5. Liquid Crystal Display

Size: px
Start display at page:

Download "5. Liquid Crystal Display"

Transcription

1 5. Liquid Crystal Display Twisted Nematic(TN) LC : Director is twisted by 90 o o o o Supertwisted Nematic(STN) LC : Director is twisted by 180, 40 or 70 Better contrast and viewing angle. Yeh; Twisted-nematic(TN) Displays A. Principle of Operation LC is sandwiched between glass plates with a gap of 5 10μm. The inner surface is deposited with ITO followed by polyimide Electrode For rubbing Polarization state at the input is parallel or perpendicular to the input director. Polarization state rotates according to the twist of LC molecules(waveguiding effect). Strong electric field by an applied voltage of 3-5V. LC molecules align to the electric field.

2 B. Transmission Properties of Field-OFF State The waveguiding effect is only valid for the total twist angle π φ << Γ = ( ne no) d Mauguin condition or the limit of slow twist λ Yeh; 5- The input/output relation in eo-coordinates, Eq. (4.3.13) Γ sin X sin X ' cos X i φ V e X X V e ' = where X V sin X sin X o Γ Vo φ cos X + i X X Γ = φ + V 1 e Using = V 0 and Mauguin condition o Γ sin X ' cos X i V 1 e X ' = V sin X 0 o φ X (1) Real LCD may not satisfy Mauguin condition. Reduction in brightness and contrast. Undesirable coloration. Normally Black (NB) Mode 90 o TN LC cell between parallel polarizers ' ' V is blocked, V is passed in Eq. (1) e o The transmission of unpolarized light, from (1) π sin 1 u 1 sin X 1 + T = φ = X 1+ u π Γ Δn φ =, u = = d, φ λ () T 0 as u Mauguin condition 0 for X=,, 3... T π π π =, 3, 15, 35,... u =

3 Normally White (NW) Mode 90 o TN LC cell between crossed polarizers ' ' V is passed, V is blocked in Eq. (1) e o Yeh; 5-3 T π sin u = 1+ u Transmitted Luminance It is given by a product of the illuminant spectral distribution D ( λ ), the transmission function T ( λ ), the photopic response of the human eyes ( ) P λ. L 780 = ( ) ( ) ( ) D λ T λ P λ dλ ( ) ( ) D λ P λ dλ

4 C. Transmission Properties of Field-ON State When a voltage is applied, LC molecules tilt toward the electric field. The elastic energy density is dθ dφ 1 1 UEL = ( k1cos θ + k3sin θ) + ( kcos θ + k3sin θ) cos θ dz dz k, k, k, elastic constants ; φ, twist angle ; θ, tilt angle. 1 3 Yeh; 5-4 The electrostatic energy density is 1 1 D UEM = Di E = ε sin θ + ε cos θ Minimize the total energy in LC cell Director distribution as a function of z, θ ( z), φ( z) Redistribution of TN LC requires a threshold voltage given by (5.1.13) Typically ~1V. Transmission at Normal Incidence (1) NB mode TN LC is optimized for green light using Eq. (). For field-off state T = 0 for green with u green = 3 T 0 for red and blue because u = 3 δ, u = 3 + δ red blue For field-on state Δ n and u decrease for increased voltage. T and T increase smoothly. green red T blue undergoes an undershoot. () Similar explanation for NW mode [Fig. 5.9]

5 5. Supertwisted Nematic(STN) Displays A. Steepness of Electrodistortion Curve of STN Cell Yeh; 5-5 For 70 o twist, LC can be right-handed 70 o twist or left-handed 90 o twist. LC should be chiral nematic Lower elastic energy Intrinsically twisted nematic. d Φ For =, p π d, cell spacing ; p, pitch ; Φ, twist angle. natural pitch = pitch in LC cell Increased steepness for increased cell twist angle (Higher contrast) B. Transmission Property of STN in Field-OFF state No waveguiding effect in STN cell Polarizers are in general not parallel nor perpendicular

6 5.3 Nematic Liquid Crystal Display(N-LCD) A. Parallel Aligned(PA) Cell Vertical Switching(E field LC layer) NW Vertical Switching Mode Yeh; 5-6 For Field-OFF state : ( ) π Γ= ne no d, Γ = π, 3 π... for NW λ π λ d n n dz, 0 For Field-ON state : Γ= ( e ( θ ) o) In-Plane Switching 1 sin θ cos θ n θ = n + n. ( ) e o e θ, tilt angle of the director NB operation of IPS of N-LCD (a) Field-OFF state, (b) Field-ON state

