INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS

Size: px
Start display at page:

Download "INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS"

Transcription

1 INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS David G Fearn, 23 Bowenhurst Road, Church Crookham, Fleet, Hants, GU52 6HS, UK dg.fearn@virgin.net Roger Walker Advanced Concepts Team, ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, Holland Roger.Walker@esa.int ESTEC 21 February

2 Contents Objectives of the study Ion thruster principles of operation Ion thruster scaling Feasible objectives Modified ion extraction and acceleration system High SI and high power operation Performance evaluation Power source Typical mission requirements Implications for spacecraft and ion propulsion system Results of parametric study Description of experiments at ESTEC DS4G ion thruster Results Conclusions 2

3 Objectives Demonstrate that the use of gridded ion thrusters enables very high total impulses to be achieved at ultra-high values of specific impulse Requirements for interstellar precursor missions can be met at moderate cost Useful data return can be achieved within about 25 to 30 years Avoid gravity-assist manoeuvres to keep launch windows flexible Include launch to low Earth orbit to minimise cost Confirm that high thrust density and SI can be achieved Based initially on experimental results from CTR particle injector programmes Produce parametric data to aid future mission design Conduct experimental evaluation of the 4-grid ion extraction and acceleration concept Demonstrate that the two processes can be separated Assess performance capabilities 3

4 Gridded Ion Engine T6 Thruster (QinetiQ) 4

5 Ion Extraction Grid Configuration Triple-grid configuration, indicating the effects of the sheath shape on ion trajectories 5

6 What is Feasible? Authors (Propell) CTR Devices Okumura (H) Grid Size (cm) Open Area Ratio (%) Beam Energy (kev) Beam Current (A) Beam Power (kw) Beam Diverg (deg) Current Density (ma/cm 2 ) Thrust (N) SI (s) 10 dia ,000 Ohara* (H) 12 dia ,000 Menon (H) 18 dia ,000 Martin** (H) ,000 Ion Thrusters Wilbur (Xe) ? ,900 Wilbur (Ar) ? ,000 * Design study ** Production devices from the UKAEA Culham Laboratory Derived from experiments with Ar 6

7 Modified Ion Extraction Grid Configuration Schematic diagram of 4-grid system as used in CTR injection machines. The ion extraction process is separated from the acceleration process. The ion beam current density can be independent of the SI. 7

8 Governing Equations (1) 8

9 Governing Equations (2) Maximum Values of Major Parameters 9

10 Performance Predictions 20 cm beam diameter thruster with 4-grid system Xe propellant 85% propellant utilisation efficiency Flat plasma density profile for long grid life 5 kv ion extraction Net Beam Accelerating Potential (kv) Maximum thrust, 50% perveance (N) Thrust density (mn/cm 2 ) Beam current (A) Input power at 50% Perveance (kw) SI (s) ,100 13,600 15,700 19,300 24,900 29,400 Power density (W/cm 2 )

11 Power Source Must be nuclear fission No other alternative is viable for deep space, high energy missions Solar radiation intensity is negligible Based study on Topaz 2 reactor Selected for cancelled NEPSTP mission 135 kw thermal, 6 kw output from thermionic diodes Mass about 1 tonne, including radiator, shielding, etc Turbo-machinery can raise output to up to 50 kw Radiator mass reduced considerably Assume 22 to 27 kg/kw Consistent with parametric studies of future nuclear technology Power output must be consistent with long life Need to de-rate for long missions 11

12 Reactor Specific Mass 12

13 Spacecraft Schematic Diagram Based on Nuclear Electric Propulsion Space Test Program Mission 13

14 Typical Mission Requirements Mission Typical V (km/s) Minimum SI (s) Nearby planets Outer planets AU ,000 10,000 AU ,000 Interstellar 30, Interstellar precursor mission examples; Kuiper Belt, AU Heliopause, 100 AU Gravitational lens focus of Sun, 550 AU 14

