4 Initial Sizing of members

Size: px
Start display at page:

Download "4 Initial Sizing of members"

Transcription

1 Initial sizing if members 7 /8/16 4 Initial Sizing of members See for the method Figure 5 Dimensions of portal (The institutionof Structural Engineers, /8/16) a) L/h = 3/6 = 5 r/l = 1.577/3=26 b) Loading 1) Gravity loading Snow loading =.54 x 7.2 = 3.8KN/m Self weight =.65 x 7.2 = 4.68 KN/m 2) Factored load w= (4.68 x 1.35 ) + (3.8 x 1.5 ) = 12. KN/m c) Finding Mp for the sections 1) Total load on the frame (wl)= 12. x 3 = 36.5KN 2) Parameter wl 2 = 12. x 3 2 = 1816 KNm 3) From Graphs (Figure B2) obtain horizontal force ratio (.36) H=.36 x 36.5 = KN 4) From Graphs (Figure B3) obtain rafter Mp ratio (.34) M rafter,,rd =.34 x 1816 = KNm

2 Initial sizing if members 8 5) From Graphs (Figure B4) obtained column Mp ratio (.63) M column, Rd =.63 x 1816 = KNm. 6) Selecting members a) W pl (rafter),required = (367.7 x 1 6 ) / 275 = 1337 x 1 3 cm 3 Try UB 457x152x74 b) W pl(column),required = (681.4 x 1 6 )/275= 2478 x 1 3 cm 3 Try UB 533 x 21 x 19 Section Tables of Universal Beams Properties Rafter Section UB 457x152x74 G=74.2 Kg/m h= 462mm b=154.4mm t w =9.6mm t f =17mm A=94.48 x 1 2 mm 2 d=428mm I y = 3267 x 1 4 mm 4 W pl,y =1627 x 1 3 mm 3 i y =186 mm i z = 33,3 mm I z = 147 x 1 4 mm 4 W pl,z = x 1 3 mm 3 I t = x 1 4 mm 4 I w = x 1 6 mm 6 EN : 25 (E) Table 3.1 Properties Column Section UB 533x21x19 G=19 Kg/m h= 539.5mm b=21.8mm t w =11.6mm t f =18.8mm A=138.9 x1 2 mm 2 d=51.9mm I y = 6682 x 1 4 mm 4 W pl,y =2828 x 1 3 mm 3 i y =218.7 mm i z = 45.7 mm I z = 2692 x 1 4 mm 4 W pl,z = x 1 3 mm 3 I t = 11.6 x 1 4 mm 4 I w = 1811 x 1 6 mm 6 Steel grade is S275 Assume Sections Class1, then check

3 45 /8/16 B1 Initial sizing using Weller s charts The method described relies for its simplicity on a series of three charts developed by Alan Weller. The chart has been constructed with the following assumptions and which leads to reasonably economic solution (Note. This is not a rigorous design method; it is a set of rules to arrive at initial size). 1) The rafter depth is approximately span / 55 2) The hunch length is approximately span /1 3) The rafter slope lies between o and 2 o. 4) The ratio of span to eaves height is between 2 and 5. 5) The hinges in the mechanism are formed at the level of the underside of the haunch in the column and close to the apex. Each chart requires a knowledge of the geometry of the frame and the design loading as input data in order to determine approximate sizes for the column and rafter members Using of charts Figure B1 Dimensions of portal (The institutionof Structural Engineers, /8/16) a) Calculate the span/height to eaves ratio = L/h b) Calculate the rise/span ratio = r/l c) Calculate the total design load FL on the frame and then calculate FL 2, where F is the load per unit length on plan of span L (e.g. F =qs, where q is the total factored load per m 2 and s is the bay spacing). d) From figure B2 obtain the horizontal force ratio H FR at the base from r/l and L/h e) Calculate the horizontal force at the base of span H=H FR W L.

4 46 /8/16 f) From figure B3 obtain the rafter M p ratio M PR from r/l and L/h. g) Calculate the M p required in the rafter from M p (rafter) = M PR x W L 2. h) From figure B4 obtain the column M p ratio M PL from r/l and r/h. i) Calculate the M p required in the rafter from M p (rafter) = M PL x W L 2. j) Determine the plastic moduli for the rafter W pl,y,r and the column W pl,y,c from W pl,y,r =M p,(rafter) /f y W pl,y,c = M p,(column) /f y Where f y is the yield strength. Using the plastic moduli, the rafter and column sections may be chosen from the range of plastic sections as so defined in the section books H/wL Figure B2- Horizontal force at the base (The institutionof Structural Engineers, /8/16)