7 B. Vertically Aligned(VA) Cell Yeh; 5-7 Director distribution of VA cell. NB operation of VA-LCD (a) Field-OFF state, (b) Field-ON state C. Bend-Aligned(BA) Cell LC director has a bend distribution of a total 180 o The electric field is applied in the same direction as the beam direction

8 BA-LCD with NW operation Yeh; 5-8 Symmetrical viewing angle in the bending plane.

9 5.4 Polymer Dispersed Liquid Crystal Display(PD-LCD) LC in a bottle Milky colored Transparent Due to discontinuity of (1) Heating beyond the clearing point refractive index at boundary LC becomes isotropic () Poling into a single domain Yeh; 5-9 Suspension of LC droplets in polymer no < n < ne n o (a) Field-Off state : Scattering in incident light by LC droplets (b) Field-On state : LC droplets align, having n, to the field and no scattering o 5.5 Reflective LCD A reflector at the back of 45 o TN-LC cell Only one polarizer is needed Transmissive TN-LCD Left-right viewing angle symmetry Reflective TN-LCD No Left-right symmetr Self-phase-compensation property (Wide viewing angle) Controlling the twist angle and the polarizer Left-right symmetry and up-down symmetry also.

10 Yeh; Projection Displays Direct viewing system Fundamental energy loss of /3 due to color filters Projection system Reduced or elimination of the loss by dielectric mirrors [Fig 5.43] Projection display using reflective LCD Near normal incidence and use of polarizing BS. [Fig 5.44] Projection display using transmission LCD Dichroic mirrors and PBS are used 5.7 Other Display Systems

Optics of Liquid Crystal Displays

Optics of Liquid Crystal Displays Optics of Liquid Crystal Displays Second Edition POCHIYEH CLAIRE GU WILEY A John Wiley & Sons, Inc., Publication Contents Preface Preface to the First Edition xiii xv Chapter 1. Preliminaries 1 1.1. Basic

More information

Chapter 9 Electro-optic Properties of LCD

Chapter 9 Electro-optic Properties of LCD Chapter 9 Electro-optic Properties of LCD 9.1 Transmission voltage curves TVC stands for the transmittance-voltage-curve. It is also called the electro-optic curve. As the voltage is applied, θ(z) and

More information

MP5: Soft Matter: Physics of Liquid Crystals

MP5: Soft Matter: Physics of Liquid Crystals MP5: Soft Matter: Physics of Liquid Crystals 1 Objective In this experiment a liquid crystal display (LCD) is built and its functionality is tested. The light transmission as function of the applied voltage

More information

From the theory of liquid crystals to LCD-displays

From the theory of liquid crystals to LCD-displays From the theory of liquid crystals to LCD-displays Nobel Price in Physics 1991: Pierre-Gilles de Gennes Alexander Kleinsorge FHI Berlin, Dec. 7th 2004 Outline Survey of Liquid Crystals Anisotropy properties

More information

Transient Electro-Optic Properties of Liquid Crystal Gels

Transient Electro-Optic Properties of Liquid Crystal Gels 137 Appendix A Transient Electro-Optic Properties of Liquid Crystal Gels The dynamics of the electro-optic response has significance for the use of our gels in display devices and also reveals important

More information

ALCT Measurement Principles

ALCT Measurement Principles Current-based Measurements At a basic electronics level, a liquid crystal sample cell may be modeled as a combination dynamic capacitor and resistor in parallel. As such, the majority of ALCT measurements

More information

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Jin Yan, Meizi Jiao, Linghui Rao, and Shin-Tson Wu* College of Optics and Photonics,

More information

Chapter 5. Liquid crystal cell alignment

Chapter 5. Liquid crystal cell alignment Chapter 5. Liquid crystal cell alignment The static LC cell alignment is determined by the boundary conditions (on the glass surfaces) and the elastic deformation energy of the LC molecules. 5.1 LC director

More information

Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field

Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field Kent State University Digital Commons @ Kent State University Libraries Chemical Physics Publications Department of Chemical Physics 2004 Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic

More information

LIQUID CRYSTALS Introduction

LIQUID CRYSTALS Introduction LIQUID CRYSTALS Introduction LC mesophases LCs in the bulk and in confined geometries optical properties of LCs fluctuations and light scattering applications of LCs AGGREGATION GREGATION STATES TES OF