15 Mission Implications for Propulsion System Launch to nuclear-safe altitude of 5000 km Spiral orbit-raise manoeuvre to Earth escape, using NEP V = 5.9 km/s Similar spiral orbit raise manoeuvre to escape from Sun s gravitational field V = 29.8 km/s; total escape V = 35.7 km/s (ignores gravity losses) Continue to accelerate away from the Sun Ultra-high SI required to minimise propellant load and launch mass Assumptions: Tankage mass is 6% of propellant mass Basic spacecraft mass, including payload, is 5 tonnes Power system mass is 25 kg/kw, based on Topaz 2 technology Reactor output selected to match thruster requirements at 0.5 N Thruster life is 20,000 hours; gives number required Mass of thrusters and associated components scaled from existing devices, assuming constant 0.5 N thrust 15

16 Launch Mass as Function of SI Launch Mass (tonnes) M sc = 5 tonnes T = 0.5 N α n = 25 kg/kw M ps = 156 kg Optimum SI = 20,000 s V B = 35 kv P T = 60 kw One 20 cm thruster required Launch mass as low as 8.1 tonnes Specific Impulse (1000 s) 16

17 Input Power and Beam Accel Potential vs SI Input Power (kw) Power (kw) Beam Accel Potential (kv) Beam Accel Potential (kv) Optimum SI = 20,000 s V B = 35 kv P T = 60 kw T = 0.5 N α n = 25 kg/kw Specific Impulse (1000 s) 0 17

18 Nominal Distance Achieved in 25 yr vs SI 150 Distance in 25 yr (AU) M sc = 5 tonnes T = 0.5 N α n = 25 kg/kw M ps = 156 kg 140 AU exceeded Specific Impulse (1000 s) 18

19 Time Required to Achieve Escape V vs SI Time to achieve escape (yr) M sc = 5 tonnes T = 0.5 N α n = 25 kg/kw M ps = 156 kg Time well below specified 25 yr Optimum time does not equate to optimum SI Specific Impulse (1000 s) 19

20 Effect on Optimum SI of Basic Spacecraft Mass 25 Optimum SI (1000 s) T = 0.5 N α n = 25 kg/kw M ps = 156 kg Optimum SI increases with M sc Payload Mass (tonnes) 20

21 Nominal Distance Achieved in 25 yr and Time Required to Achieve Escape V vs M sc Optimum SI Assumed Distance in 25 yr (AU) Distance Time Time to achieve escape (yr) T = 0.5 N α n = 25 kg/kw M ps = 156 kg Performance much improved if M sc can be reduced Distance can exceed 200 AU Payload Mass (tonnes) 0 21

22 Effect of Power Source Specific Mass Launch Mass vs SI Launch Mass (Tonnes) kg/kw 25 kg/kw 35 kg/kw M sc = 5 tonnes T = 0.5 N M ps = 156 kg Optimum SI moves to higher value as α n decreases Optimum is 24,000 s at 15 kg/kw Specific Impulse (1000 s) 22

23 Effect of Nominal Thrust Launch Mass and Input Power vs Thrust Mass Power M sc = 5 tonnes SI = 20,000 s Launch Mass (tonnes) Input Power (kw) M ps variable α n = 25 kg/kw Both parameters increase linearly with thrust 13.5 tonnes at 2 N 240 kw at 2 N Thrust (N) 23

24 Effect of Nominal Thrust Distance Achieved in 25 yr and Time to Reach Escape V vs Thrust Nominal distance in 25 yr (AU) Distance Time Time to achieve escape (yr) M sc = 5 tonnes SI = 20,000 s M ps variable α n = 25 kg/kw 300 AU exceeded at 2 N 7 yr to reach escape Thrust (N) 5 24

25 Experimental Programme at ESTEC Objectives Establish the validity of the physical concepts underlying the 4-grid proposal Demonstrate the separation of the ion extraction and ion acceleration processes Method Utilise simple thruster based on RF discharge for ion production Extract ions from central region of the discharge chamber only to avoid complications caused by plasma density variations over the grid Procedure Start with simple single aperture (1 mm diameter in screen grid) Extend to 43 holes of 1 mm diameter In each case, gradually increase total applied potential to 30 kv Optimise ion extraction potential Measure ion beam characteristics 25

