1 f(aj, b i1 ) +f(aj_1' bi1 ) n (i-1) n (i - 1) 2n i, 1 ~ i ~ n. Clearly f+ (u) ~ f+ (v) V U,V E V (R n ). Hence Rn is antimagic ustration: R s is antimagic. b b 21 b31 b 41 bs

24 Theorem 3.3.6: Quadrilateral snakes are antimagic. Proof: Let Q n stand for the quadrilateral snake whose length is n. {aj I 0 :s; i :s; n} u {bj l' b j 2 I 1:s; i :s; n } { aj,aj+1 I 0 :s; i :s; n-1 } u {bj l' bj 2 I 1 :s; i :s; n } u { aj, bj + 11 I 0 :s; i :s; n-1 } u {ai, bj 2I 1:s; i :s; n } Clearly Q n has (3n + 1) vertices and 4n edges. Label the 'edges of Q n as follows, f(aj,aj+1) i +1, o :s;i:s;n-1 f (b j l' b j2) (n + 2) + (i -1)3, f(aj,b i + 11 ) (n + 1) + 3i, f (aj, bj 2) (n +3) + (i -1)3, o :s;i:s;n-1 1 :s; i :s; n. Then the set of edge labels are {1,2,3,...,4n}. Now f+ (aj) f (aj, aj + 1) + f (aj _ l' aj) + f (ai, bj + 1,1) + f (aj, b j2) (i +1) + (n + 1) + 3i + (n + 3) + (i - 1)3 + (i -1) +1 2n + 8i + 2, f (a o, a 1 ) + f (a o, b11 ) 1 + (n + 1) n + 2 f (an _ 1 ' an) + f (an, bn2) (n ) + (n + 3) + (n -1) 3 1 :s; i :s; n - 1. n + n n - 3 5n f (aj _ l' b i1 ) + f (b j1, bj2) (n + 1) + 3 (i - 1) + (n + 2) + 3 (i - 1) 2n i - 6 2n + 6i - 3, 1:s; i :s; n 69

25 f(aj, b i2 )+f(b i1, bj2) n (i - 1) 3 + (n + 2) + (i - 1) 3 2n i - 6 (2n - 1) + 6i 1 ~ i ~ n Then f+ (u) I: f+ (v) V U, V EV (Q n ). Hence Q n is antimagic Vn. 0.9Ilustration: Q 6 is antimagic. b 11 8 b 12 b21 11 ~2 b b b! 32 \/ \} \f 41 S/::' 23\_ 17;;:" 20 a o 1 a 1 2 a 3 a 3 4 a 4 5 a Theorem : K 4 snakes are antimagi~. Proof: Let R n stand for the K 4 snake whose length is n. R n has 6n edges and 3n + 1 vertices. {aj I 0 ~ i ~ n} u {bi1, bi2, I 1 ~ i ~ n }. { aj, ai+1 I0 ~ i ~ n -1} u {bj1, bj2 I 1 ~ i ~ n } u { aj, b i + 1 1I0 ~ i ~ n -1} u {aj, bi2 11 ~ i ~ n } u { aj, bj+ 1 2 I0 ~ i ~ n - 1} u {ai, bj, 111 ~ i ~ n }. Label the edges of R n as follows, f(aj,ai1) 6i+1, f (bj l' bj 2) 6i -2, f(aj, bj + 11) 6i + 2, o ~i~n-1 o sisn-1 f (aj, bj 2) 6i, 70

26 r.ql~... ~/I~ f(aj,b i + 12 ) 6i+5, 0 ~i~n-1 f(aj,bj1 ) 6i-3, 1~i~n. The set of edge values are {1,2,...,6n}. f+ (aj) f (aj, aj +1) + f (aj, bj +11) + f (aj, bj 2) + f (ai, bj +1 2 ) + f (ai, bj 1) + f (aj -1' aj) 6i i i + 6i i (i - 1) i, 1 ~ i ~ n - 1 f+ (a o ) f (a o, a 1 ) + f (a o, b 1 2) + f (ao, b1 1) f+ (b j 2) f (b j l' bj 2) + f (aj, b i 2) + f (aj _ l' bj 2) 6i i + 6 (i - 1) i - 3, 1 ~ i ~ n f+(b i1 ) f(bj1,bj2)+f(aj,bj1)+f(aj_1,bj1) 6i i (i -1) i-9, 1~i~n f+ (an) f (an _1' an) +f( an, bn2 ) +f(an. bn 1) 6 (n-1) n + 6n-3 18n-8 Hence f+ (u) ::j:. f+ (v) 'tj U,V E V (R n ). Thus Rn is antimagic. 0..9llustration: R 4 is antimagic. 71

27 Theorem 3.3.8: nk 2 is not antimagic. Proof: nk 2 has n edges and 2n vertices. If we label the edges as 1,2,...,n, then vertices incident with each edge has the same sum. Hence it is not antimagic. o 3.4. On Star Related Graphs In this section we give some results related to antimagic labeling on stars and the graphs which contain stars. Theorem 3.4.1: The graph G K 1 n + K t is antimagic., be the vertices of the star K 1 nand w 1 ', Define fan E (G) by f (va' Vj) j, 1 ~j ~n f (va' wk) (n +1) k, 1 ~k ~t f (Vj, wk) k (n +1) +j, 1 ~j ~ n, 1 ~k ~t. Now f+ (va) L f( v0' v j) +L f( v0' Wk ) n j1 k1 (n+1) (t2 + t + n) /2 f+ (Vj) f (va' Vj) +L f( v!' w k ) k1 t t [(n + 1) t 2 + t (n + 2j + 1) + 2j] /2 For 1 ~k ~ t, f+ (wk) f(v o, wk) +if(vi'w k ) 11 (n+1) [2k (k + 1) + n] /2 72