5 47 /8/ M pr / wl² Figure B3- M p ratio required for the rafter (The institutionof Structural Engineers, /8/16) M pl / wl² Figure B4- M p ratio required for the column (The institutionof Structural Engineers, /8/16)

Plastic Design of Portal frame to Eurocode 3

Plastic Design of Portal frame to Eurocode 3 Department of Civil and Structural Engineering Plastic Design of Portal frame to Eurocode 3 Worked Example University of Sheffield Contents 1 GEOMETRY... 3 2 DESIGN BRIEF... 4 3 DETERMINING LOADING ON

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structural Description The two pinned (at the bases) portal frame is stable in its plane due to the moment connection

More information

University of Sheffield. Department of Civil Structural Engineering. Member checks - Rafter 44.6

University of Sheffield. Department of Civil Structural Engineering. Member checks - Rafter 44.6 Member checks - Rafter 34 6.4Haunch (UB 457 x 191 x 89) The depth of a haunch is usually made approximately twice depth of the basic rafter sections, as it is the normal practice to use a UB cutting of

More information

EAS 664/4 Principle Structural Design

EAS 664/4 Principle Structural Design UNIVERSITI SAINS MALAYSIA 1 st. Semester Examination 2004/2005 Academic Session October 2004 EAS 664/4 Principle Structural Design Time : 3 hours Instruction to candidates: 1. Ensure that this paper contains

More information

K Design Graphs and Charts for Raft Foundations Spanning Local Depressions

K Design Graphs and Charts for Raft Foundations Spanning Local Depressions K Design Graphs and Charts for Raft Foundations Spanning Local Depressions The reader is advised to read the text in Chapter 13 before using these charts. The charts and figures are repeated here for quick

More information

Procedure for drawing shear force and bending moment diagram:

Procedure for drawing shear force and bending moment diagram: Procedure for drawing shear force and bending moment diagram: Preamble: The advantage of plotting a variation of shear force F and bending moment M in a beam as a function of x' measured from one end of

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS TW21 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS MODULE NO: CIE4011 Date: Wednesday 11 th January 2017 Time:

More information

Structural Steel Design Project

Structural Steel Design Project Job No: Sheet 1 of 6 Rev Worked Example - 1 Made by Date 4-1-000 Checked by PU Date 30-4-000 Analyse the building frame shown in Fig. A using portal method. 15 kn C F I L 4 m 0 kn B E H K 6 m A D G J 4

More information

Basis of Design, a case study building

Basis of Design, a case study building Basis of Design, a case study building Luís Simões da Silva Department of Civil Engineering University of Coimbra Contents Definitions and basis of design Global analysis Structural modeling Structural

More information

Types of Structures & Loads

Types of Structures & Loads Structure Analysis I Chapter 4 1 Types of Structures & Loads 1Chapter Chapter 4 Internal lloading Developed in Structural Members Internal loading at a specified Point In General The loading for coplanar

More information

3.4 Analysis for lateral loads

3.4 Analysis for lateral loads 3.4 Analysis for lateral loads 3.4.1 Braced frames In this section, simple hand methods for the analysis of statically determinate or certain low-redundant braced structures is reviewed. Member Force Analysis

More information

x x implies that f x f x.

x x implies that f x f x. Section 3.3 Intervals of Increase and Decrease and Extreme Values Let f be a function whose domain includes an interval I. We say that f is increasing on I if for every two numbers x 1, x 2 in I, x x implies

More information

Made by PTY/AAT Date Jan 2006

Made by PTY/AAT Date Jan 2006 Job No. VALCOSS Sheet of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb

More information

Example 4: Design of a Rigid Column Bracket (Bolted)

Example 4: Design of a Rigid Column Bracket (Bolted) Worked Example 4: Design of a Rigid Column Bracket (Bolted) Example 4: Design of a Rigid Column Bracket (Bolted) Page : 1 Example 4: Design of a Rigid Column Bracket (Bolted) Determine the size of the

More information

Structural, Snow & Wind Loading Appraisal Report

Structural, Snow & Wind Loading Appraisal Report Company Name Or Logo Here Structural, Snow & Wind Loading Appraisal Report In accordance with Guide to the Installation of Photovoltaic Systems 2012 2 nd Edition Reference number 001 Company Name Solar

More information

Multi Linear Elastic and Plastic Link in SAP2000

Multi Linear Elastic and Plastic Link in SAP2000 26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

More information

FRAME ANALYSIS. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

FRAME ANALYSIS. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia FRAME ANALYSIS Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction 3D Frame: Beam, Column & Slab 2D Frame Analysis Building