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT

DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT NICOLETA ESEANU* 1, CORNELIA UNCHESELU 2, I. PALARIE 3, B. UMANSKI 4 1 Department of Physics, ''Politehnica''

More information

Alignment of Liquid Crystals by Ion Etched Grooved Glass Surfaces. Yea-Feng Lin, Ming-Chao Tsou, and Ru-Pin Pan

Alignment of Liquid Crystals by Ion Etched Grooved Glass Surfaces. Yea-Feng Lin, Ming-Chao Tsou, and Ru-Pin Pan CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 6 DECEMBER 2005 Alignment of Liquid Crystals by Ion Etched Grooved Glass Surfaces Yea-Feng Lin, Ming-Chao Tsou, and Ru-Pin Pan Department of Electrophysics, National

More information

ECE185 LIQUID CRYSTAL DISPLAYS

ECE185 LIQUID CRYSTAL DISPLAYS ECE185 LIQUID CRYSTAL DISPLAYS Objective: To study characteristics of liquid crystal modulators and to construct a simple liquid crystal modulator in lab and measure its characteristics. References: B.

More information

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Jin Yan, Meizi Jiao, Linghui Rao, and Shin-Tson Wu* College of Optics and Photonics,

More information

Simulations of liquid-crystal Fabry Perot etalons by an improved 4Ã4 matrix method

Simulations of liquid-crystal Fabry Perot etalons by an improved 4Ã4 matrix method JOURNAL OF APPLID PHYSICS VOLUM 93, NUMBR 5 MARCH 23 Simulations of liquid-crystal Fabry Perot etalons by an improved 4Ã4 matrix method Yuhua Huang School of Optics/CROL, University of Central Florida,

More information

VASE. J.A. Woollam Co., Inc. Ellipsometry Solutions

VASE. J.A. Woollam Co., Inc. Ellipsometry Solutions VASE J.A. Woollam Co., Inc. Ellipsometry Solutions Accurate Capabilities The VASE is our most accurate and versatile ellipsometer for research on all types of materials: semiconductors, dielectrics, polymers,

More information

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems - The overall optical transmission through many optical components such as polarizers, EO modulators, filters, retardation plates.

More information

Control of Dispersion in Form Birefringent-Based Holographic Optical Retarders

Control of Dispersion in Form Birefringent-Based Holographic Optical Retarders Kent State University Digital Commons @ Kent State University Libraries Chemical Physics Publications Department of Chemical Physics 12-15-2005 Control of Dispersion in Form Birefringent-Based Holographic

More information

Switchable Polarization-Independent Liquid- Crystal Fabry-Perot Filter

Switchable Polarization-Independent Liquid- Crystal Fabry-Perot Filter Kent State University From the SelectedWorks of Philip J. Bos December 18, 2008 Switchable Polarization-Independent Liquid- Crystal Fabry-Perot Filter Enkh-Amgalan Dorjgotov Achintya K. Bhowmik Philip

More information

Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells

Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells N.C. Papanicolaou 1 M.A. Christou 1 A.C. Polycarpou 2 1 Department of Mathematics, University of Nicosia

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Anchoring Energy Measurements: a Practical Approach

Anchoring Energy Measurements: a Practical Approach Anchoring Energy Measurements: a Practical Approach a C. J. P. NEWTON, b M. IOVANE, c O. DUHEM, b R. BARBERI, d G. LOMBARDO and a T.P. SPILLER a Hewlett-Packard Laboratories, Bristol, Filton Road, Stoke

More information

FAST-RESPONSE LIQUID CRYSTAL DISPLAYS

FAST-RESPONSE LIQUID CRYSTAL DISPLAYS FAST-RESPONSE LIQUID CRYSTAL DISPLAYS by MEIZI JIAO B.S. in Optical Engineering Department, Zhejiang University, P. R. China, 006 M.S. in College of Optics and Photonics, University of Central Florida,

More information

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline Lecture 8: Polarimetry 2 Outline 1 Polarizers and Retarders 2 Polarimeters 3 Scattering Polarization 4 Zeeman Effect Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics

More information

Anchoring Energy And Pretilt Angle Effects On Liquid Crystal Response Time

Anchoring Energy And Pretilt Angle Effects On Liquid Crystal Response Time University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Anchoring Energy And Pretilt Angle Effects On Liquid Crystal Response Time 007 Xiangyi Nie University