28 Clearly f+ (u) 7:- Hence G is antimagic. f+ (v) V u,v in V (G). o $llustration: K 1 5 +K 2 is antimagic., Theorem : Book graph B n is antimagic for all n. the common vertices of Bn B n has 2 (n + 1) vertices and 3n + 1 edges. Label the edges of B n as follows, f (Xc,Yo) 1, f (aj, bj) 3i, 1 ~i ~ n f (x o, aj) 3i-1 I 1 ~i ~ n f (Yo, bj) 3i + 1 I 1 ~i ~ n. Then the set of edge labels are {1, 2,...,3n+1} 73

29 0:~3 ~.!/.,/UlfjM;/ wp/,v Now f+ (Xc) m :L f(x O,a 1 ) + f (Xc, Yo) jl 1 + [3 n (n + 1)] /2 - n [2 + 3n 2 + 3n - 2n] / 2 [3n 2 + n + 2] / 2 f+ (aj) f (ai, b j ) + f (Xo, aj) 3i + 3i-1 6i -1, 1 ~i ~ n f+ (b i ) f (ai. b j) + f (Yo, bj) 3i + 3i +1 6i + 1, 1 ~i ~ n. f+ (Yo) f (xo, Yo) +:L f(yo,b 1 ) il m 1 + n + [3 n (n +1)] /2 [2 + 2n + 3n 2 + 3n] / 2 [3n 2 + 5n + 2] / 2 Clearly f+ (u) t:- f+ (v) \;j u, V E V (B n ) Hence B n is antimagic. 0..9l1ustration: B 5 is antimagic. 1 2 a1 5 a2 ---::::: 14 8 a3 11 Cl4... as b1 7 ~ b3 ~ b 4 16 bs 74

30 Theorem 3.4.3: A book B n with n-pentegonal pages is antimagic Proof: Let (Xc, bj, ai, Cj, Yo) be the ith page of B n, 1 :::; i :::; n. B n with n-pentegonal pages has 4n + 1 edges and 3n + 2 vertices. Define f on E (B n ) as follows, f (xo. Yo) 4n + 1 f (xo. bj) 4i - 3, 1:::; i :::; n f (bj, aj) 4i - 2, 1:::; i :::; n f (aj, Cj) 4i - 1, 1:::; i :::; n f (Cj, Yo) 4i, 1 :::; i :::; n. Then the set of edge labels are {1,2,... An + 1} f (x o, Yo) +i)(x o,b 1 ) n i-1 (4n 2 + 6n + 2) /2 f (x o b j ) + f (b j, aj) 4i i - 2 8i - 5, 1:::; i :::; n. f (b j aj) + f (aj Cj) 4i i-1 8i - 3, 1:::; i :::; n f (ai, Cj) + f (Ci' Yo) 4i i 8i -1, 1 :::; i :::; n. n f (Xc, Yo) +L)(c i, Yo) i 1 i1 4n+1 + 1/2 [4n (n + 1)] [8n n2 + 4n] /2 4n 2 +12n + 2] /2 Clearly f+ (u) :f. f+ (v) V U,V E V (B n ). Thus Bn is antimagic V n. 0 75

31 $llustration: 21 Theorem 3.4.4: Let B n be a book graph with n square pages. Let Hn be a graph obtained by subdividing the free edges of the pages exactly once. Then H n is antimagic. Proof: Let xo,yo be the common edge. Let (X o, Ii, ai, mj, bj, ni, yo) be the jth page, 1 si s n. H n contain 6n + 1 edges and 5n + 2 vertices. Label the edges of H n as follows, f (xo, Yo) 6n + 1 f (Xc, Ij) 6i -5, 1 si sn f (Ii, aj) 6i - 4, 1 si sn f (aj, mj) 6i -3, 1 si sn f (mi, bj) 6i - 2, 1 si s n f (b i, ni) 6i -1, 1 si s n f (Yo, nj) 6i, 1 si s n. 76

32 (ff.,~/3 The set of edge labels are {1,2,...,6n +1} n Now f+ (x o ) f (Xc, Yo) + :Lf(xo,l,) ;1 6n [6 n (n + 1)] - 5n [12n n 2 + 6n - 10 n] 12 (6n 2 + 8n + 2) 12 f+ (I j) f (x o, Ij) + f (Ii, aj) 6i i i - 9, 1 ~i ~ n f+ (aj) f (Ii, aj) + f (aj, mj) 6i i i - 7, 1 ~i ~ n f+ (mj) f (aj, mj) + f (mj, bj) 6i i i - 5, 1 ~i ~n f+ (b j) f (mi, bj) + f (b j, nj) 6i i i - 3, 1 ~i ~ n f+ (nj) f (bj, nj) + f (nj, Yo) 6i i 12i - 1, 1 ~i ~n f+ (Yo) f (Xc, Yo) + :Lf(yo,n i ) n i1 6n [6n (n + 1) ] 12 12n n 2 + 6n/2 [6n n + 2] 12, 1 ~i ~ n Clearly f+ (u) :1 f+ (v) V U,V E V (H n ) Hence H n is antimagic for all n. 77 0

33 ..9'llustration: H 4 is antimagic. Theorem 4.5: C n u K 1 m is antimagic for all m and for all odd n., Proof: Let v 1 v 2,..., v n be the vertices of C n. Assume that n is odd. Let ej {Vj vi + 1 I 1 sis n} where v n + 1 v 1. be the edges of the cycle C n Label edges of K 1 m by 1,2,...,m., Label the cycle edges by f( ej) m + i, 1 sis n. Then the set of edge labels are {1,2,..., m + n}. Then all vertex labels are distinct. The central vertex has the sum m m( m + 1) / 2. Each end vertex has the sum as edge labels. Also f+(u) * f+(v) \if u,v in V(C n U K 1, m ). Thus Cn U K1, m is antimagic. o 78