26 Proof-of-Concept Experiment GSP contract established with Plasma Research Laboratory, Australian National University (ANU) in June 2005 ANU designed, developed and delivered a lab model prototype of the Dual-Stage 4-Grid (DS4G) ion thruster to ESA specifications in 4 months DS4G thruster was tested in the ESTEC EPL CORONA vacuum facility during November 2005 with support from ANU and EPL Beam diagnostic tools: Electrostatic wires (beam divergence) Faraday cup (ion current density) Langmuir probe (beam plasma potential, T e, n e ) Tests very successful Extra tests with new grid design planned for May 2006 to further improve performance 26

27 DS4G Thruster Design 5 cm diameter RF discharge chamber ( W) Xenon gas 4 grids with 43 apertures, 2.3 cm beam diameter Grid open area ratio 8% Total beam potential up to 30 kv 27

28 DS4G Thruster in Operation 28

29 Measured Performance Total beam potential up to 30 kv Specific impulse up to 19,200 seconds* Thrust up to 2.85 mn Beam power W Thrust density 8.6 mn/cm 2 (open area)* Power density 740 W/cm 2 (open area)* Propellant utilisation efficiency up to 90% Total efficiency up to 36 % Direct ion impingement on electrodes <1% Beam divergence 2.5 degrees* * World bests with Xe propellant 29

30 Potential Applications Low power, high V, small robotic missions RTG-based 1000kg-class spacecraft to the edge of the solar system e.g. orbiters for Saturn, Neptune, Pluto, KBO rendezvous, local interstellar medium High power, high V, large robotic missions Nuclear reactor-based robotic spacecraft to the outer solar system, with possible sample return capability (200 kw thruster, 1-2 N thrust) Moon/Mars reusable NEP or SEP cargo tugs ( kw thruster) Very high power, high V human missions Nuclear reactor-based multi-mw advanced human Mars spacecraft (small cluster of 1 MW thrusters each of cm diameter) 30

31 Conclusions A 4-grid ion extraction and acceleration system permits very high values of SI to be achieved from a gridded ion thruster Power and thrust densities are of interest for interstellar precursor missions Typical maximum values for a 20 cm beam diameter thruster at 30 kv are 5.8 N thrust, 600 kw input power and an SI of 19,300 s A parametric study has shown that distances from the sun of >300 AU are feasible within 25 yr, with a launch mass of less than 10 tonnes The time to achieve escape velocity can be as little as 7 yr Such a performance is only possible using a nuclear fission power source, with turbomachinery employed for power conversion The preliminary experiments at ESTEC have verified the 4-grid principle Previously unattainable performance data have been achieved These include an SI of 19, 200 s, a thrust density of 8.6 mn/cm 2, and a beam divergence of

The Design and Operation of Beam Diagnostics for the Dual Stage 4-Grid Ion Thruster

The Design and Operation of Beam Diagnostics for the Dual Stage 4-Grid Ion Thruster The Design and Operation of Beam Diagnostics for the Dual Stage 4-Grid Ion Thruster IEPC-2007-050 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Cristina Bramanti

More information

MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden Coherent Beaming of Plasma. Separation of Power/Fuel from Payload

MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden Coherent Beaming of Plasma. Separation of Power/Fuel from Payload MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden Coherent Beaming of Plasma Separation of Power/Fuel from Payload Fast, cost-efficient propulsion for multiple missions Plasma Propulsion

More information

The µnrit-4 Ion Engine: a first step towards a European mini-ion Engine System development.

The µnrit-4 Ion Engine: a first step towards a European mini-ion Engine System development. The µnrit-4 Ion Engine: a first step towards a European mini-ion Engine System development. IEPC-2007-218 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy D. Feili*

More information

Electric Propulsion. An short introduction to plasma and ion spacecraft propulsion. S. Barral. Instytut Podstawowych Problemów Techniki - PAN

Electric Propulsion. An short introduction to plasma and ion spacecraft propulsion. S. Barral. Instytut Podstawowych Problemów Techniki - PAN Electric Propulsion An short introduction to plasma and ion spacecraft propulsion S. Barral Instytut Podstawowych Problemów Techniki - PAN sbarral@ippt.gov.pl S. Barral (IPPT-PAN) Electric Propulsion 1

More information

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari Electric Propulsion Survey: outlook on present and near future technologies / perspectives by Ing. Giovanni Matticari Electric Propulsion: a concrete reality on many S/C GOCE ARTEMIS ARTEMIS SMART-1 EP