More information

Alignment of Liquid Crystal Director Fields Using Monolayers. Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh

Alignment of Liquid Crystal Director Fields Using Monolayers. Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh Alignment of Liquid Crystal Director Fields Using Monolayers Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh 5CB Liquid Crystals (LCs) CN Flow like liquids; Anisotropic like solid crystals; Crystal

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Optimization of polarization rotators spectral response for broadband optical switching applications

Optimization of polarization rotators spectral response for broadband optical switching applications Optimization of polarization rotators spectral response for broadband optical switching applications Plinio Jesús PINZÓN, Isabel PÉREZ, Carmen VÁZQUEZ and José Manuel SÁNCHEZ-PENA Grupo de Displays y Aplicaciones

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Continuous viewing angle-tunable liquid crystal display using temperature-dependent birefringence layer

Continuous viewing angle-tunable liquid crystal display using temperature-dependent birefringence layer Continuous viewing angle-tunable liquid crystal display using temperature-dependent birefringence layer Jin Seog Gwag 1, In-Young Han 2, Chang-Jae Yu 2, Hyun Chul Choi 3, and Jae-Hoon Kim 1,2,4*, 1 Department

More information

Surface Plasmon Wave

Surface Plasmon Wave Surface Plasmon Wave In this experiment you will learn about a surface plasmon wave. Certain metals (Au, Ag, Co, etc) exhibit a negative dielectric constant at certain regions of the electromagnetic spectrum.

More information

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Physics 313: Laboratory 8 - Polarization of Light Electric Fields Physics 313: Laboratory 8 - Polarization of Light Electric Fields Introduction: The electric fields that compose light have a magnitude, phase, and direction. The oscillating phase of the field and the

More information

07. Liquid Crystals I

07. Liquid Crystals I University of Rhode Island DigitalCommons@URI Soft Matter Physics Physics Course Materials 217 7. Liquid Crystals I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License This

More information

ELECTRO-OPTIC RESPONSE OF HOMEOTROPIC, HOLE PATTERNED, NEMATIC LIQUID CRYSTAL CELLS UNDER AC AND DC VOLTAGE. A dissertation submitted

ELECTRO-OPTIC RESPONSE OF HOMEOTROPIC, HOLE PATTERNED, NEMATIC LIQUID CRYSTAL CELLS UNDER AC AND DC VOLTAGE. A dissertation submitted ELECTRO-OPTIC RESPONSE OF HOMEOTROPIC, HOLE PATTERNED, NEMATIC LIQUID CRYSTAL CELLS UNDER AC AND DC VOLTAGE A dissertation submitted to Kent State University in partial fulfillment of the requirements

More information

COPYRIGHTED MATERIAL. Preliminaries

COPYRIGHTED MATERIAL. Preliminaries 1 Preliminaries Electronic display of information is becoming increasingly important in many aspects of our lives. Electronic mails and e - commerce are two examples. In an information - dominated age,

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 321 X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Kazuhiro Takada 1,

More information

Three-Dimensional Dye Distribution in Photo- Oriented Liquid-Crystal Alignment Layers

Three-Dimensional Dye Distribution in Photo- Oriented Liquid-Crystal Alignment Layers Kent State University From the SelectedWorks of Peter Palffy-Muhoray April 1, 00 Three-Dimensional Dye Distribution in Photo- Oriented Liquid-Crystal Alignment Layers S. Bardon D. Coleman N. A. Clark T.

More information

Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators

Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators Mol. Cryst. Liq. Cryst., Vol. 453, pp. 343 354, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1542-1406 print=1563-5287 online DOI: 10.1080/15421400600653886 Fast-Response Infrared Ferroelectric Liquid

More information

[4] Analysis of optical characteristics of various designs of classical guest host LC modulator

[4] Analysis of optical characteristics of various designs of classical guest host LC modulator [4] Analysis of optical characteristics of various designs of classical guest host LC modulator 376 G.V. Simonenko 1, S.A. Studentsov 2, V.A. Ezhov 3 1 N.G. Chernyshevskiy Saratov State University, Saratov,

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Evolution of Disclinations in Cholesteric Liquid Crystals

Evolution of Disclinations in Cholesteric Liquid Crystals Kent State University Digital Commons @ Kent State University Libraries Chemical Physics Publications Department of Chemical Physics 10-4-2002 Evolution of Disclinations in Cholesteric Liquid Crystals