More information

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

8.3 Shear and Bending-Moment Diagrams Constructed by Areas

8.3 Shear and Bending-Moment Diagrams Constructed by Areas 8.3 Shear and ending-moment Diagrams Constructed by reas 8.3 Shear and ending-moment Diagrams Constructed by reas Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving

More information

Physics 8 Monday, November 20, 2017

Physics 8 Monday, November 20, 2017 Physics 8 Monday, November 20, 2017 Pick up HW11 handout, due Dec 1 (Friday next week). This week, you re skimming/reading O/K ch8, which goes into more detail on beams. Since many people will be traveling

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

STRUCTURAL ANALYSIS CHAPTER 2. Introduction

STRUCTURAL ANALYSIS CHAPTER 2. Introduction CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

More information

SEMESTER 2 FINAL CHAPTER 5 REVIEW

SEMESTER 2 FINAL CHAPTER 5 REVIEW SEMESTER 2 FINAL CHAPTER 5 REVIEW Graphing Using a Chart 1) Graph y = 2x 3 x y y-axis 5 4 3 2 1 x-axis -5-4 -3-2 -1 0 1 2 3 4 5-1 -2-3 -4-5 2) Graph the linear equation. y = x+ 4 y-axis x y 5 4 3 2 1 x-axis

More information

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200 Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension but strong in compression Steel tendon is first stressed

More information

DESIGN OF BEAMS AND SHAFTS

DESIGN OF BEAMS AND SHAFTS DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for

More information

T2. VIERENDEEL STRUCTURES

T2. VIERENDEEL STRUCTURES T2. VIERENDEEL STRUCTURES AND FRAMES 1/11 T2. VIERENDEEL STRUCTURES NOTE: The Picture Window House can be designed using a Vierendeel structure, but now we consider a simpler problem to discuss the calculation

More information

Internal Internal Forces Forces

Internal Internal Forces Forces Internal Forces ENGR 221 March 19, 2003 Lecture Goals Internal Force in Structures Shear Forces Bending Moment Shear and Bending moment Diagrams Internal Forces and Bending The bending moment, M. Moment

More information

MINLP optimization of the single-storey industrial building steel structure

MINLP optimization of the single-storey industrial building steel structure High Performance Structures and Materials III 643 MINLP optimization of the single-storey industrial building steel structure T. Žula, U. Klanšek & S. Kravanja University of Maribor, Faculty of Civil Engineering,

More information

UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

More information

FIXED BEAMS CONTINUOUS BEAMS

FIXED BEAMS CONTINUOUS BEAMS FIXED BEAMS CONTINUOUS BEAMS INTRODUCTION A beam carried over more than two supports is known as a continuous beam. Railway bridges are common examples of continuous beams. But the beams in railway bridges

More information

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D.

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D. ... 7. Three torques act on the shaft. Determine the internal torque at points,, C, and D. Given: M 1 M M 3 300 Nm 400 Nm 00 Nm Solution: Section : x = 0; T M 1 M M 3 0 T M 1 M M 3 T 100.00 Nm Section

More information

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I Unit 5 MOMENT DISTRIBUTION METHOD PART A (2 marks) 1. Differentiate between distribution factors and carry

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method The basis for the method comes from the similarity of eqn.1 &. to eqn 8. & 8. To show this similarity, we can write these eqn as shown dv dx w d θ M dx d M w dx d v M dx Here the shear V compares with

More information

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15]

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] 2. Draw the influence line for shear to the left of B for the overhanging beam shown in Fig. Q. No. 4 [M/J-15] 3.

More information

mportant nstructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY

CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY METHOD FOR INDETERMINATE FRAMES PART-A(2MARKS) 1. What is

More information

Load combinations will be created according to the below option.

Load combinations will be created according to the below option. Eurocode Wizards The Eurocode Wizard option shows a dialogue box where various pre-defined beams, frames, rafters and trusses can be stated easily and roof, snow, wind and imposed loads as well as load

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia DESIGN OF STAIRCASE Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction T N T G N G R h Flight Span, L Landing T = Thread

More information

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method?

