Properties of Coordinate Systems

Size: px
Start display at page:

Download "Properties of Coordinate Systems"

Transcription

1 Properties of Coordinate Systems Cartesian Coordinates Position vector: r yy For Two Neighboring Points P and P : Displacement between two neighboring points: dsdr d dy y d Distance between two neighboring points (Found using the Pythagorean Theorem): ds dr d dy d

2 Primary Curve the curve obtained when one coordinate variable is allowed to vary while the other two are held fied. Primary Length Element infinitesimal length along the primary curve Primary Surface the surface obtained when the coordinate determining the primary length element is held fied and the other two are allowed to vary. Primary Element Primary Curve Primary Surface Primary Volume 1 st : nd : y 3 rd : Straight Line (-ais) (y and fied, varies) Straight Line (y-ais) ( and fied, y varies) Straight Line (-ais) ( and y fied, varies) y-plane ( fiedy and varies) -plane (y fied and varies) y-plane ( fied and y varies) Solid Cube Primary Length Elements Primary Area Elements Primary Volume Elements 1 st : d ( ) nd : dy ( ŷ ) 3 rd : d ( ẑ ) dy d ( ) d d ( ŷ ) d dy ( ẑ ) d dy d Primary length element vectors are in the direction of their corresponding primary curve. Primary area element vectors are in the same direction as the primary length element vector (i.e. to their corresponding primary surface). Primary volume elements are scalars not vectors and do not have an associated direction.

3 Coordinate Conversions Spherical Cartesian r sin cos y rsin sin rcos Unit Vector Conversions Spherical Cartesian r sin cos sinsiny cos θ cos cos cossiny sin φ sin cos y Cylindrical Cartesian cos y sin Cart Cylindrical Cartesian ρ cos sin y φ sin cos y Cart Special Functions Involving the Del Operator () f f f Gradient: f y y Divergence: F F F y y F y F F F y F F y F Curl: F y y y y F F F y Laplacian: f f f y f Note: f could also be a vector function F

4 Cylindrical Coordinates Position vector: r ρ or rcossin y For Two Neighboring Points P and P : Displacement between two neighboring points: dsdrd ρdφ d Distance between two neighboring points (Found using the Pythagorean Theorem): ds dr d d d

5 Primary Curve Primary Surface Primary Volume 1 st : Rays to the -ais ( and fied, varies) nd : Circle centered on the -ais ( and fied, varies) 3 rd : Straight line (-ais) ( and fied, varies) Cylinder centered on the -ais ( fied and varies) Half-plane from -ais ( fied and varies) Plane to the -ais ( fied and varies) Solid Cylinder Primary Length Elements Primary Area Elements Primary Volume Elements 1 st : d ( ρ ) dd ( ρ ) (teal surface) nd : d ( φ ) dd ( φ ) (purple surface) ddd 3 rd : d ( ẑ ) dd ( ẑ ) (pink surface) Coordinate Conversions Cartesian Cylindrical tan y y Cart y tan 1 Unit Vector Conversions Cartesian Cylindrical cos ρ sin φ y sin ρ cos φ Spherical Cylindrical r sin sph rcos Spherical Cylindrical r sin ρ cos θ cos ρ sin φ φ sph

6 Special Functions Involving the Del Operator () Gradient: f 1 f f f ρ φ 1 1 F F Divergence: F F 1 F F F F 1 F ρ φ Curl: F F Laplacian: 1 f 1 f f f

7 Spherical Coordinates Position vector: r r r or r rsin cos rsinsiny rcos For Two Neighboring Points P and P : Displacement between two neighboring points: dsdr drrrd θ rsindφ Distance between two neighboring points (Found using the Pythagorean Theorem): ds dr dr r d r sin d

8 Primary Element Primary Curve Primary Surface Primary Volume 1 st : r nd : 3 rd : Rays from the origin ( and fied, r varies) Half circle (r and fied, varies) Circle centered on polar ais (r and fied, varies) Sphere (r fied and varies) Cone of half angle ( fiedr and varies) Half-plane from -ais ( fied r and varies) Solid Sphere Primary Length Elements Primary Area Elements Primary Volume Elements 1 st : dr ( r ) r sindd ( r ) (teal) nd : r d ( θ ) r sindr d ( θ ) (pink) r sindr dd 3 rd : r sind ( φ ) r dr d ( φ ) (purple) Note: The r sin term is the distance from the polar ais to the projection of point P into the y-plane.