34 .JIlustration: C s u K 1 6 is antimagic. J 1 79

Super Fibonacci Graceful Labeling of Some Special Class of Graphs

Super Fibonacci Graceful Labeling of Some Special Class of Graphs International J.Math. Combin. Vol.1 (2011), 59-72 Super Fibonacci Graceful Labeling of Some Special Class of Graphs R.Sridevi 1, S.Navaneethakrishnan 2 and K.Nagarajan 1 1. Department of Mathematics, Sri

More information

Harmonic Mean Labeling for Some Special Graphs

Harmonic Mean Labeling for Some Special Graphs International Journal of Mathematics Research. ISSN 0976-5840 Volume 5, Number 1 (2013), pp. 55-64 International Research Publication House http://www.irphouse.com Harmonic Mean Labeling for Some Special

More information

Chapter V DIVISOR GRAPHS

Chapter V DIVISOR GRAPHS i J ' Chapter V DIVISOR GRAPHS Divisor graphs 173 CHAPTER V DIVISOR GRAPHS 5.1 Introduction In this chapter we introduce the concept of a divisor graph. Adivisor graph 0(8) of a finite subset S of Zis

More information

Super Mean Labeling of Some Classes of Graphs

Super Mean Labeling of Some Classes of Graphs International J.Math. Combin. Vol.1(01), 83-91 Super Mean Labeling of Some Classes of Graphs P.Jeyanthi Department of Mathematics, Govindammal Aditanar College for Women Tiruchendur-68 15, Tamil Nadu,

More information

Department of Mathematics, Sri Krishna Institute of Technology, Bengaluru , Karnataka, India. *Correspondence author s

Department of Mathematics, Sri Krishna Institute of Technology, Bengaluru , Karnataka, India. *Correspondence author s Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (017), pp. 6393-6406 Research India Publications http://www.ripublication.com ON SUPER (a, d)-anti-edgemagic OF C m ok

More information

SQUARE DIFFERENCE 3-EQUITABLE LABELING FOR SOME GRAPHS. Sattur , TN, India. Sattur , TN, India.

SQUARE DIFFERENCE 3-EQUITABLE LABELING FOR SOME GRAPHS. Sattur , TN, India. Sattur , TN, India. International Journal of Science, Engineering Technology Research (IJSETR), Volume 5, Issue, March 2016 SQUARE DIFFERENCE -EQUITABLE LABELING FOR SOME GRAPHS R Loheswari 1 S Saravana kumar 2 1 Research

More information

arxiv: v1 [math.co] 23 Apr 2015

arxiv: v1 [math.co] 23 Apr 2015 On cycle-supermagic labelings of the disconnected graphs Syed Tahir Raza Rizvi, Kashif Ali arxiv:1506.06087v1 [math.co] 3 Apr 015 Graphs and Combinatorics Research Group, Department of Mathematical Sciences,

More information

On Odd Sum Graphs. S.Arockiaraj. Department of Mathematics. Mepco Schlenk Engineering College, Sivakasi , Tamilnadu, India. P.

On Odd Sum Graphs. S.Arockiaraj. Department of Mathematics. Mepco Schlenk Engineering College, Sivakasi , Tamilnadu, India. P. International J.Math. Combin. Vol.4(0), -8 On Odd Sum Graphs S.Arockiaraj Department of Mathematics Mepco Schlenk Engineering College, Sivakasi - 66 00, Tamilnadu, India P.Mahalakshmi Department of Mathematics

More information

On (Super) Edge-Magic Total Labeling of Subdivision of K 1,3

On (Super) Edge-Magic Total Labeling of Subdivision of K 1,3 SUT Journal of Mathematics Vol. 43, No. (007), 17 136 On (Super) Edge-Magic Total Labeling of Subdivision of K 1,3 Anak Agung Gede Ngurah, Rinovia Simanjuntak and Edy Tri Baskoro (Received August 31, 006)

More information

Some Edge-magic Cubic Graphs

Some Edge-magic Cubic Graphs Some Edge-magic Cubic Graphs W. C. Shiu Department of Mathematics Hong Kong Baptist University 4 Waterloo Road, Kowloon Tong Hong Kong, China. and Sin-Min Lee Department of Mathematics and Computer Science

More information

New Constructions of Antimagic Graph Labeling

New Constructions of Antimagic Graph Labeling New Constructions of Antimagic Graph Labeling Tao-Ming Wang and Cheng-Chih Hsiao Department of Mathematics Tunghai University, Taichung, Taiwan wang@thu.edu.tw Abstract An anti-magic labeling of a finite

More information

k-difference cordial labeling of graphs

k-difference cordial labeling of graphs International J.Math. Combin. Vol.(016), 11-11 k-difference cordial labeling of graphs R.Ponraj 1, M.Maria Adaickalam and R.Kala 1.Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-6741,

More information

Odd-even sum labeling of some graphs

Odd-even sum labeling of some graphs International Journal of Mathematics and Soft Computing Vol.7, No.1 (017), 57-63. ISSN Print : 49-338 Odd-even sum labeling of some graphs ISSN Online : 319-515 K. Monika 1, K. Murugan 1 Department of

More information

arxiv: v2 [math.co] 26 Apr 2014

arxiv: v2 [math.co] 26 Apr 2014 Super edge-magic deficiency of join-product graphs arxiv:1401.45v [math.co] 6 Apr 014 A.A.G. Ngurah 1 Department of Civil Engineering Universitas Merdeka Malang Jalan Taman Agung No. 1 Malang, Indonesia