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Topic 4: Waves 4.3 Wave characteristics

Topic 4: Waves 4.3 Wave characteristics Guidance: Students will be expected to calculate the resultant of two waves or pulses both graphically and algebraically Methods of polarization will be restricted to the use of polarizing filters and

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

Viewing angle controllable displays with a blue-phase liquid crystal cell

Viewing angle controllable displays with a blue-phase liquid crystal cell Viewing angle controllable displays with a blue-phase liquid crystal cell Linghui Rao, Zhibing Ge, and Shin-Tson Wu* College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816,

More information

Simulation-based Design of In-Plane Switching Liquid Crystalline Display Pixels

Simulation-based Design of In-Plane Switching Liquid Crystalline Display Pixels Simulation-based Design of In-Plane Switching Liquid Crystalline Display Pixels by Anindya Mitra A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Orientational Kerr effect in liquid crystal ferroelectrics and modulation of partially polarized light

Orientational Kerr effect in liquid crystal ferroelectrics and modulation of partially polarized light Journal of Physics: Conference Series PAPER OPEN ACCESS Orientational Kerr effect in liquid crystal ferroelectrics and modulation of partially polarized light To cite this article: Alexei D. Kiselev et

More information

Programmable agile beam steering based on a liquid crystal prism

Programmable agile beam steering based on a liquid crystal prism Programmable agile beam steering based on a liquid crystal prism Xu Lin( ), Huang Zi-Qiang( ), and Yang Ruo-Fu( ) School of Optoelectronic Information, University of Electronic Science and Technology of

More information

Liquid-Crystal Devices and Waveplates for light controlling

Liquid-Crystal Devices and Waveplates for light controlling Armenian Journal of Physics, 2014, vol. 7, issue 2, pp. 59-68 Liquid-Crystal Devices and Waveplates for light controlling M.R. Hakobyan and R.S. Hakobyan Optics Department, Yerevan State University, 1

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Dye-doped dual-frequency nematic cells as fast-switching polarization-independent shutters

Dye-doped dual-frequency nematic cells as fast-switching polarization-independent shutters Dye-doped dual-frequency nematic s as fast-switching polarization-independent shutters BING-XIANG LI, 1, RUI-LIN XIAO, 1, SATHYANARAYANA PALADUGU, 1 SERGIJ V. SHIYANOVSKII, 1 AND OLEG D. LAVRENTOVICH 1,,

More information

PHSC 3033: Meteorology Atmospheric Optics

PHSC 3033: Meteorology Atmospheric Optics PHSC 3033: Meteorology Atmospheric Optics Hot Radiating Objects Imagine a piece of metal placed in a hot furnace. At first, the metal becomes warm, although its visual appearance doesn't change. As it

More information

Dual Structure of Cholesteric Liquid Crystal Device for High Reflectance

Dual Structure of Cholesteric Liquid Crystal Device for High Reflectance Electron. Mater. Lett., Vol. 9, No. 6 (2013), pp. 735-740 DOI: 10.1007/s13391-013-3122-2 Dual Structure of Cholesteric Liquid Crystal Device for High Reflectance Byung Seong Bae, 1 Seungoh Han, 2 Sung

More information

A B. What s a Liquid Crystal? G = H - TS K = [B]/[A] K = e - G/RT

A B. What s a Liquid Crystal? G = H - TS K = [B]/[A] K = e - G/RT What s a Liquid Crystal? Phases (supramolecular equilibrium configurations) and molecules (equilibrium conformations) are basically the same thing. Phases are superamolecules; a large collection of atoms

More information

Laboratory #29: Spectrometer

Laboratory #29: Spectrometer INDIANA UNIVERSITY, DEPARTMENT OF PHYSICS, P309 LABORATORY Laboratory #29: Spectrometer Goal: Learn to adjust an optical spectrometer, use a transmission grating to measure known spectral lines of mercury,

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Polarizers and Retarders

Polarizers and Retarders Phys 531 Lecture 20 11 November 2004 Polarizers and Retarders Last time, discussed basics of polarization Linear, circular, elliptical states Describe by polarization vector ĵ Today: Describe elements

More information

Zigzag Electrodes for Suppressing the Color Shift of Kerr Effect-Based Liquid Crystal Displays Linghui Rao, Zhibing Ge, and Shin-Tson Wu, Fellow, IEEE