9 Coordinate Conversions Cartesian Spherical r y tan or tan y cos y y 1 tan cos y 1 y Cylindrical Spherical r tan or cos sph tan 1 cos 1 Unit Vector Conversions Cartesian Spherical sin cosr coscosθ sinφ y sin sinr cossinθ cosφ cos r sin θ Cylindrical Spherical ρ sin r cos θ φ φ sph cos r sin θ

10 Special Functions Involving the Del Operator () Gradient: 1 1 f f f r θ φ f r r r sin F r r r sin r sin Divergence: F rfr sin F Curl: 1 F 1 1 F 1 F r r sin F rf rf F r sin r r sin r θ φ r r Laplacian: f r f sin f f r r r r sin r sin

Coordinates 2D and 3D Gauss & Stokes Theorems

Coordinates 2D and 3D Gauss & Stokes Theorems Coordinates 2 and 3 Gauss & Stokes Theorems Yi-Zen Chu 1 2 imensions In 2 dimensions, we may use Cartesian coordinates r = (x, y) and the associated infinitesimal area We may also employ polar coordinates

More information

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis Fundamentals of pplied Electromagnetics Chapter - Vector nalsis Chapter Objectives Operations of vector algebra Dot product of two vectors Differential functions in vector calculus Divergence of a vector

More information

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with Appendix: Orthogonal Curvilinear Coordinates Notes: Most of the material presented in this chapter is taken from Anupam G (Classical Electromagnetism in a Nutshell 2012 (Princeton: New Jersey)) Chap 2

More information

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electromagnetic I Chapter 3 Vector Calculus Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Differential Length, Area, and Volume This chapter deals with integration

More information

3: Mathematics Review

3: Mathematics Review 3: Mathematics Review B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 015 Sept.-Dec. 015 September 1 Review of: Table of Contents Co-ordinate systems (Cartesian,

More information

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y. Math 35 - Review for Exam 1. Compute the second degree Taylor polynomial of f e x+3y about (, ). Solution. A computation shows that f x(, ), f y(, ) 3, f xx(, ) 4, f yy(, ) 9, f xy(, ) 6. The second degree

More information

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1)

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1) ChE 342 Vectors 1 VECTORS u u i k j u u Basic Definitions Figure 1 Vectors have magnitude and direction: u = i u + j u + k u (1) i = [1,0,0] j = [0,1,0] (2) k = [0,0,1] i, j, and k are mutuall orthogonal.

More information

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES Overview Throughout the first few weeks of the semester, we have studied vector calculus using almost exclusively the familiar Cartesian x,y,z coordinate

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

Vectors Coordinate Systems VC - Differential Elements VC - Differential Operators Important Theorems Summary Problems.

Vectors Coordinate Systems VC - Differential Elements VC - Differential Operators Important Theorems Summary Problems. S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology July 16, 2013 Outline 1 Vectors 2 Coordinate Systems 3 VC - Differential Elements 4 VC - Differential Operators

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

Solutions to Sample Questions for Final Exam

Solutions to Sample Questions for Final Exam olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

More information

2-5 The Calculus of Scalar and Vector Fields (pp.33-55)

2-5 The Calculus of Scalar and Vector Fields (pp.33-55) 9/6/2005 section_2_5_the_calculus_of_vector_fields_empty.doc 1/9 2-5 The Calculus of Scalar and Vector Fields (pp.33-55) Fields are functions of coordinate variables (e.g.,, ρ, θ) Q: How can we integrate

More information

Created by T. Madas SURFACE INTEGRALS. Created by T. Madas

Created by T. Madas SURFACE INTEGRALS. Created by T. Madas SURFACE INTEGRALS Question 1 Find the area of the plane with equation x + 3y + 6z = 60, 0 x 4, 0 y 6. 8 Question A surface has Cartesian equation y z x + + = 1. 4 5 Determine the area of the surface which