More information

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008 Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or 2018 2007 Solar Probe Study & Mission Requirements Trajectory study and mission design trades were conducted in the fall

More information

Fusion-Enabled Pluto Orbiter and Lander

Fusion-Enabled Pluto Orbiter and Lander Fusion-Enabled Pluto Orbiter and Lander Presented by: Stephanie Thomas DIRECT FUSION DRIVE Team Members Stephanie Thomas Michael Paluszek Princeton Satellite Systems 6 Market St. Suite 926 Plainsboro,

More information

Powered Space Flight

Powered Space Flight Powered Space Flight KOIZUMI Hiroyuki ( 小泉宏之 ) Graduate School of Frontier Sciences, Department of Advanced Energy & Department of Aeronautics and Astronautics ( 基盤科学研究系先端エネルギー工学専攻, 工学系航空宇宙工学専攻兼担 ) Scope

More information

The Influence of Charge-Exchange Ions on the Beam Divergence of an Ion Thruster

The Influence of Charge-Exchange Ions on the Beam Divergence of an Ion Thruster The Influence of Charge-Exchange Ions on the Beam Divergence of an Ion Thruster David H Mundy Space Department, QinetiQ, Farnborough, Hants, GU14 0LX, UK (44)-1252-393078 dhmundy@scs.dera.gov.uk David

More information

Solar Sailing as an Enabling Technology

Solar Sailing as an Enabling Technology Dr. Eur Ing Malcolm Macdonald 22 April 2009 at the European Week of Astronomy and Space Science Solar Sailing as an Enabling Technology www.strath.ac.uk/space malcolm.macdonald.102@strath.ac.uk Overview

More information

Antimatter Driven Sail for Deep Space Exploration

Antimatter Driven Sail for Deep Space Exploration Antimatter Driven Sail for Deep Space Exploration Dr. Steven D. Howe Dr. Gerald P. Jackson Hbar Technologies, LLC Any technology being presented to you at this workshop will need at least one miracle in

More information

Deployment of an Interstellar Electromagnetic Acceleration System

Deployment of an Interstellar Electromagnetic Acceleration System Deployment of an Interstellar Electromagnetic Acceleration System Andrew Bingham Department of Mechanical and Aeronautical Engineering Clarkson University Phase I Fellows Meeting March 15-16, 2005 Atlanta,

More information

Astrodynamics of Moving Asteroids

Astrodynamics of Moving Asteroids Astrodynamics of Moving Asteroids Damon Landau, Nathan Strange, Gregory Lantoine, Tim McElrath NASA-JPL/CalTech Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. Capture

More information

Numerical Simulation of HiPEP Ion Optics

Numerical Simulation of HiPEP Ion Optics Numerical Simulation of HiPEP Ion Optics Farnell Cody C. Colorado State University The ffx code was used to investigate the lifetime and propellant throughput capability of the High Power Electric Propulsion

More information

An introduction to the plasma state in nature and in space

An introduction to the plasma state in nature and in space An introduction to the plasma state in nature and in space Dr. L. Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The plasma state of condensed matter

More information

Low Thrust Trajectory Analysis (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2)

Low Thrust Trajectory Analysis (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2) (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2) Prepared by: Andrew V. Ilin Ad Astra Rocket Company 141 W. Bay Area Blvd Webster, TX 77598 In fulfillment of Task Number 5 of

More information

Kinetic modelling of the jet extraction mechanism in spherical IEC devices

Kinetic modelling of the jet extraction mechanism in spherical IEC devices Kinetic modelling of the jet extraction mechanism in spherical IEC devices Type of activity: Standard study 1 Background & Study Motivation 1.1 Introduction Inertial Electrostatic Confinement (IEC) devices

More information

Development of stationary plasma thruster SPT-230 with discharge power of kw

Development of stationary plasma thruster SPT-230 with discharge power of kw Development of stationary plasma thruster SPT-230 with discharge power of 10...15 kw IEPC-2017-548 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta,

More information

Ion Thruster Optical Performance Enhancement via Ion-emissive-surface Shaping

Ion Thruster Optical Performance Enhancement via Ion-emissive-surface Shaping Ion Thruster Optical Performance Enhancement via Ion-emissive-surface Shaping IEPC--9 Presented at the 9 th International Electric Propulsion Conference, Princeton University, Paul J. Wilbur *, Cody Farnell,