More information

arxiv: v2 [cs.dm] 27 Jun 2017

arxiv: v2 [cs.dm] 27 Jun 2017 H-SUPERMAGIC LABELINGS FOR FIRECRACKERS, BANANA TREES AND FLOWERS RACHEL WULAN NIRMALASARI WIJAYA 1, ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ, JOE RYAN 1, AND THOMAS KALINOWSKI 1 arxiv:1607.07911v [cs.dm] 7 Jun 017

More information

Graceful Tree Conjecture for Infinite Trees

Graceful Tree Conjecture for Infinite Trees Graceful Tree Conjecture for Infinite Trees Tsz Lung Chan Department of Mathematics The University of Hong Kong, Pokfulam, Hong Kong h0592107@graduate.hku.hk Wai Shun Cheung Department of Mathematics The

More information

ON CONSTRUCTIONS OF NEW SUPER EDGE-MAGIC GRAPHS FROM SOME OLD ONES BY ATTACHING SOME PENDANTS

ON CONSTRUCTIONS OF NEW SUPER EDGE-MAGIC GRAPHS FROM SOME OLD ONES BY ATTACHING SOME PENDANTS Commun. Korean Math. Soc. 32 (2017), No. 1, pp. 225 231 https://doi.org/10.4134/ckms.c160044 pissn: 1225-1763 / eissn: 2234-3024 ON CONSTRUCTIONS OF NEW SUPER EDGE-MAGIC GRAPHS FROM SOME OLD ONES BY ATTACHING

More information

On (k, d)-multiplicatively indexable graphs

On (k, d)-multiplicatively indexable graphs Chapter 3 On (k, d)-multiplicatively indexable graphs A (p, q)-graph G is said to be a (k,d)-multiplicatively indexable graph if there exist an injection f : V (G) N such that the induced function f :

More information

Some Results on Super Mean Graphs

Some Results on Super Mean Graphs International J.Math. Combin. Vol.3 (009), 8-96 Some Results on Super Mean Graphs R. Vasuki 1 and A. Nagarajan 1 Department of Mathematics, Dr.Sivanthi Aditanar College of Engineering, Tiruchendur - 68

More information

Magic Graphoidal on Class of Trees A. Nellai Murugan

Magic Graphoidal on Class of Trees A. Nellai Murugan Bulletin of Mathematical Sciences and Applications Online: 2014-08-04 ISSN: 2278-9634, Vol. 9, pp 33-44 doi:10.18052/www.scipress.com/bmsa.9.33 2014 SciPress Ltd., Switzerland Magic Graphoidal on Class

More information

Super Fibonacci Graceful Labeling

Super Fibonacci Graceful Labeling International J.Math. Combin. Vol. (010), -40 Super Fibonacci Graceful Labeling R. Sridevi 1, S.Navaneethakrishnan and K.Nagarajan 1 1. Department of Mathematics, Sri S.R.N.M.College, Sattur - 66 0, Tamil

More information

Available Online through

Available Online through ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com 0-EDGE MAGIC LABELING OF SHADOW GRAPH J.Jayapriya*, Department of Mathematics, Sathyabama University, Chennai-119,

More information

Skolem Difference Mean Graphs

Skolem Difference Mean Graphs royecciones Journal of Mathematics Vol. 34, N o 3, pp. 43-54, September 015. Universidad Católica del Norte Antofagasta - Chile Skolem Difference Mean Graphs M. Selvi D. Ramya Dr. Sivanthi Aditanar College

More information

Further Results on Square Sum Graph

Further Results on Square Sum Graph International Mathematical Forum, Vol. 8, 2013, no. 1, 47-57 Further Results on Square Sum Graph K. A. Germina School of Mathematical and Physical Sciences Central University of Kerala, Kasaragode, India

More information

Super edge-magic labeling of graphs: deficiency and maximality

Super edge-magic labeling of graphs: deficiency and maximality Electronic Journal of Graph Theory and Applications 5 () (017), 1 0 Super edge-magic labeling of graphs: deficiency and maximality Anak Agung Gede Ngurah a, Rinovia Simanjuntak b a Department of Civil

More information

Sum divisor cordial labeling for star and ladder related graphs

Sum divisor cordial labeling for star and ladder related graphs Proyecciones Journal of Mathematics Vol. 35, N o 4, pp. 437-455, December 016. Universidad Católica del Norte Antofagasta - Chile Sum divisor cordial labeling for star and ladder related graphs A. Lourdusamy

More information

OF STAR RELATED GRAPHS

OF STAR RELATED GRAPHS Discussiones Mathematicae Graph Theory 35 (015) 755 764 doi:10.7151/dmgt.183 ON SUPER (a, d)-h-antimagic TOTAL COVERING OF STAR RELATED GRAPHS KM. Kathiresan Centre for Research and Post Graduate Studies

More information

NEW METHODS FOR MAGIC TOTAL LABELINGS OF GRAPHS

NEW METHODS FOR MAGIC TOTAL LABELINGS OF GRAPHS NEW METHODS FOR MAGIC TOTAL LABELINGS OF GRAPHS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Inne Singgih IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

Pyramidal Sum Labeling In Graphs

Pyramidal Sum Labeling In Graphs ISSN : 48-96, Vol 8, Issue 4, ( Part -I) April 8, pp-9 RESEARCH ARTICLE Pyramidal Sum Labeling In Graphs OPEN ACCESS HVelet Getzimah, D S T Ramesh ( department Of Mathematics, Pope s College, Sayerpuram-68,Ms