More information

Chapter 1. Vector Analysis

Chapter 1. Vector Analysis Chapter 1. Vector Analysis Hayt; 8/31/2009; 1-1 1.1 Scalars and Vectors Scalar : Vector: A quantity represented by a single real number Distance, time, temperature, voltage, etc Magnitude and direction

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

7 Curvilinear coordinates

7 Curvilinear coordinates 7 Curvilinear coordinates Read: Boas sec. 5.4, 0.8, 0.9. 7. Review of spherical and cylindrical coords. First I ll review spherical and cylindrical coordinate systems so you can have them in mind when

More information

Topic 3. Integral calculus

Topic 3. Integral calculus Integral calculus Topic 3 Line, surface and volume integrals Fundamental theorems of calculus Fundamental theorems for gradients Fundamental theorems for divergences! Green s theorem Fundamental theorems

More information

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x PartialsandVectorCalclulus.nb? D D f, x gives the partial derivative f x. D f, x, n gives the multiple derivative n f x n. D f, x, y, differentiates f successively with respect to x, y,. D f, x, x 2, for

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

Lecture 2: Review of Vector Calculus

Lecture 2: Review of Vector Calculus 1 Lecture 2: Review of Vector Calculus Instructor: Dr. Gleb V. Tcheslavski Contact: gleb@ee.lamar.edu Office Hours: Room 2030 Class web site: www.ee.lamar.edu/gleb/em/in dex.htm 2 Vector norm Foran n-dimensional

More information

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems In 8.02 we regularly use three different coordinate systems: rectangular (Cartesian), cylindrical and spherical. In order to become

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8 Introduction to Vector Calculus (9) SOLVED EXAMPLES Q. If vector A i ˆ ˆj k, ˆ B i ˆ ˆj, C i ˆ 3j ˆ kˆ (a) A B (e) A B C (g) Solution: (b) A B (c) A. B C (d) B. C A then find (f) a unit vector perpendicular

More information

Math 3335: Orthogonal Change of Variables., x(u) =

Math 3335: Orthogonal Change of Variables., x(u) = Math 3335: Orthogonal Change of Variables In these exercises we will explore what are called orthogonal change of coordinates. In general a d dimensional change of coordinates is a mapping x (u,...,u d

More information

Lecture 04. Curl and Divergence

Lecture 04. Curl and Divergence Lecture 04 Curl and Divergence UCF Curl of Vector Field (1) F c d l F C Curl (or rotor) of a vector field a n curlf F d l lim c s s 0 F s a n C a n : normal direction of s follow right-hand rule UCF Curl

More information

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A =

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A = MATH 28 Multivariate Calculus Fall 212 Integration over a surface Given a surface S in space, we can (conceptually) break it into small pieces each of which has area da. In me cases, we will add up these

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers. Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Math 234 Review Problems for the Final Exam

Math 234 Review Problems for the Final Exam Math 234 eview Problems for the Final Eam Marc Conrad ecember 13, 2007 irections: Answer each of the following questions. Pages 1 and 2 contain the problems. The solutions are on pages 3 through 7. Problem

More information

is a surface above the xy-plane over R.

is a surface above the xy-plane over R. Chapter 13 Multiple Integration Section 13.1Double Integrals over ectangular egions ecall the Definite Integral from Chapter 5 b a n * lim i f x dx f x x n i 1 b If f x 0 then f xdx is the area under the

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE (SUPPLEMENTARY) EXAMINATION, FEBRUARY 2017 (2015 ADMISSION)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE (SUPPLEMENTARY) EXAMINATION, FEBRUARY 2017 (2015 ADMISSION) B116S (015 dmission) Pages: RegNo Name PJ BDUL KLM TECHNOLOGICL UNIVERSITY FIRST SEMESTER BTECH DEGREE (SUPPLEMENTRY) EXMINTION, FEBRURY 017 (015 DMISSION) MaMarks : 100 Course Code: M 101 Course Name:

