Research Article Application of Functionals in Creating Inequalities

Size: px
Start display at page:

Download "Research Article Application of Functionals in Creating Inequalities"

Transcription

1 Journ of Funton Spes Voume 016, Arte ID , 6 pges Reserh Arte Appton of Funtons n Cretng Inequtes Ztko PvT, 1 Shnhe Wu, nd Vedrn Novose 1 1 Mehn Engneerng Futy n Svonsk Brod, Unversty of Osjek, Trg Ivne BrćMžurnć, Svonsk Brod, Crot Deprtment of Mthemts, Longyn Unversty, Longyn, Fujn 36401, Chn Correspondene shoud e ddressed to Shnhe Wu; shnhewu@gm.om Reeved 14 Juy 016; Aepted 7 Septemer 016 Adem Edtor: Cogero Vetro Copyrght 016 Ztko Pvć et. Ths s n open ess rte dstruted under the Cretve Commons Attruton Lense, whh permts unrestrted use, dstruton, nd reproduton n ny medum, provded the orgn work s propery ted. The pper des wth the fundment nequtes for onvex funtons n the ounded osed nterv. The mn nequty nudes onvex funtons nd postve ner funtons extendng nd refnng the funton form of Jensen s nequty. Ths nequty mpes the Jensen, Fejér, nd, thus, Hermte-Hdmrd nequty, s we s ther refnements. 1. Introduton In our reserh, we ppy the theory of postve ner funtons to onvex nyss. Let us rememer the nt notons reted to postve ner funtons on the spe of re funtons. Let S e nonempty set, nd et F = F(S) e suspe of the ner spe of re funtons on domn S. We ssume tht spe F ontns unt funton u defned y u(s) = 1 for every s S.SuhspeF ontnseveryreonstntκwthn the menng of κ=κund every omposte funton f(g) of funtong F nd n ffne funton f:r R.Atuy, f f(x) = κ 1 x+κ, then the omposton f (g) =κ 1 g+κ u (1) eongs to F. Let L = L(F) e the spe of ner funtons on spe F. FuntonL Ls sd to e unt (normzed) f L(u) = 1. Suh funton hs property L(κu) = κ for every re onstnt κ.ifg F s funton nd f L Ls unt funton,thenffnefuntonf:r R stsfes equty f(l(g))=l(f(g)). () Funton L L s sd to e postve (nonnegtve) f nequty L(g) 0 hods for every nonnegtve funton g F. If pr of funtons g 1,g F stsfes nequty g 1 (s) g (s) for every s S,thentfoowstht L (g 1 ) L(g ). (3) If g F s funton wth the mge n nterv [, ] (.e., u g u), then every postve unt funton L L meets nuson L(g) [, ] (.e., L(g) ). The sme s true for eh osed nterv I R. Introdung ontnuous onvex funton, we n expose the funton form of Jensen s nequty. Theorem A. Let g F efuntonwththemgenosed nterv I R,nd et L L e postve unt funton. Then eh ontnuous onvex funton f:i R suh tht f(g) F stsfes nequty f(l(g)) L(f(g)). (4) We w onsder onvex funtons n ounded osed nterv [, ] wth endponts <.Ehpontx [,]n e represented y the unque nom onvex omnton where x=α x +β x, (5) α x = x, β x = x. (6)