Zigzag Electrodes for Suppressing the Color Shift of Kerr Effect-Based Liquid Crystal Displays Linghui Rao, Zhibing Ge, and Shin-Tson Wu, Fellow, IEEE JOURNAL OF DISPLAY TECHNOLOGY, VOL. 6, NO. 4, APRIL 2010 115 Zigzag Electrodes for Suppressing the Color Shift of Kerr Effect-Based Liquid Crystal Displays Linghui Rao, Zhibing Ge, and Shin-Tson Wu, Fellow,

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Photorefractivity of dye-doped NLC layers and possibility of their application

Photorefractivity of dye-doped NLC layers and possibility of their application OPTO-ELECTRONICS REVIEW 10(1), 83 87 (00) Photorefractivity of dye-doped NLC layers and possibility of their application J. PARKA * Institute of Applied Physics, Military University of Technology, Kaliskiego

More information

Diffraction light modulator based on transverse electro-optic effect in short-pitch ferroelectric liquid crystals

Diffraction light modulator based on transverse electro-optic effect in short-pitch ferroelectric liquid crystals Diffraction light modulator based on transverse electro-optic effect in short-pitch ferroelectric liquid crystals Alexander Parfenov A diffraction modulator that exploits the transverse electro-optic effect

More information

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence Lecture 4: Anisotropic Media Outline Dichroism Optical Activity 3 Faraday Effect in Transparent Media 4 Stress Birefringence 5 Form Birefringence 6 Electro-Optics Dichroism some materials exhibit different

More information

Birefringent Thin Films for LCDs. Pochi Yeh

Birefringent Thin Films for LCDs. Pochi Yeh Birefringent Thin Films for LCDs Pochi Yeh College of Photonics National Chiao Tung University December 8, 2010 National Tsing Hua University Taiwan College of Photonics National Chiao Tung University

More information

Modeling and Design of an Optimized Liquid- Crystal Optical Phased Array

Modeling and Design of an Optimized Liquid- Crystal Optical Phased Array Kent State University Digital Commons @ Kent State University Libraries Chemical Physics Publications Department of Chemical Physics 4-15-2005 Modeling and Design of an Optimized Liquid- Crystal Optical

More information

7 Optical modulators. 7.1 Electro-optic modulators Electro-optic media

7 Optical modulators. 7.1 Electro-optic modulators Electro-optic media 7.1 Electro-optic modulators 7.1.1 Electro-optic media In a linear anisotropic medium, the electric displacement field D and the electric field strength E are related to each other through the electric

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Liquid crystal experiment for undergraduate engineering students

Liquid crystal experiment for undergraduate engineering students Liquid crystal experiment for undergraduate engineering students Mansoor B. A. Jalil Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore

More information

AFRL-RY-WP-TR

AFRL-RY-WP-TR AFRL-RY-WP-TR-2009-1315 LIQUID CRYSTAL BASED OPTICAL PHASED ARRAY FOR STEERING LASERS Lei Shi and Philip Bos Kent State University OCTOBER 2009 Final Report Approved for public release; distribution unlimited.

More information

Deviations from Malus Law

Deviations from Malus Law From: Steve Scott, Jinseok Ko, Howard Yuh To: MSE Enthusiasts Re: MSE Memo #18a: Linear Polarizers and Flat Glass Plates Date: January 16, 2004 This memo discusses three issues: 1. When we measure the

More information

Low Voltage Blue Phase Liquid Crystal Displays

Low Voltage Blue Phase Liquid Crystal Displays University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Low Voltage Blue Phase Liquid Crystal Displays 2012 Linghui Rao University of Central Florida Find

More information

A Fast-Response A-Film-Enhanced Fringe Field Switching LCD

A Fast-Response A-Film-Enhanced Fringe Field Switching LCD A Fast-Response A-Film-Enhanced Fringe Field Switching LCD Haiwei Chen, 1 Zhenyue Luo, 1 Daming Xu, 1 Fenglin Peng, 1 Shin-Tson Wu, 1 Ming-Chun Li, 2 Seok-Lyul Lee, 2 and Wen-Ching Tsai 2 1 College of

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 Phy123 1 6 11 Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 34-5 Interference in Thin Films 34-6 Michelson

More information

FORWARD AND INVERSE PROBLEM FOR NEMATIC LIQUID CRYSTALS

FORWARD AND INVERSE PROBLEM FOR NEMATIC LIQUID CRYSTALS FORWARD AND INVERSE PROBLEM FOR NEMATIC LIQUID CRYSTALS A dissertation submitted to the university of manchester as a partial fulfilment for the degree of Doctor of Philosophy in Faculty of Engineering

More information

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light Polarimetry in the E-ELT era Fundamentals of Polarized Light 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

More information

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1 (19) United States US 20170139281A1 (12) Patent Application Publication (10) Pub. No.: US 2017/0139281 A1 Hou et al. (43) Pub. Date: May 18, 2017 (54) ALIGNMENT METHOD OF FFS TYPE GO2F I/335 (2006.01)

More information

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT I. Objective: To study the Pockels electro-optic (EO) effect, and the property of light propagation in anisotropic medium, especially polarization-rotation effects.