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method? CLASS: III YEAR / VI SEMESTER CIVIL SUBJECTCODE AND NAME: CE 2351 - STRUCTURAL ANALYSIS-II UNIT1 FLEXIBILITY MATRIX METHOD. PART A 1. What is meant by indeterminate structures? 2. What are the conditions

More information

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances

More information

QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1

QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1 Theory of Structures eterminacy Indeterminacy 1 QUSTION NK 1. The static indeterminacy of the structure shown below (a) (b) 6 (c) 9 (d) 12 2. etermine the degree of freedom of the following frame (a) 1

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

ANSWERS September 2014

ANSWERS September 2014 NSWERS September 2014 nswers to selected questions: Sheet # (1) (2) () (4) SCE-55 D SCE-86 D SCE-88 D C MCM-21 MCM-12 D MMC-80 C C D MCM-52 D D MCM-1 C D D MCM-51 D D MCM-57 D D MCM-60 D MLS-12 C D NS

More information

Determinate portal frame

Determinate portal frame eterminate portal frame onsider the frame shown in the figure below with the aim of calculating the bending moment diagram (M), shear force diagram (SF), and axial force diagram (F). P H y R x x R y L

More information

APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS

APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS Alan White Design APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T. JUL 2013 Somerset House 11 Somerset Place

More information

CHAPTER The linear arch

CHAPTER The linear arch CHAPTER 6 The Romans were the first to use arches as major structural elements, employing them, mainly in semicircular form, in bridge and aqueduct construction and for roof supports, particularly the

More information

SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION METHOD SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

More information

= = = 1,000 1,000 1,250. g M0 g M1 g M2 = = = 1,100 1,100 1,250 [ ] 1 0,000 8,000 HE 140 B 0,0. [m] Permanent Permanent Variable Variable Variable

= = = 1,000 1,000 1,250. g M0 g M1 g M2 = = = 1,100 1,100 1,250 [ ] 1 0,000 8,000 HE 140 B 0,0. [m] Permanent Permanent Variable Variable Variable Project Job name Part Author Date Steel Products and Solutions Standard 29.01.2018 Standard EN 199311, EN 199314/Czech Rep.. Factors for steel structures Section capacity Section resistance when checking

More information

Analysis of portal frame building In accordance to EN (2005)

Analysis of portal frame building In accordance to EN (2005) nalsis of portal frame building In accordance to E 199-1-1(005) 1 description / The portal frame is the main structural element of the building. The frame is designed for the following loads Roof loads

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS

APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS Alan White Design APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T. Feb 2014 Somerset House 11 Somerset Place GLASGOW G3 7JT

More information

Steel Structures Design and Drawing Lecture Notes

Steel Structures Design and Drawing Lecture Notes Steel Structures Design and Drawing Lecture Notes INTRODUCTION When the need for a new structure arises, an individual or agency has to arrange the funds required for its construction. The individual or

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS PRINCIPLES OF STTICS Statics is the study of how forces act and react on rigid bodies which are at rest or not in motion. This study is the basis for the engineering principles, which guide the design

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

ENR202 Mechanics of Materials Lecture 4A Notes and Slides

ENR202 Mechanics of Materials Lecture 4A Notes and Slides Slide 1 Copyright Notice Do not remove this notice. COMMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material has been produced and communicated to you by or on behalf of the University

More information

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and DYB 654: ADVANCED STEEL STRUCTURES - II Assoc.Prof.Bülent AKBAŞ Crown Hall at IIT Campus Chicago. Illinois Ludwig Mies van der Rohe Department of Earthquake and Structuralt Engineering i Composite Beams

More information

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006 Job No. Sheet 1 of 6 Rev B, Route de Limours Tel : (0)1 0 85 5 00 Fax : (0)1 0 5 75 8 Revised by MEB Date April 006 DESIGN EXAMPLE 6 BOLTED JOINT A 0 0 angle loaded in tension is to be connected to a gusset

More information

Metal Structures Lecture XIII Steel trusses

Metal Structures Lecture XIII Steel trusses Metal Structures Lecture XIII Steel trusses Contents Definition #t / 3 Geometry and cross-sections #t / 7 Types of truss structures #t / 15 Calculations #t / 29 Example #t / 57 Results of calculations

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

DETERMINATION OF EI FOR PULTRUDED GFRP SHEET PILE PANELS. Abstract

DETERMINATION OF EI FOR PULTRUDED GFRP SHEET PILE PANELS. Abstract DETERMINATION OF EI FOR PULTRUDED GFRP SHEET PILE PANELS Yixin Shao, Cynthia Giroux and Zeid Bdeir McGill University Montreal, Quebec, Canada Abstract The flexural rigidity, EI, plays an especially important

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

Supplement: Statically Indeterminate Frames

Supplement: Statically Indeterminate Frames : Statically Indeterminate Frames Approximate Analysis - In this supplement, we consider another approximate method of solving statically indeterminate frames subjected to lateral loads known as the. Like