More information

1 Differential Operators in Curvilinear Coordinates

1 Differential Operators in Curvilinear Coordinates 1 Differential Operators in Curvilinear Coordinates worked out and written by Timo Fleig February/March 2012 Revision 1, Feb. 15, 201 Revision 2, Sep. 1, 2015 Université Paul Sabatier using LaTeX and git

More information

Chapter 2. Vector Analysis

Chapter 2. Vector Analysis Chapter 2. Vector nalysis Cheng; 3/4/2007; 2-2. verview t a given position and time a scalar function a magnitude, a vector function a magnitude and a direction Function conversion between different coordinates

More information

Electrodynamics and Microwaves 3. Gradient, Curl and Divergence

Electrodynamics and Microwaves 3. Gradient, Curl and Divergence 1 Module 3 Gradient, Divergence and Curl 1. Introduction 2. The operators & 2 3. Gradient 4. Divergence 5. Curl 6. Mathematical expressions for gradient, divergence and curl in different coordinate systems.

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

EE 333 Electricity and Magnetism, Fall 2009 Homework #9 solution

EE 333 Electricity and Magnetism, Fall 2009 Homework #9 solution EE 333 Electricity and Magnetism, Fall 009 Homework #9 solution 4.10. The two infinite conducting cones θ = θ 1, and θ = θ are maintained at the two potentials Φ 1 = 100, and Φ = 0, respectively, as shown

More information

INGENIERÍA EN NANOTECNOLOGÍA

INGENIERÍA EN NANOTECNOLOGÍA ETAPA DISCIPLINARIA TAREAS 385 TEORÍA ELECTROMAGNÉTICA Prof. E. Efren García G. Ensenada, B.C. México 206 Tarea. Two uniform line charges of ρ l = 4 nc/m each are parallel to the z axis at x = 0, y = ±4

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Math review. Math review

Math review. Math review Math review 1 Math review 3 1 series approximations 3 Taylor s Theorem 3 Binomial approximation 3 sin(x), for x in radians and x close to zero 4 cos(x), for x in radians and x close to zero 5 2 some geometry

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 940 5.0 - Gradient, Divergence, Curl Page 5.0 5. e Gradient Operator A brief review is provided ere for te gradient operator in bot Cartesian and ortogonal non-cartesian coordinate systems. Sections

More information

Vector Calculus. Dr. D. Sukumar. February 1, 2016

Vector Calculus. Dr. D. Sukumar. February 1, 2016 Vector Calculus Dr. D. Sukumar February 1, 2016 Green s Theorem Tangent form or Ciculation-Curl form c Mdx + Ndy = R ( N x M ) da y Green s Theorem Tangent form or Ciculation-Curl form Stoke s Theorem

More information

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016 Physics 3323, Fall 26 Problem Set 2 due Sep 9, 26. What s my charge? A spherical region of radius R is filled with a charge distribution that gives rise to an electric field inside of the form E E /R 2

More information

is the ith variable and a i is the unit vector associated with the ith variable. h i

is the ith variable and a i is the unit vector associated with the ith variable. h i . Chapter 10 Vector Calculus Features Used right( ), product( ),./,.*, listúmat( ), mod( ), For...EndFor, norm( ), unitv( ),

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Notes 3 Review of Vector Calculus

Notes 3 Review of Vector Calculus ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018 A ˆ Notes 3 Review of Vector Calculus y ya ˆ y x xa V = x y ˆ x Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present

More information

PHYS 281: Midterm Exam

PHYS 281: Midterm Exam PHYS 28: Midterm Exam October 28, 200, 8:00-9:20 Last name (print): Initials: No calculator or other aids allowed PHYS 28: Midterm Exam Instructor: B. R. Sutherland Date: October 28, 200 Time: 8:00-9:20am

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Vector Integrals. Scott N. Walck. October 13, 2016

Vector Integrals. Scott N. Walck. October 13, 2016 Vector Integrals cott N. Walck October 13, 16 Contents 1 A Table of Vector Integrals Applications of the Integrals.1 calar Line Integral.........................1.1 Finding Total Charge of a Line Charge..........1.