More information

Difference Cordial Labeling of Graphs Obtained from Double Snakes

Difference Cordial Labeling of Graphs Obtained from Double Snakes International Journal of Mathematics Research. ISSN 0976-5840 Volume 5, Number 3 (013), pp. 317-3 International Research Publication House http://www.irphouse.com Difference Cordial Labeling of Graphs

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

Edge-N eighbor-integrity of Trees. Department of Mathematics Northeastern University Boston, MA 02115, USA

Edge-N eighbor-integrity of Trees. Department of Mathematics Northeastern University Boston, MA 02115, USA Australasian Journal of Combinato'rics 10( 1994). 00.163-174 Edge-N eighbor-integrity of Trees Margaret B. Cozzens* t & Shu-Shih Y. Wu Department of Mathematics Northeastern University Boston, MA 02115,

More information

Q(a)- Balance Edge Magic of Sun family Graphs

Q(a)- Balance Edge Magic of Sun family Graphs Volume-6, Issue-3, May-June 2016 International Journal of Engineering and Management Research Page Number: 143-149 Q(a)- Balance Edge Magic of Sun family Graphs S.Vimala 1, R.Prabavathi 2 1 Assistant Professor,

More information

Rainbow eulerian multidigraphs and the product of cycles

Rainbow eulerian multidigraphs and the product of cycles Discrete Mathematics and Theoretical Computer Science DMTCS vol. 17:3, 2016, 91 104 Rainbow eulerian multidigraphs and the product of cycles Susana-Clara López 1 Francesc-Antoni Muntaner-Batle 2 1 Universitat

More information

SUPERMAGIC GENERALIZED DOUBLE GRAPHS 1

SUPERMAGIC GENERALIZED DOUBLE GRAPHS 1 Discussiones Mathematicae Graph Theory 36 (2016) 211 225 doi:10.7151/dmgt.1849 SUPERMAGIC GENERALIZED DOUBLE GRAPHS 1 Jaroslav Ivančo Institute of Mathematics, P.J. Šafárik University Jesenná 5, 040 01

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Graceful Labeling of Some Theta Related Graphs

Graceful Labeling of Some Theta Related Graphs Intern. J. Fuzzy Mathematical Archive Vol. 2, 2013, 78-84 ISSN: 2320 3242 (P), 2320 3250 (online) Published on 11 September 2013 www.researchmathsci.org International Journal of Graceful Labeling of Some

More information

On the super edge-magic deficiency of some families related to ladder graphs

On the super edge-magic deficiency of some families related to ladder graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 51 (011), Pages 01 08 On the super edge-magic deficiency of some families related to ladder graphs Ali Ahmad Department of Mathematics GC University Lahore

More information

Spectra of Digraph Transformations

Spectra of Digraph Transformations Spectra of Digraph Transformations Aiping Deng a,, Alexander Kelmans b,c a Department of Applied Mathematics, Donghua University, 201620 Shanghai, China arxiv:1707.00401v1 [math.co] 3 Jul 2017 b Department

More information

ON THE ERDOS-STONE THEOREM

ON THE ERDOS-STONE THEOREM ON THE ERDOS-STONE THEOREM V. CHVATAL AND E. SZEMEREDI In 1946, Erdos and Stone [3] proved that every graph with n vertices and at least edges contains a large K d+l (t), a complete (d + l)-partite graph

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

Odd Sum Labeling of Tree Related Graphs

Odd Sum Labeling of Tree Related Graphs International Journal of Mathematics And its Applications Volume 4, Issue 4 (016), 11 16. ISSN: 347-1557 Available Online: http://ijmaa.in/ International Journal 347-1557 of Mathematics Applications And

More information

Integral Root Labeling of Graphs 1 V.L. Stella Arputha Mary & 2 N. Nanthini

Integral Root Labeling of Graphs 1 V.L. Stella Arputha Mary & 2 N. Nanthini International Journal of Mathematics Trends and Technology (IJMTT) Volume Number - February 08 Integral Root Labeling of Graphs V.L. Stella Arputha Mary & N. Nanthini Department of Mathematics, St. Mary

More information

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations D. R. Wilkins Academic Year 1996-7 1 Number Systems and Matrix Algebra Integers The whole numbers 0, ±1, ±2, ±3, ±4,...

More information

Chapter 4. Matrices and Matrix Rings

Chapter 4. Matrices and Matrix Rings Chapter 4 Matrices and Matrix Rings We first consider matrices in full generality, i.e., over an arbitrary ring R. However, after the first few pages, it will be assumed that R is commutative. The topics,

More information

CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARY GRAPHS

CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARY GRAPHS 4 A CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARY GRAPHS This chapter deals with one of the maln aim of the thesis, to discuss a conjecture of Kotzig on selfcomplementary graphs. Some of the results are reported

More information

H-E-Super magic decomposition of graphs

H-E-Super magic decomposition of graphs Electronic Journal of Graph Theory and Applications () (014), 115 18 H-E-Super magic decomposition of graphs S. P. Subbiah a, J. Pandimadevi b a Department of Mathematics Mannar Thirumalai Naicker College

More information

< < or a. * or c w u. "* \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * *

< < or a. * or c w u. * \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * * - W # a a 2T. mj 5 a a s " V l UJ a > M tf U > n &. at M- ~ a f ^ 3 T N - H f Ml fn -> M - M. a w ma a Z a ~ - «2-5 - J «a -J -J Uk. D tm -5. U U # f # -J «vfl \ \ Q f\ \ y; - z «w W ^ z ~ ~ / 5 - - ^

More information

ODD HARMONIOUS LABELING OF PLUS GRAPHS

ODD HARMONIOUS LABELING OF PLUS GRAPHS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 303-4874, ISSN (o) 303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(017), 515-56 DOI: 10.751/BIMVI1703515J Former BULLETIN OF THE