2 Journ of Funton Spes Convex funton f:[,] R s ounded y two nes. The sent ne of funton f psses through grph ponts A(, f()) nd B(, f()),ndtsequtons f se x (x) = x f () + f (). (7) Let (, ) e n nteror pont. The support nes of funton f pss through grph pont C(, f()).ehsupport ne s spefed y sope oeffent κ [f ( ), f (+)],nd ts equton s (x) =κ(x ) +f(). (8) The support-sent ne nequty (x) f(x) f se (x) (9) hods for every x [,]. In 1931, Jessen (see [1, ]) stted the funton form of Jensen s nequty for onvex funtons n nterv I R. In 1988, I. Rs nd I. Rş (see [3]) ponted out tht I must e osed otherwse t oud hppen tht L(g) I nd tht f must e ontnuous otherwse t oud hppen tht the nequty n formu (4) does not ppy. In Theorem A, we hve tken nto ount I. Rs nd I. Rş s remrks. Some generztons of the funton form of Jensen s nequty nefoundn[4]. A onse ook on funton nyss, whh ontns n essent overvew of opertor theory nd ndtes the mportne of postve ner funtons, s ertny the ook n [5].. Mn Resuts We frsty present the extenson of the nequty n formu (4) onernng nterv [, ]. Lemm 1. Let g F e funton wth the mge n [, ], nd et L L e postve unt funton. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes doue nequty f(l(g)) L(f(g)) f se (L (g)). (10) Proof. The pont =L(g)s n nterv [, ]. Weskeththe proof n two steps dependng on the poston of. If (, ),wetkesupportne of f t. By ppyng postve funton L to the support-sent nequty n formu (9) wth x=g(s),wheres S,weget L( (g)) L (f (g)) L (f se (g)). (11) By utzng the ffnty of funtons (), the ove nequty tkes the form where the frst term nd f se v formu (L (g)) L(f (g)) f se (L (g)), (1) (L (g)) = f (L (g)). (13) If {, },wereyontheontnutyoff usng support ne t pont of open nterv (, ) tht s ose enough to. Gven ε>0,wenfnd (, ) so tht f () ε< (). (14) By omnng the ove nequty nd the nequty n formu (1) wth the support ne t,weotn f () ε< () L(f (g)) f se () =f(). (15) Lettng ε pproh zero, we reh the onuson L(f(g)) = f(). Inthsse,trvnequtyf() f() f() represents formu (10). Formu (10) n e expressed n the form whh nudes the onvex omnton of nterv endponts nd. The respetve form of Lemm 1 s s foows. Corory. Let g F e funton wth the mge n [, ], nd et L L e postve unt funton. Let =L(g) =α +β. (16) Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes doue nequty f(α +β ) L (f (g)) α f () +β f (). (17) Proof. As regrds to the st terms of formue (10) nd (17), we hve f se (L (g)) = α f se () +β f se () =α f () +β f () (18) euse of the ffnty of f se nd ts ondene wth f t endponts. In order to refne the nequty n formu (10), we w omne the sent nes of onvex funton f wth postve unt funtons. Lemm 3. Let (, ) e pont. Then eh onvex funton f:[,] R stsfes the sent nes nequty for every x [,]. mn {f se mx {f se (x),fse (x)} f(x) (x),fse (x)} (19) Proof. Cses x [,]nd x [,]shoud e onsdered. Suppose tht funton g F hs the mge n [, ] nd s not denty equ to or. Suh funton stsfes nequty g(s 1 ) g(s ) for some numer (, ) nd some pr of ponts s 1,s S.Inthtse,wenfndpr of funtons L 1,L L meetng reted nequty L 1 (g) L (g). (0)