More information

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and 2.5.2 Standard coordinate systems in R 2 and R Similarly as for functions of one variable, integrals of functions of two or three variables may become simpler when changing coordinates in an appropriate

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A A B1A003 Pages:3 (016 ADMISSIONS) Reg. No:... Name:... APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 017 MA101: CALCULUS Ma. Marks: 100 Duration: 3 Hours PART

More information

Final Review Worksheet

Final Review Worksheet Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Spring 2012 FINAL EXAM REVIEW The final exam will be held on Wednesday 9 May from 8:00 10:00am in our regular classroom. You will be allowed both sides of two 8.5 11 sheets

More information

Math 2433 Notes Week Triple Integrals. Integration over an arbitrary solid: Applications: 1. Volume of hypersolid = f ( x, y, z ) dxdydz

Math 2433 Notes Week Triple Integrals. Integration over an arbitrary solid: Applications: 1. Volume of hypersolid = f ( x, y, z ) dxdydz Math 2433 Notes Week 11 15.6 Triple Integrals Integration over an arbitrary solid: Applications: 1. Volume of hypersolid = f ( x, y, z ) dxdydz S 2. Volume of S = dxdydz S Reduction to a repeated integral

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Summary of various integrals

Summary of various integrals ummary of various integrals Here s an arbitrary compilation of information about integrals Moisés made on a cold ecember night. 1 General things o not mix scalars and vectors! In particular ome integrals

More information

Orthogonal Curvilinear Coordinates

Orthogonal Curvilinear Coordinates Chapter 5 Orthogonal Curvilinear Coordinates Last update: 22 Nov 21 Syllabus section: 4. Orthogonal curvilinear coordinates; length of line element; grad, div and curl in curvilinear coordinates; spherical

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 234 final exam mainly consists of standard response questions where students

More information

Announcements. From now on, the problem sets from each week s homework assignments will be the following Wednesday.

Announcements. From now on, the problem sets from each week s homework assignments will be the following Wednesday. Announcements From now on, the problem sets from each week s homework assignments will be the following Wednesday. Late assignments will not be accepted. I will post the solutions on line after class on

More information

Figure 21:The polar and Cartesian coordinate systems.

Figure 21:The polar and Cartesian coordinate systems. Figure 21:The polar and Cartesian coordinate systems. Coordinate systems in R There are three standard coordinate systems which are used to describe points in -dimensional space. These coordinate systems

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

2-5 The Calculus of Scalar and Vector Fields (pp.33-55)

2-5 The Calculus of Scalar and Vector Fields (pp.33-55) 9/9/2004 sec 2_5 empty.doc 1/5 2-5 The Calculus of Scalar and Vector Fields (pp.33-55) Q: A: 1. 4. 2. 5. 3. 6. A. The Integration of Scalar and Vector Fields 1. The Line Integral 9/9/2004 sec 2_5 empty.doc

More information

Total Charge: Line, Surface and Volume Integrals

Total Charge: Line, Surface and Volume Integrals Lecture 3 Total Charge: Line, Surface and Volume Integrals Sections: 1.8, 1.9,.3 Homework: See homework file LECTURE 3 slide 1 y Line Elements 1 metric increment in position along a line -D SPACE rectangular

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

1-10 /50 11 /30. MATH 251 Final Exam Fall 2015 Sections 512 Version A Solutions P. Yasskin 12 / 5 13 /20

1-10 /50 11 /30. MATH 251 Final Exam Fall 2015 Sections 512 Version A Solutions P. Yasskin 12 / 5 13 /20 Name ID - /5 MATH 5 Final Exam Fall 5 Sections 5 Version A Solutions P. Yasskin Multiple hoice: (5 points each. No part credit.) / / 5 / Total /5. A triangle has vertices A,,, B,, and, 5,. Find the angle

More information

1.1. Fields Partial derivatives

1.1. Fields Partial derivatives 1.1. Fields A field associates a physical quantity with a position A field can be also time dependent, for example. The simplest case is a scalar field, where given physical quantity can be described by