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

SUPER ROOT SQUARE MEAN LABELING OF SOME NEW GRAPHS

SUPER ROOT SQUARE MEAN LABELING OF SOME NEW GRAPHS SUPER ROOT SQUARE MEAN LABELING OF SOME NEW GRAPHS 1 S.S.Sandhya S.Somasundaram and 3 S.Anusa 1.Department of Mathematics,Sree Ayyappa College for women,chunkankadai:69003,.department of Mathematics, Manonmaniam

More information

GRAPH CHOOSABILITY AND DOUBLE LIST COLORABILITY. Hamid-Reza Fanaï

GRAPH CHOOSABILITY AND DOUBLE LIST COLORABILITY. Hamid-Reza Fanaï Opuscula Mathematica Vol. 30 No. 3 2010 http://dx.doi.org/10.7494/opmath.2010.30.3.271 GRAPH CHOOSABILITY AND DOUBLE LIST COLORABILITY Hamid-Reza Fanaï Abstract. In this paper, we give a sufficient condition

More information

Given any simple graph G = (V, E), not necessarily finite, and a ground set X, a set-indexer

Given any simple graph G = (V, E), not necessarily finite, and a ground set X, a set-indexer Chapter 2 Topogenic Graphs Given any simple graph G = (V, E), not necessarily finite, and a ground set X, a set-indexer of G is an injective set-valued function f : V (G) 2 X such that the induced edge

More information

On Orthogonal Double Covers of Complete Bipartite Graphs by Disjoint Unions of Graph-Paths

On Orthogonal Double Covers of Complete Bipartite Graphs by Disjoint Unions of Graph-Paths International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 3, March 2014, PP 281-288 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org On Orthogonal

More information

On Graceful Labeling of Some Bicyclic Graphs

On Graceful Labeling of Some Bicyclic Graphs Intern. J. Fuzzy Mathematical Archive Vol. 3, 2013, 1-8 ISSN: 2320 3242 (P), 2320 3250 (online) Published on 4 October 2013 www.researchmathsci.org International Journal of On Graceful Labeling of Some

More information

Graceful Labeling for Complete Bipartite Graphs

Graceful Labeling for Complete Bipartite Graphs Applied Mathematical Sciences, Vol. 8, 2014, no. 103, 5099-5104 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46488 Graceful Labeling for Complete Bipartite Graphs V. J. Kaneria Department

More information

Mixed cycle-e-super magic decomposition of complete bipartite graphs

Mixed cycle-e-super magic decomposition of complete bipartite graphs Journal of Algorithms and Computation journal homepage: http://jac.ut.ac.ir Mixed cycle-e-super magic decomposition of complete bipartite graphs G. Marimuthu, 1 and S. Stalin Kumar 2 1 Department of Mathematics,

More information

Journal of Integer Sequences, Vol. 3 (2000), Article Magic Carpets

Journal of Integer Sequences, Vol. 3 (2000), Article Magic Carpets Journal of Integer Sequences, Vol. 3 (2000), Article 00.2.5 Magic Carpets Erich Friedman Stetson University Deland, FL 32720 Mike Keith 4100 Vitae Springs Road Salem, OR 97306 Email addresses: efriedma@stetson.edu

More information

On Super Edge-magic Total Labeling of Modified Watermill Graph

On Super Edge-magic Total Labeling of Modified Watermill Graph Journal of Physics: Conference Series PAPER OPEN ACCESS On Super Edge-magic Total Labeling of Modified Watermill Graph To cite this article: Nurdin et al 018 J. Phys.: Conf. Ser. 979 01067 View the article

More information

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333. 0 fltu77jjiimviu«7mi^ gi^"ijhm?'ijjw?flfi^ V m 1 /14 il?mitfl?^i7wwuiinuvitgviiyiititvi2- imviitvi^ qw^ww^i fi!i-j?'u'uil?g'iqwuwiijmi.wti twwrlf^ imii2^

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

5 Flows and cuts in digraphs

5 Flows and cuts in digraphs 5 Flows and cuts in digraphs Recall that a digraph or network is a pair G = (V, E) where V is a set and E is a multiset of ordered pairs of elements of V, which we refer to as arcs. Note that two vertices

More information

A Questionable Distance-Regular Graph

A Questionable Distance-Regular Graph A Questionable Distance-Regular Graph Rebecca Ross Abstract In this paper, we introduce distance-regular graphs and develop the intersection algebra for these graphs which is based upon its intersection

More information

SUPER MEAN NUMBER OF A GRAPH

SUPER MEAN NUMBER OF A GRAPH Kragujevac Journal of Mathematics Volume Number (0), Pages 9 0. SUPER MEAN NUMBER OF A GRAPH A. NAGARAJAN, R. VASUKI, AND S. AROCKIARAJ Abstract. Let G be a graph and let f : V (G) {,,..., n} be a function

More information

SUMS PROBLEM COMPETITION, 2000

SUMS PROBLEM COMPETITION, 2000 SUMS ROBLEM COMETITION, 2000 SOLUTIONS 1 The result is well known, and called Morley s Theorem Many proofs are known See for example HSM Coxeter, Introduction to Geometry, page 23 2 If the number of vertices,

More information

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Graph Theory Graph G = (V, E). V ={vertices}, E={edges}. a b c h k d g f e V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} E =16. Digraph D = (V, A). V ={vertices}, E={edges}.