3 Journ of Funton Spes 3 For exmpe, we n tke the pont evutons t s 1 nd s, tht s, the funtons defned y L 1 (q) = q(s 1 ) nd L (q) = q(s ) for every funton q F. In the mn theorem, we use funtons L 1 nd L stsfyngthenequtynformu(0). Theorem 4. Let (, ) e pont. Let g F e funton wth the mge n [, ], ndetl 1,L L e postve unt funtons suh tht L 1 (g) [, ] nd L (g) [, ]. Let L=λ 1 L 1 +λ L e onvex omnton of L 1 nd L. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes the seres of nequtes f(l(g)) λ 1 f(l 1 (g)) + λ f(l (g)) L (f (g)) λ 1 f se f se (L (g)). (L 1 (g)) + λ f se (L (g)) (1) Proof. By ppyng the onvexty of f to onvex omnton L(g) = λ 1 L 1 (g) + λ L (g),weget f (L (g)) λ 1 f (L 1 (g)) +λ f (L (g)). () By ppyng the eft-hnd sde of formu (10) to L 1 nd L,weotn λ 1 f(l 1 (g)) + λ f(l (g)) λ 1 L 1 (f (g)) + λ L (f (g)) = L (f (g)). (3) As the rght-hnd sde of formu (19) wth x=g(s),the nequty f(g(s)) mx {f se (g (s)),fse (g (s))} (4) hods for every s S.BytngwthL 1 n the ove nequty nd usng ssumpton L 1 (g) [, ],wefnd L 1 (f (g)) L 1 (f se (g)) =fse (L 1 (g)), (5) nd smry, y tng wth L ndusngthessumpton L (g) [, ],wefnd L (f (g)) L (f se (g)) = fse (L (g)). (6) Mutpton y λ 1 nd λ ndthensummtonyed λ 1 L 1 (f (g)) + λ L (f (g)) λ 1 f se (L 1 (g)) + λ f se (L (g)). Usng mn sent f se, we reh onuson λ 1 f se (L 1 (g)) + λ f se (L (g)) λ 1 f se =f se (L (g)). (L 1 (g)) + λ f se (L (g)) (7) (8) Puttng together the nequtes n formue (), (3), (7), nd (8) nto seres, we heve the nequty n formu (1). y=f(x) L 1 (g) L(g) L (g) Fgure 1: Geometr presentton of the nequty n formu (1). The geometr presentton of the seres of nequtes n formu (1) s reted n Fgure 1. The nequty terms re represented y fve k dots ove pont L(g). To emphsze nterv endponts nd, wepresentthe foowng verson of Theorem 4. Corory 5. Let (, ) e pont. Let g F e funton wth the mge n [, ], ndetl 1,L L e postve unt funtons suh tht L 1 (g) [, ] nd L (g) [, ]. Let L=λ 1 L 1 +λ L e onvex omnton of L 1 nd L,nd et =L(g)=α +β. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes the seres of nequtes f(α +β ) λ 1 f(l 1 (g)) + λ f(l (g)) where L (f (g)) αf () +βf() +γf() α f () +β f (), L α=λ 1 (g) 1, L β=λ (g), γ=λ 1 L 1 (g) L +λ (g). (9) (30) Proof. To ute oeffents α, β, ndγ, we nude onvex omntons L 1 (g) = α 1 +γ 1 nd L (g) = γ +β.then the fourth term of formu (1) tkes the form λ 1 f se (L 1 (g)) + λ f se (L (g)) =λ 1 α 1 f () +λ β f () +(λ 1 γ 1 +λ γ )f(). (31)

4 4 Journ of Funton Spes Tkng the oeffent of f() nd usng formu (6), we ute L α=λ 1 α 1 =λ 1 (g) 1. (3) Smry we determne β nd γ. Let us fnsh the seton y presentng the generzton of Theorem 4 tht uses sever sent nes. Corory 6. Let = 0 < 1 < < n 1 < n = e ponts. Let g F e funton wth the mge n [, ],ndet L L e postve unt funtons suh tht L (g) [ 1, ] for = 1,...,n.LetL= n =1 λ L e onvex omnton of funtons L. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes the seres of nequtes f(l(g)) n =1 n =1 λ f(l (g)) L (f (g)) λ f se 1 (L (g)) f se (L (g)). 3. Apptons to Integr nd Dsrete Inequtes (33) We frsty utze Lemm 1 to otn very gener ntegr nequty. Corory 7. Let g : [,] R e n ntegre funton wth the mge n [, ], ndeth:[,] R e postve ntegre funton. Thenehonvexfuntonf:[,] R stsfes doue nequty f( gh dx ) f(g)hdx hdx hdx ( g) h dx f () ( ) hdx + (g )hdx ( ) hdx f (). (34) Proof. Let F ethespeofntegrefuntonsover domn S = [,]. Composton f(g) s ounded n [, ] nd ontnuous most everywhere n [, ]. Therefore f(g) s ntegre over [, ],tht s,f(g) F. The ntegrtng ner funton L defned y L(q)=L(q;h)= qh dx (35) hdx for every q F s postve nd unt. The frst term of formu (34) s equ to f(l(g)), theseondtermsequ to L(f(g)), ndthethrdtermsequtof se (L(g)). Thus, formu (34) fts nto the frme of formu (10), nd t s vd for ontnuous onvex funton f. Let us verfy tht the nequty n formu (34) ppes to onvex funton whh s not ontnuous t endponts. We oserve the poston of pont =L(g)= gh dx. (36) hdx If (, ), then we my utze ontnuous extenson f of f/(, ) to [, ] n formu (34). The frst two terms re the sme s we use f, nd the st terms stsfy nequty α f () +β f () = fse () <fse () (37) =α f () +β f (). So, formu (34) ppes to f n ths se. If {, }, then ether g(x) 0 or g(x) 0for every x [,]. We rerrnge formu (36) to e ntegr equton (g )hdx=0, (38) from whh t foows tht g(x) = for most every x [,]. Thuswehvethtf(g(x)) = f() for most every x [,], nd nequty f() f() f() represents formu (34). Respetng onsdertons, we my onude tht the nequty n formu (34) ppes to ny onvex funton f. The nequty n formu (34) s the extended verson of Jensen s nequty for the rto of ntegrs n nterv [, ], s we s the generzed form of the Fejér nd Hermte- Hdmrd nequty. Let us demonstrte the smpftons of the nequty n formu (34) retng to the dentty, unt, nd symmetr funton. Usng h(x) = 1, we get the extenson of the ss ntegr form of Jensen s nequty (see [6]) f( gdx ) f(g)dx ( g) dx ( ) f () + (g ) dx ( ) f (). (39) Usng dentty funton g(x) = x nd funton h(x), stsfyng equton h(x) = h( + x), whh represents the symmetry wth enter t mdpont ( + )/, wehvethe ss form of Fejér nequty (see [7]) f( + ) fh dx hdx f () +f(). (40)