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Fall 2011 FINAL EXAM REVIEW The final exam will be held on Wednesday 14 December from 10:30am 12:30pm in our regular classroom. You will be allowed both sides of an 8.5 11

More information

Solutions to Practice Exam 2

Solutions to Practice Exam 2 Solutions to Practice Eam Problem : For each of the following, set up (but do not evaluate) iterated integrals or quotients of iterated integral to give the indicated quantities: Problem a: The average

More information

Lecture 7 Total Surface and Volume Charges

Lecture 7 Total Surface and Volume Charges Lecture 7 Total Surface and Volume Charges Sections: 2.3 Homework: See homework file the surface element is defined by two line elements: ds= dl dl 1 2 the surface element is a vector Surface Elements

More information

Department of Physics IIT Kanpur, Semester II,

Department of Physics IIT Kanpur, Semester II, Department of Phsics IIT Kanpur, Semester II, 7-8 PHYA: Phsics II Solutions # Instructors: AKJ & SC Solution.: (a) At the top of the hill, the gradient of the height function should be ero, that is, h(,

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Page Problem Score Max Score a 8 12b a b 10 14c 6 6 Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

More information

(b) For the system in question, the electric field E, the displacement D, and the polarization P = D ɛ 0 E are as follows. r2 0 inside the sphere,

(b) For the system in question, the electric field E, the displacement D, and the polarization P = D ɛ 0 E are as follows. r2 0 inside the sphere, PHY 35 K. Solutions for the second midterm exam. Problem 1: a The boundary conditions at the oil-air interface are air side E oil side = E and D air side oil side = D = E air side oil side = ɛ = 1+χ E.

More information

Week 7: Integration: Special Coordinates

Week 7: Integration: Special Coordinates Week 7: Integration: Special Coordinates Introduction Many problems naturally involve symmetry. One should exploit it where possible and this often means using coordinate systems other than Cartesian coordinates.

More information

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Spring A Short Math Guide. Cartesian (x, y) Polar (r, θ)

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Spring A Short Math Guide. Cartesian (x, y) Polar (r, θ) University of Alabama Department of Physics and Astronomy PH 125 / LeClair Spring 2009 A Short Math Guide 1 Definition of coordinates Relationship between 2D cartesian (, y) and polar (r, θ) coordinates.

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry So far, all our calculus has been two-dimensional, involving only x and y. Nature is threedimensional,

More information

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

(You may need to make a sin / cos-type trigonometric substitution.) Solution. MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 13. Show all your work on the standard

More information

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E Topic 7 Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E urface enclosing an electric dipole. urface enclosing charges 2q and q. Electric flux Flux density : The number of field

More information

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Answer sheet: Final exam for Math 2339, Dec 10, 2010 Answer sheet: Final exam for Math 9, ec, Problem. Let the surface be z f(x,y) ln(y + cos(πxy) + e ). (a) Find the gradient vector of f f(x,y) y + cos(πxy) + e πy sin(πxy), y πx sin(πxy) (b) Evaluate f(,

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

Additional Mathematical Tools: Detail

Additional Mathematical Tools: Detail Additional Mathematical Tools: Detail September 9, 25 The material here is not required, but gives more detail on the additional mathmatical tools: coordinate systems, rotations, the Dirac delta function

More information

Electromagnetic Field Theory (EMT) Lecture # 7 Vector Calculus (Continued)

Electromagnetic Field Theory (EMT) Lecture # 7 Vector Calculus (Continued) Electromagnetic Field Theory (EMT) Lecture # 7 Vector Calculus (Continued) Topics to be Covered: Vector Calculus Differential Length, Area, and Volume Line, Surface, and Volume Integrals Del Operator Gradient

More information

VARIATIONAL PRINCIPLES

VARIATIONAL PRINCIPLES CHAPTER - II VARIATIONAL PRINCIPLES Unit : Euler-Lagranges s Differential Equations: Introduction: We have seen that co-ordinates are the tools in the hands of a mathematician. With the help of these co-ordinates

More information