More information

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Consider the function h(x) =IJ\ 4-8x 3-12x 2 + 24x {?\whose graph is

More information

Approximate results for rainbow labelings

Approximate results for rainbow labelings Periodica Mathematica Hungarica manuscript No. (will be inserted by the editor) Approximate results for rainbow labelings Anna Lladó Mirka Miller Received: date / Accepted: date Abstract A simple graph

More information

SOME EXTENSION OF 1-NEAR MEAN CORDIAL LABELING OF GRAPHS. Sattur , TN, India.

SOME EXTENSION OF 1-NEAR MEAN CORDIAL LABELING OF GRAPHS. Sattur , TN, India. SOME EXTENSION OF 1-NEAR MEAN CORDIAL LABELING OF GRAPHS A.Raja Rajeswari 1 and S.Saravana Kumar 1 Research Scholar, Department of Mathematics, Sri S.R.N.M.College, Sattur-66 03, TN, India. Department

More information

Further results on relaxed mean labeling

Further results on relaxed mean labeling Int. J. Adv. Appl. Math. and Mech. 3(3) (016) 9 99 (ISSN: 347-59) Journal homepage: www.ijaamm.com IJAAMM International Journal of Advances in Applied Mathematics and Mechanics Further results on relaxed

More information

Power Mean Labeling of Identification Graphs

Power Mean Labeling of Identification Graphs International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue, 208, PP -6 ISSN 2347-307X (Print) & ISSN 2347-342 (Online) DOI: http://dx.doi.org/0.2043/2347-342.06000

More information

C 7 -DECOMPOSITIONS OF THE TENSOR PRODUCT OF COMPLETE GRAPHS

C 7 -DECOMPOSITIONS OF THE TENSOR PRODUCT OF COMPLETE GRAPHS Discussiones Mathematicae Graph Theory 37 (2017) 523 535 doi:10.7151/dmgt.1936 C 7 -DECOMPOSITIONS OF THE TENSOR PRODUCT OF COMPLETE GRAPHS R.S. Manikandan Department of Mathematics Bharathidasan University

More information

Using Laplacian Eigenvalues and Eigenvectors in the Analysis of Frequency Assignment Problems

Using Laplacian Eigenvalues and Eigenvectors in the Analysis of Frequency Assignment Problems Using Laplacian Eigenvalues and Eigenvectors in the Analysis of Frequency Assignment Problems Jan van den Heuvel and Snežana Pejić Department of Mathematics London School of Economics Houghton Street,

More information

/ (qs0 + y) =! (q81 + y)... I (q~ + y),

/ (qs0 + y) =! (q81 + y)... I (q~ + y), ON SIMPLEXES INSCRIBED IN A HYPERSURFACE M. L. Gromov UDC 513.83 The sufficient conditions are obtained for the existence, on a hypersurface M c R n, of k points whose convex hull forms a (k- D-dimensional

More information

Algorithmic Approach to Counting of Certain Types m-ary Partitions

Algorithmic Approach to Counting of Certain Types m-ary Partitions Algorithmic Approach to Counting of Certain Types m-ary Partitions Valentin P. Bakoev Abstract Partitions of integers of the type m n as a sum of powers of m (the so called m-ary partitions) and their

More information

ON ADDITIVE PARTITIONS OF SETS OF POSITIVE INTEGERS

ON ADDITIVE PARTITIONS OF SETS OF POSITIVE INTEGERS Discrete Mathematics 36 (1981) 239-245 North-Holland Publishing Company ON ADDITIVE PARTITIONS OF SETS OF POSITIVE INTEGERS Ronald J. EVANS Deparfmenf of Mafhemaks, Uniuersity of California, San Diego,

More information

Bulletin of the Iranian Mathematical Society

Bulletin of the Iranian Mathematical Society ISSN: 117-6X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 4 (14), No. 6, pp. 1491 154. Title: The locating chromatic number of the join of graphs Author(s): A. Behtoei

More information

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ Ğ Ü Ü Ü ğ ğ ğ Öğ ş öğ ş ğ öğ ö ö ş ğ ğ ö ğ Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ l _.j l L., c :, c Ll Ll, c :r. l., }, l : ö,, Lc L.. c l Ll Lr. 0 c (} >,! l LA l l r r l rl c c.r; (Y ; c cy c r! r! \. L : Ll.,

More information

Graceful Labelings. Charles Michael Cavalier. Bachelor of Science Louisiana State University 2006

Graceful Labelings. Charles Michael Cavalier. Bachelor of Science Louisiana State University 2006 Graceful Labelings By Charles Michael Cavalier Bachelor of Science Louisiana State University 2006 Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mathematics

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH 220 NAME So\,t\\OV\ '. FINAL EXAM 18, 2007\ FORMA STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number 2 pencil

More information

ON SUPER HERONIAN MEAN LABELING OF GRAPHS

ON SUPER HERONIAN MEAN LABELING OF GRAPHS ON SUPER HERONIAN MEAN LABELING OF GRAPHS S.S.Sandhya Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai- 00,Tamilnadu,India. E.Ebin Raja Merly Department of Mathematics, Nesamony

More information

Characterizing binary matroids with no P 9 -minor

Characterizing binary matroids with no P 9 -minor 1 2 Characterizing binary matroids with no P 9 -minor Guoli Ding 1 and Haidong Wu 2 1. Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA Email: ding@math.lsu.edu 2. Department

More information

AN INDEFINITE-QUADRATIC-PROGRAMMING MODEL FORA CONTINUOUS-PRODUCTION PROBLEM

AN INDEFINITE-QUADRATIC-PROGRAMMING MODEL FORA CONTINUOUS-PRODUCTION PROBLEM R734 Philips Res. Repts 25,244-254,1970 AN INDEFINITE-QUADRATIC-PROGRAMMING MODEL FORA CONTINUOUS-PRODUCTION PROBLEM by F. A. LOOTSMA and J. D. PEARSON Abstract A model is presented for a problem of scheduling

More information

Chapter 30 Design and Analysis of

Chapter 30 Design and Analysis of Chapter 30 Design and Analysis of 2 k DOEs Introduction This chapter describes design alternatives and analysis techniques for conducting a DOE. Tables M1 to M5 in Appendix E can be used to create test

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Oi ir\ o CM CM ! * - CM T. c *" H - VO - a CM - t - T - j. Vv VO r t- CO on *- t- «- - ** <* - CM CM CM b- f - on on. on CM CVJ t - o.