5 Journ of Funton Spes 5 Nmey, s onsequene of the symmetry we hve euse xh dx = (x (+)/) hdx hdx hdx + ((+) /) hdx hdx = + (41) (x + )hdx=0. (4) Foowng formu (41), we n onude tht the Fejér nequty s vd for funton h stsfyng weker ondton xh dx/ h dx = ( + )/. Usng h(x) = 1 n Fejér s nequty n formu (40), we otn the ss form of Hermte-Hdmrd nequty (see [8, 9]) f( + ) fdx f () +f(). (43) To otn refnements of the nequty n formu (34), we use pont (, ) nd ppy Theorem 4. Corory 8. Let (, ) e pont. Let g:[,] R e n ntegre funton suh tht g(x) [, ] for x [,]nd g(x) [, ] for x [,],ndeth:[,] R e postve ntegre funton. Then eh onvex funton f:[,] R stsfes the seres of nequtes Proof. Just s n Corory 7, we use F s the spe of ntegre funtons n nterv [, ]. In order to ppy Theorem 4, we defne ntegrtng ner funtons L 1 (q) = L 1 (q; h) = qh dx hdx, L (q) = L (q; h) = qh dx hdx (45) for every q F.FuntonsL 1 nd L re postve nd unt. Sne g(x) [, ] for x [,],pontl 1 (g) fs nto [, ], ndsmrypontl (g) fs nto [, ]. Usng oeffents λ 1 = hdx hdx, λ = hdx hdx (46) nd funton onvex omnton L=λ 1 L 1 +λ L,weget L(g)=λ 1 L 1 (g) + λ L (g) = gh dx, hdx L(f(g))= f(g)hdx hdx. (47) By further utng the funton terms ordng to formu (1), we otn the ntegr terms of formu (44). f( gh dx ) hdx hdx f( gh dx hdx hdx ) + hdx f( gh dx ) f(g)hdx hdx hdx hdx ( g)hdx f () + (g )hdx f () ( ) hdx ( ) hdx +( (g )hdx + ( g)hdx )f() ( ) hdx ( ) hdx ( g) h dx f () + (g )hdx f (). ( ) hdx ( ) hdx (44) The seres of nequtes n formu (44) wth g(x) = x nd h(x) = 1 gves the refnement of the Hermte-Hdmrd nequty n formu (43) s foows: f( + ) f(+ fdx )+ f(+ ) f () + f () ( ) ( ) + 1 f () +f() f (). (48) The ove refnement hods for eh (, ). The verson of the ove refnement ws otned n [10] y usng the Jensen type nequty for onvex omntons wth the ommon enter. Tht nequty ws used to refne some mportnt mens. The nequty n formu (44) wth dentty funton g(x) = x nd symmetr funton stsfyng equton