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q

Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q Optics Communications 218 (2003) 27 32 www.elsevier.com/locate/optcom Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q YanJun Liu a, *, Bin Zhang

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Strong flexoelectric behavior in bimesogenic liquid crystals

Strong flexoelectric behavior in bimesogenic liquid crystals JOURNAL OF APPLIED PHYSICS 99, 034104 2006 Strong flexoelectric behavior in bimesogenic liquid crystals H. J. Coles, a M. J. Clarke, S. M. Morris, b B. J. Broughton, and A. E. Blatch Centre of Molecular

More information

Characterization and control of a microdisplay as a Spatial Light Modulator

Characterization and control of a microdisplay as a Spatial Light Modulator Journal of Physics: Conference Series Characterization and control of a microdisplay as a Spatial Light Modulator To cite this article: A Burman et al 211 J. Phys.: Conf. Ser. 274 1212 View the article

More information

Control of Polymer Structures in Phase-Separated Liquid Crystal-Polymer Composite Systems

Control of Polymer Structures in Phase-Separated Liquid Crystal-Polymer Composite Systems Japanese Journal of Applied Physics Vol. 44, No. 5A, 2005, pp. 3115 3120 #2005 The Japan Society of Applied Physics Control of Polymer Structures in Phase-Separated Liquid Crystal-Polymer Composite Systems

More information

Polymer-Stabilized Blue Phase Liquid Crystals for Photonic Applications

Polymer-Stabilized Blue Phase Liquid Crystals for Photonic Applications www.materialsviews.com www.advmattechnol.de Polymer-Stabilized Blue Phase Liquid Crystals for Photonic Applications Yan Li,* Shuaijia Huang, Pengcheng Zhou, Shuxin Liu, Jiangang Lu, Xiao Li, and Yikai

More information

ME 210 MATERIAL SCIENCE LIQUID CRYSTALS

ME 210 MATERIAL SCIENCE LIQUID CRYSTALS BOĞAZİÇİ UNIVERSITY ME 210 MATERIAL SCIENCE LIQUID CRYSTALS BY AHMET GÖKHAN YALÇIN Submitted to: Ercan BALIKÇI FALL 2005 A NEW PHASE OF MATTER: LIQUID CRYSTALS ABSTRACT: Liquid crystals have different

More information

Liquid crystal in confined environment

Liquid crystal in confined environment Liquid crystal in confined environment Adviser: Prof. Rudi Podgornik Supervisor: Prof. Igor Muševič By Maryam Nikkhou September 2011 Contents Abstract.................................................................

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Questions on Electric Fields

Questions on Electric Fields Questions on Electric Fields 1. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B. Oil drop A B 2.50 cm The oil drop has a mass 9.79 x 10 15 kg.

More information

Polarized Light. Nikki Truss. Abstract:

Polarized Light. Nikki Truss. Abstract: Polarized Light Nikki Truss 9369481 Abstract: In this experiment, the properties of linearly polarised light were examined. Malus Law was verified using the apparatus shown in Fig. 1. Reflectance of s-polarised

More information

[D] indicates a Design Question

[D] indicates a Design Question EP421 Assignment 4: Polarization II: Applications of Optical Anisotropy use of the Jones Calculus (Handed Out: Friday 1 November 2013 Due Back: Friday 8 November 2013) 1. Optic Axis of Birefringent Crystals

More information

Liquid crystal-directed polymer nanostructure for vertically-aligned nematic cells

Liquid crystal-directed polymer nanostructure for vertically-aligned nematic cells Liquid crystal-directed polymer nanostructure for vertically-aligned nematic cells Voolodymy Borshch, Jeoung-Yeon Hwang and Liang-Chy Chien Liquid Crystal Institute and Chemical Physics Interdisciplinary

More information