Oi ir\ o CM CM ! * - CM T. c * H - VO - a CM - t - T - j. Vv VO r t- CO on *- t- «- - ** <* - CM CM CM b- f - on on. on CM CVJ t - o. 292 b» CJ «n :T * v j U n n C l * n t l f VL. n n W n V ' n Ln fv C ), C n e. t f *" T V n! * t t T j t Vv V t l / n * t «** n Pk Q * Ph t * b T~! ^ v n f n n N n T n l f P n t. n pn «n =f LPv j t t n

More information

Week 15-16: Combinatorial Design

Week 15-16: Combinatorial Design Week 15-16: Combinatorial Design May 8, 2017 A combinatorial design, or simply a design, is an arrangement of the objects of a set into subsets satisfying certain prescribed properties. The area of combinatorial

More information

The Exquisite Integer Additive Set-Labeling of Graphs

The Exquisite Integer Additive Set-Labeling of Graphs The Exquisite Integer Additive Set-Labeling of Graphs N. K. Sudev 1, K. A. Germina 2 Department of Mathematics, Vidya Academy of Science & Technology, Thalakkottukara, Thrissur - 680501, Kerala, India.

More information

Answers Investigation 3

Answers Investigation 3 Answers Investigation Applications. a., b. s = n c. The numbers seem to be increasing b a greater amount each time. The square number increases b consecutive odd integers:,, 7,, c X X=. a.,,, b., X 7 X=

More information

Labeling, Covering and Decomposing of Graphs Smarandache s Notion in Graph Theory

Labeling, Covering and Decomposing of Graphs Smarandache s Notion in Graph Theory International J.Math. Combin. Vol. (010), 108-14 Labeling, Covering and Decomposing of Graphs Smarandache s Notion in Graph Theory Linfan Mao (Chinese Academy of Mathematics and System Science, Beijing,

More information

DISTANCE LABELINGS: A GENERALIZATION OF LANGFORD SEQUENCES. 1. Introduction

DISTANCE LABELINGS: A GENERALIZATION OF LANGFORD SEQUENCES. 1. Introduction DISTANCE LABELINGS: A GENERALIZATION OF LANGFORD SEQUENCES S. C. LÓPEZ AND F. A. MUNTANER-BATLE Abstract. A Langford sequence of order m and defect d can be identified with a labeling of the vertices of

More information

Minimal Decompositions of Hypergraphs into Mutually Isomorphic Subhypergraphs

Minimal Decompositions of Hypergraphs into Mutually Isomorphic Subhypergraphs JOURNALOF COMBINATORIAL THEORY, Series A 32,241-251 (1982) Minimal Decompositions of Hypergraphs into Mutually Isomorphic Subhypergraphs F. R. K. CHUNG Bell Laboratories, Murray Hill, New Jersey 07974

More information

C-Perfect K-Uniform Hypergraphs

C-Perfect K-Uniform Hypergraphs C-Perfect K-Uniform Hypergraphs Changiz Eslahchi and Arash Rafiey Department of Mathematics Shahid Beheshty University Tehran, Iran ch-eslahchi@cc.sbu.ac.ir rafiey-ar@ipm.ir Abstract In this paper we define

More information

Lucky Edge Labeling of P n, C n and Corona of P n, C n

Lucky Edge Labeling of P n, C n and Corona of P n, C n International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume, Issue 8, August 0, PP 70-78 ISSN 7-07X (Print) & ISSN 7- (Online) www.arcjournals.org Lucky Edge Labeling of P

More information

Antimagic Properties of Graphs with Large Maximum Degree

Antimagic Properties of Graphs with Large Maximum Degree Antimagic Properties of Graphs with Large Maximum Degree Zelealem B. Yilma Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 1513 E-mail: zyilma@andrew.cmu.edu July 6, 011 Abstract

More information

1981] 209 Let A have property P 2 then [7(n) is the number of primes not exceeding r.] (1) Tr(n) + c l n 2/3 (log n) -2 < max k < ir(n) + c 2 n 2/3 (l

1981] 209 Let A have property P 2 then [7(n) is the number of primes not exceeding r.] (1) Tr(n) + c l n 2/3 (log n) -2 < max k < ir(n) + c 2 n 2/3 (l 208 ~ A ~ 9 ' Note that, by (4.4) and (4.5), (7.6) holds for all nonnegatíve p. Substituting from (7.6) in (6.1) and (6.2) and evaluating coefficients of xm, we obtain the following two identities. (p

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Connectivity of addable graph classes

Connectivity of addable graph classes Connectivity of addable graph classes Paul Balister Béla Bollobás Stefanie Gerke January 8, 007 A non-empty class A of labelled graphs that is closed under isomorphism is weakly addable if for each graph

More information

On Z 3 -Magic Labeling and Cayley Digraphs

On Z 3 -Magic Labeling and Cayley Digraphs Int. J. Contemp. Math. Sciences, Vol. 5, 00, no. 48, 357-368 On Z 3 -Magic Labeling and Cayley Digraphs J. Baskar Babujee and L. Shobana Department of Mathematics Anna University Chennai, Chennai-600 05,

More information