6 6 Journ of Funton Spes h(x) = h(+ x)provdes the refnements of the Fejér nequty n formu (40). At the end, et us present the dsrete verson of Corory 8. Pont evutons g(x ) nd h(x ) w e shortened y g nd h,respetvey. Corory 9. Let (, ) e pont. Let g:[,] R e funton suh tht g(x) [, ] for x [,]nd g(x) [, ] for x [,],ndeth:[,] R e postve funton. Let x 1,...,x k [,]nd x k+1,...,x n [,]e ponts. Then eh onvex funton f:[,] R stsfes the seres of nequtes f( n =1 g h n =1 h ) k =1 h n =1 h f( k =1 g h k =1 h ) + n =k+1 h n =1 h k =1 ( g )h n =1 ( ) h +( k =1 (g )h n =1 ( ) h n =1 ( g )h n =1 ( ) h f( n =k+1 g h n =k+1 h ) n =1 f(g )h n =1 h f () + n =k+1 (g )h n =1 ( ) h f () + n =k+1 ( g )h n =1 ( ) h )f() f () + n =1 (g )h n =1 ( ) h f (). (49) Proof. Let F e the spe of re funtons on domn S= [, ]. We n ppy the proof of Corory 8 to summrzng ner funtons L 1 (q) = L 1 (q; h) = k =1 q h k =1 h, L (q) = L (q; h) = n =k+1 q h n =k+1 h tng to every q F, nd oeffents (50) Aknowedgments The work of the frst nd thrd uthor hs een fuy supported y Mehn Engneerng Futy n Svonsk Brod nd Crotn Sene Foundton under Projet HRZZ The work of the seond uthor hs een supported y the Ntur Sene Foundton of Fujn provne of Chn under Grnt no. 016J0103. The uthors woud ke to thnk Vemr Pvć who hs grphy prepred Fgure 1. Referenes [1] B. Jessen, Bemærknnger om konvekse Funktoner og Ugheder meem Mddeværder I, Mtemtsk Tdsskrft B, pp.17 8, [] B. Jessen, Bemærknnger om konvekse Funktoner og Ugheder meem Mddeværder II, Mtemtsk Tdsskrft B, pp , [3] I. Rs nd I. Rş, A note on Jessen s nequty, Itnernt Semnr on Funton Equtons, Approxmton nd Convexty, Unverstte Bes-Boy, n I. Rş, pp.75 80,Romn, Cuj-Npo, [4] Z. Pvć, Generztons of the funton form of Jensen s nequty, Advnes n Inequtes nd Apptons,vo.014, rte 33, 014. [5] W. Arveson, A Short Course on Spetr Theory, Sprnger, New York, NY, USA, 00. [6] J. L. W. V. Jensen, Sur es fontons onvexes et es négtés entre es veurs moyennes, At Mthemt, vo. 30, no. 1, pp ,1906. [7] L. Fejér, Üer de fourerrehen II, Mthemtsher und Nturwssenshfther Anzeger der Ungrshen Akdeme der Wssenshften, vo. 4, pp , 1906 (Hungrn). [8] Ch. Hermte, Sur deux mtes d une ntégre défne, Mthess,vo.3,p.8,1883. [9] J. Hdmrd, Étude sur es proprétés des fontons entμeres et en prtuer d une funton onsderée pr Remnn, Journ de Mthémtques Pures et Appquées,vo.58,pp ,1893. [10] Z. Pvć, Improvements of the Hermte-HADmrd nequty, Journ of Inequtes nd Apptons, vo. 015, rte, 015. [11] J. L. W. V. Jensen, Om konvekse Funktoner og Ugheder meem Mddeværder, Nyt Tdsskrft for Mtemtk B,vo.16,pp , λ 1 = k =1 h n =1 h, λ = n =k+1 h n =1 h. (51) Funtons L 1 nd L re ertny postve nd unt. The nequty n formu (49) s the extenson nd refnement of the fmous dsrete form of Jensen s nequty (see [11]). Competng Interests The uthors dere tht they hve no ompetng nterests.

7 Advnes n Opertons Reserh Advnes n Deson Senes Journ of Apped Mthemts Ager Journ of Proty nd Sttsts The Sentf Word Journ Internton Journ of Dfferent Equtons Sumt your mnusrpts t Internton Journ of Advnes n Comntors Mthemt Physs Journ of Compex Anyss Internton Journ of Mthemts nd Mthemt Senes Mthemt Proems n Engneerng Journ of Mthemts Dsrete Mthemts Journ of Dsrete Dynms n Nture nd Soety Journ of Funton Spes Astrt nd Apped Anyss Internton Journ of Journ of Stohst Anyss Optmzton

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Study on the Normal and Skewed Distribution of Isometric Grouping

Study on the Normal and Skewed Distribution of Isometric Grouping Open Journ of Sttstcs 7-5 http://dx.do.org/.36/ojs..56 Pubshed Onne October (http://www.scp.org/journ/ojs) Study on the orm nd Skewed Dstrbuton of Isometrc Groupng Zhensheng J Wenk J Schoo of Economcs