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

Engineering Mechanics. Equivalent force systems: problems

Engineering Mechanics. Equivalent force systems: problems Engineering Mechanics Equivalent force systems: problems A 36-N force is applied to a wrench to tighten a showerhead. Knowing that the centerline of the wrench is parallel to the x axis. Determine the

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

Physics 8 Monday, November 23, 2015

Physics 8 Monday, November 23, 2015 Physics 8 Monday, November 23, 2015 Handing out HW11, due Friday, December 4. One or two more beam-related examples, then we ll move on to oscillations ( periodic motion ). This week s reading is Mazur

More information

NCCI: Simple methods for second order effects in portal frames

NCCI: Simple methods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames Tis NCC presents information

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: EXTREME MARQUEES PTY. LTD. Project: Design check 24.4m x 12.2m x 6.4m The Platoon Tent Structure (3m Bay) for 80km/hr Wind Speed. Reference: Extreme Marquees Pty Ltd Technical Data Report by: KZ

More information

National Exams May 2015

National Exams May 2015 National Exams May 2015 04-BS-6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

Suspended Beam Roof with Pylons

Suspended Beam Roof with Pylons Cable Supported Structures George.Hearn@colorado.edu 25 Suspended Beam Roof with Pylons A roof structure is a suspended beam. The roof span is 200 ft. Main cable sag is 20 ft. Suspender length varies.

More information

Simplified Analysis of Continuous Beams

Simplified Analysis of Continuous Beams Simplified Analysis of Continuous Beams Abdulamir Atalla Almayah Ph.D., Department of Civil Engineering-College of Engineering University of Basrah, Iraq. ORCID: 0000-0002-7486-7083 Abstract The analysis

More information

Shear Force V: Positive shear tends to rotate the segment clockwise.

Shear Force V: Positive shear tends to rotate the segment clockwise. INTERNL FORCES IN EM efore a structural element can be designed, it is necessary to determine the internal forces that act within the element. The internal forces for a beam section will consist of a shear

More information

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 General... 3 1. Background... 4 1.3 Discontinuity Functions...

More information

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1 E2027 Structural nalysis I TYPES OF STRUUTRES H in ivil Engineering Page 1-1 E2027 Structural nalysis I SUPPORTS Pin or Hinge Support pin or hinge support is represented by the symbol H or H V V Prevented:

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

1. Attempt any ten of the following : 20

1. Attempt any ten of the following : 20 *17204* 17204 21314 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Answer each next main question on a new page. (3) Illustrate your answers with neat sketches wherever

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

INFLUENCE LINE. Structural Analysis. Reference: Third Edition (2005) By Aslam Kassimali

INFLUENCE LINE. Structural Analysis. Reference: Third Edition (2005) By Aslam Kassimali INFLUENCE LINE Reference: Structural Analsis Third Edition (2005) B Aslam Kassimali DEFINITION An influence line is a graph of a response function of a structure as a function of the position of a downward

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 General... 4 1. Background... 5 1.3 Discontinuity Functions...

More information

UNIT-II MOVING LOADS AND INFLUENCE LINES

UNIT-II MOVING LOADS AND INFLUENCE LINES UNIT-II MOVING LOADS AND INFLUENCE LINES Influence lines for reactions in statically determinate structures influence lines for member forces in pin-jointed frames Influence lines for shear force and bending

More information

Balcony balustrades using the SG12 laminated glass system: PAGE 1 (SG12FF010717) Structural Calculations for SG12 System balustrades using 21.5mm laminated toughened glass without the need for a handrail

More information

Sample Test Paper - I

Sample Test Paper - I Scheme - G Sample Test Paper - I Course Name : Civil, Chemical, Mechanical and Electrical Engineering Group Course Code : AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS Semester : Second Subject Title :

More information

RSTAB. Structural Analysis and Design Dynamic Analysis. Verification Manual. Ing. Software Dlubal Am Zellweg 2 D Tiefenbach

RSTAB. Structural Analysis and Design Dynamic Analysis. Verification Manual. Ing. Software Dlubal Am Zellweg 2 D Tiefenbach Version July 2011 Program RSTAB Structural Analysis and Design Dynamic Analysis Verification Manual All rights, including those of translation, are reserved. portion of this book may be reproduced mechanically,

More information

7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES 7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

Unit II Shear and Bending in Beams

Unit II Shear and Bending in Beams Unit II Shear and Bending in Beams Syllabus: Beams and Bending- Types of loads, supports - Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

Assignment 1 - actions

Assignment 1 - actions Assignment 1 - actions b = 1,5 m a = 1 q kn/m 2 Determine action on the beam for verification of the ultimate limit state. Axial distance of the beams is 1 to 2 m, cross section dimensions 0,45 0,20 m

More information