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

Interval Valued Neutrosophic Soft Topological Spaces

Interval Valued Neutrosophic Soft Topological Spaces 8 Interval Valued Neutrosoph Soft Topologal njan Mukherjee Mthun Datta Florentn Smarandah Department of Mathemats Trpura Unversty Suryamannagar gartala-7990 Trpura Indamal: anjan00_m@yahooon Department

More information

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions Hindwi Pulishing Corportion Journl of Applied Mthemtics Volume 4, Article ID 38686, 6 pges http://dx.doi.org/.55/4/38686 Reserch Article Fejér nd Hermite-Hdmrd Type Inequlities for Hrmoniclly Convex Functions

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey On New Ineulities of Hermite-Hdmrd-Fejer Type for Hrmoniclly Qusi-Convex Functions Vi Frctionl Integrls Mehmet Kunt * nd İmdt İşcn Deprtment

More information

Discussion of "Win-Win concession period determination methodology" by Xueqing Zhang

Discussion of Win-Win concession period determination methodology by Xueqing Zhang Ttle Dsussn f "Wn-Wn nessn perd determntn methdlgy" by Xueqng Zhng Authr(s) Wu, M; Chu, KW; Shen, QP Cttn Jurnl Of Cnstrutn Engneerng And Mngement, 0, v. n., p. Issued Dte 0 URL http://hdl.hndle.net/0/

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp: Results n Projetve Geometry PG( r,), r, Emd Bkr Al-Zngn* Deprtment of Mthemts, College of Sene, Al-Mustnsryh Unversty, Bghdd, Ir Abstrt In projetve plne over fnte feld F, on s the unue omplete ( ) r nd

More information

Performance Comparison of Three-Phase Shunt Active Power Filter Algorithms

Performance Comparison of Three-Phase Shunt Active Power Filter Algorithms Amern Journ of Apped Senes 5 (11): 144-148, 008 ISSN 1546-939 008 Sene Pubtons Performne Comprson of Three-Phse Shunt Ate Power Fter Agorthms 1 Moeykutty George nd Krtk Prd Bsu 1 Futy of Engneerng nd Tehnoogy,

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Effectiveness of Split-Plot Design over Randomized Complete Block Design in Some Experiments

Effectiveness of Split-Plot Design over Randomized Complete Block Design in Some Experiments Journ of Boogy, Agruture nd Hethre ISSN 4-308 (Pper) ISSN 5-093X (Onne) Vo.4, No.19, 014 www.ste.org Effetveness of Spt-Pot Desgn over Rndomzed Compete Bo Desgn n Some Experments 1 Dvd, I. J. nd Adeh,

More information

ELASTIC-VISCOPLASTIC HOMOGENIZATION ANALYSIS OF PLAIN-WOVEN GFRP LAMINATES WITH MISALIGNED PLAIN FABRICS

ELASTIC-VISCOPLASTIC HOMOGENIZATION ANALYSIS OF PLAIN-WOVEN GFRP LAMINATES WITH MISALIGNED PLAIN FABRICS 8 TH INTERNTIONL CONFERENCE ON COMPOSITE MTERILS ELSTIC-VISCOPLSTIC HOMOGENIZTION NLYSIS OF PLIN-WOVEN GFRP LMINTES WITH MISLIGNED PLIN FBRICS S. Knmru, T. Mtsud * Deprtment of Engneerng Mechncs nd Energy,

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

Math 124B January 24, 2012

Math 124B January 24, 2012 Mth 24B Jnury 24, 22 Viktor Grigoryn 5 Convergence of Fourier series Strting from the method of seprtion of vribes for the homogeneous Dirichet nd Neumnn boundry vue probems, we studied the eigenvue probem

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

Presentation Problems 5

Presentation Problems 5 Presenttion Problems 5 21-355 A For these problems, ssume ll sets re subsets of R unless otherwise specified. 1. Let P nd Q be prtitions of [, b] such tht P Q. Then U(f, P ) U(f, Q) nd L(f, P ) L(f, Q).

More information

Many-to-Many Traffic Grooming in WDM Mesh Networks

Many-to-Many Traffic Grooming in WDM Mesh Networks Mny-to-Mny Trff Groomng n WDM Mes Networks Mommd A. Se Amed E. K Deprtment of Eetr nd Computer Engneerng, Iow Stte Unversty, Ames, IA 50011 Em: {mse,k}@stte.edu Astrt In y-to-y ommunton, sesson onssts

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH Ineulities of Olymid Clier José Luis Díz-Brrero RSME Olymid Committee BARCELONA TECH José Luis Díz-Brrero RSME Olymi Committee UPC BARCELONA TECH jose.luis.diz@u.edu Bsi fts to rove ineulities Herefter,

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

More information

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality Krgujevc Journl of Mthemtics Volume 40( (016, Pges 166 171. ON A CONVEXITY PROPERTY SLAVKO SIMIĆ Abstrct. In this rticle we proved n interesting property of the clss of continuous convex functions. This

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral DOI 763/s4956-6-4- Moroccn J Pure nd Appl AnlMJPAA) Volume ), 6, Pges 34 46 ISSN: 35-87 RESEARCH ARTICLE Generlized Hermite-Hdmrd-Fejer type inequlities for GA-conve functions vi Frctionl integrl I mdt

More information

Complement of an Extended Fuzzy Set

Complement of an Extended Fuzzy Set Internatonal Journal of Computer pplatons (0975 8887) Complement of an Extended Fuzzy Set Trdv Jyot Neog Researh Sholar epartment of Mathemats CMJ Unversty, Shllong, Meghalaya usmanta Kumar Sut ssstant

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem Journal of Engneerng and Appled Senes Volue: Edton: Year: 4 Pages: 7 4 Ultraspheral Integraton Method for Solvng Bea Bendng Boundary Value Proble M El-Kady Matheats Departent Faulty of Sene Helwan UnverstyEgypt

More information

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity Generlzed Lorentz Trnsformton Allowng the Relte Veloty of Inertl Referene Systems Greter Thn the Lght Veloty Yu-Kun Zheng Memer of the Chnese Soety of Grtton nd Reltst Astrophyss Eml:yzheng@puorgn Astrt:

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article: Homework Math 80: Introduton to GR Temple-Wnter 208 (3) Summarze the artle: https://www.udas.edu/news/dongwthout-dark-energy/ (4) Assume only the transformaton laws for etors. Let X P = a = a α y = Y α

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Math 702 Midterm Exam Solutions

Math 702 Midterm Exam Solutions Math 702 Mdterm xam Solutons The terms measurable, measure, ntegrable, and almost everywhere (a.e.) n a ucldean space always refer to Lebesgue measure m. Problem. [6 pts] In each case, prove the statement

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

Research Article Moment Inequalities and Complete Moment Convergence

Research Article Moment Inequalities and Complete Moment Convergence Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 2009, Article ID 271265, 14 pges doi:10.1155/2009/271265 Reserch Article Moment Inequlities nd Complete Moment Convergence Soo Hk

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

Rational Numbers as an Infinite Field

Rational Numbers as an Infinite Field Pure Mtemtl Senes, Vol. 4, 205, no., 29-36 HIKARI Ltd, www.m-kr.om ttp://dx.do.org/0.2988/pms.205.4028 Loue re Mg Squres over Mult Set o Rtonl Numers s n Innte Feld A. M. Byo Deprtment o Mtemts nd Computer

More information

Multicommodity Distribution System Design

Multicommodity Distribution System Design Mummodt strbun stem esgn Consder the probem where ommodtes are produed and shpped from pants through potenta dstrbun enters C usmers. Pants C Cosmers Mummodt strbun stem esgn Consder the probem where ommodtes

More information

A Decision-making Method of Supporting Schemes for Deep Foundation Pits Based on Prospect & Evidence Theory

A Decision-making Method of Supporting Schemes for Deep Foundation Pits Based on Prospect & Evidence Theory A Deson-mng Method of Supportng Shemes for Deep Foundton Pts Bsed on Prospet & vdene Theory WI Do-ng LI Hu-mng LI Hu. Shoo of Cv ngneerng X n Unversty of Arhteture nd Tehnoogy X n Chn. Insttute of Arhteture

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex Stud. Univ. Beş-Bolyi Mth. 6005, No. 4, 57 534 Some Hermite-Hdmrd type inequlities for functions whose exponentils re convex Silvestru Sever Drgomir nd In Gomm Astrct. Some inequlities of Hermite-Hdmrd

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

arxiv: v1 [math.ca] 28 Jan 2013

arxiv: v1 [math.ca] 28 Jan 2013 ON NEW APPROACH HADAMARD-TYPE INEQUALITIES FOR s-geometrically CONVEX FUNCTIONS rxiv:3.9v [mth.ca 8 Jn 3 MEVLÜT TUNÇ AND İBRAHİM KARABAYIR Astrct. In this pper we chieve some new Hdmrd type ineulities

More information

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains /4/3 I529: Mhne Lernng n onformts (Sprng 23 Mrkov Models Yuzhen Ye Shool of Informts nd omputng Indn Unversty, loomngton Sprng 23 Outlne Smple model (frequeny & profle revew Mrkov hn pg slnd queston Model

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Improved Frame Synchronization and Frequency Offset Estimation in OFDM System and its Application to WMAN. and

Improved Frame Synchronization and Frequency Offset Estimation in OFDM System and its Application to WMAN. and Iprove Fre Synchronzton n Frequency Offset Estton n OFD Syste n ts Appcton to WAN Ch. Nn Kshore Heosoft In Pvt. Lt., Hyerb, In n V. Upth Rey Internton Insttute of Inforton Technoogy Gchbow, Hyerb, In Ths

More information

NEW INTEGRAL INEQUALITIES OF THE TYPE OF SIMPSON S AND HERMITE-HADAMARD S FOR TWICE DIFFERENTIABLE QUASI-GEOMETRICALLY CONVEX MAPPINGS

NEW INTEGRAL INEQUALITIES OF THE TYPE OF SIMPSON S AND HERMITE-HADAMARD S FOR TWICE DIFFERENTIABLE QUASI-GEOMETRICALLY CONVEX MAPPINGS TJMM 8 6, No., 37-45 NEW INTEGRAL INEQUALITIES OF THE TYPE OF SIMPSON S AND HERMITE-HADAMARD S FOR TWICE DIFFERENTIABLE QUASI-GEOMETRICALLY CONVEX MAPPINGS MUHAMMAD MUDDASSAR AND ZAFFER ELAHI Astrct. In

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE Joural of Pure ad Appled Mathematcs: Advaces ad Applcatos Volume 4 Number 205 Pages 77-87 Avalable at http://scetfcadvaces.co. DOI: http://.do.org/0.8642/jpamaa_7002534 ONE GENERALIZED INEQUALITY FOR CONVEX

More information

Fluid Flow through a Tube

Fluid Flow through a Tube . Theory through Tube In this experiment we wi determine how we physic retionship (so ced w ), nmey Poiseue s eqution, ppies. In the suppementry reding mteri this eqution ws derived s p Q 8 where Q is

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Partle n a Magnet Feld Mhael Fowler 1/16/08 Introduton Classall, the fore on a harged partle n eletr and magnet felds s gven b the Lorentz fore law: v B F = q E+ Ths velot-dependent fore s qute

More information

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm.

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm. Brander and Lews (1986) Lnk the relatonshp between fnanal and produt sdes of a frm. The way a frm fnanes ts nvestment: (1) Debt: Borrowng from banks, n bond market, et. Debt holders have prorty over a

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES GUANG-HUI CAI Receved 24 September 2004; Revsed 3 My 2005; Accepted 3 My 2005 To derve Bum-Ktz-type result, we estblsh

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

FUNCTIONS OF α-slow INCREASE

FUNCTIONS OF α-slow INCREASE Bulletin of Mthemticl Anlysis nd Applictions ISSN: 1821-1291, URL: http://www.bmth.org Volume 4 Issue 1 (2012), Pges 226-230. FUNCTIONS OF α-slow INCREASE (COMMUNICATED BY HÜSEYIN BOR) YILUN SHANG Abstrct.

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

Improvements of the Hermite-Hadamard inequality

Improvements of the Hermite-Hadamard inequality Pvić Journl of Inequlities nd Applictions (05 05: DOI 0.86/s3660-05-074-0 R E S E A R C H Open Access Improvements of the Hermite-Hdmrd inequlity Zltko Pvić * * Correspondence: Zltko.Pvic@sfsb.hr Mechnicl

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave Applied Mthemticl Sciences Vol. 9 05 no. 5-36 HIKARI Ltd www.m-hikri.com http://d.doi.org/0.988/ms.05.9 Hermite-Hdmrd Type Ineulities for the Functions whose Second Derivtives in Absolute Vlue re Conve

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information