More information

Ring Cusp Ion Engine Development in the UK

Ring Cusp Ion Engine Development in the UK Ring Cusp Ion Engine Development in the UK IEPC-2015-130/ISTS-2015-b- 130 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion

More information

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility IEPC-2015-b/IEPC-388 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th

More information

Interstellar Exploration Through Repeated External Acceleration

Interstellar Exploration Through Repeated External Acceleration Interstellar Exploration Through Repeated External Acceleration Andrew Bingham NIAC Student Fellows Prize Department of Mechanical and Aeronautical Engineering, Clarkson University NIAC Fellows Meeting,

More information

A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories

A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories IEPC-2011-010 * Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany David

More information

Abstract. Objectives. Theory

Abstract. Objectives. Theory A Proposal to Develop a Two-Stage Gridless Ion Thruster with Closed Electron Drift Richard R. Hofer Plasmadynamics and Electric Propulsion Laboratory (PEPL) Department of Aerospace Engineering University

More information

Solar Orbiter Ballistic Transfer Mission Analysis Synthesis

Solar Orbiter Ballistic Transfer Mission Analysis Synthesis European Space Agency Agence Spatiale Européenne directorate of operations and infrastructure ground systems engineering department mission analysis office MAO Working Paper No. 483 Issue 1, Rev. 0 Solar

More information

Solar Thermal Propulsion

Solar Thermal Propulsion AM A A A01-414 AIAA 2001-77 Solar Thermal Propulsion SOLAR THERMAL PROPULSION FOR AN INTERSTELLAR PROBE Ronald W. Lyman, Mark E. Ewing, Ramesh S. Krishnan, Dean M. Lester, Thiokol Propulsion Brigham City,

More information

Technology Reference Studies

Technology Reference Studies In the proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 Technology Reference Studies P.

More information

PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET. Abstract

PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET. Abstract PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET T. Kammash Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 (313) 764-0205 W. Emrich Jr.

More information

A simple electric thruster based on ion charge exchange

A simple electric thruster based on ion charge exchange A simple electric thruster based on ion charge exchange IEPC-2007-35 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Joe Khachan and Lachlan Blackhall University of

More information

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK IAC-13,C4,P,44.p1,x1754 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER Roger Shawyer C.Eng. MIET. FRAeS SPR Ltd UK sprltd@emdrive.com ABSTRACT The static operation of an EmDrive microwave

More information

THE OPTIMISATION OF THE UK-10 ION THRUSTER EXTRACTION GRID SYSTEM

THE OPTIMISATION OF THE UK-10 ION THRUSTER EXTRACTION GRID SYSTEM IEPC-97-138 876 THE OPTIMISATION OF THE UK-10 ION THRUSTER EXTRACTION GRID SYSTEM Robert A Bond AEA Technology plc Culham Science and Technology Centre Abingdon, Oxon, OX14 3DB United Kingdom David G Feam,

More information

Mission Analysis, Spacecraft Concept and Ion Thruster Design for a Low-Cost Rendezvous with an Asteroid

Mission Analysis, Spacecraft Concept and Ion Thruster Design for a Low-Cost Rendezvous with an Asteroid Mission Analysis, Spacecraft Concept and Ion Thruster Design for a Low-Cost Rendezvous with an Asteroid IEPC-2005-226 Presented at the 29 th International Electric Propulsion Conference, Princeton University,

More information

QinetiQ Proprietary BepiColombo TDA

QinetiQ Proprietary BepiColombo TDA Bepi Colombo TDA Technology Status Review 22.02.2005 Agenda 1. Objectives of TDA 2. Technology Requirements 3. Scope of TDA 4. Schedule 5. Deliverables 6. Critical Technologies not met 7. Critical technology

More information

IAC-02-S.4.02 PERFORMANCE REQUIREMENTS FOR A NUCLEAR ELECTRIC PROPULSION SYSTEM

IAC-02-S.4.02 PERFORMANCE REQUIREMENTS FOR A NUCLEAR ELECTRIC PROPULSION SYSTEM IAC-2-S.4.2 PERFORMANCE REQUIREMENTS FOR A NUCLEAR ELECTRIC PROPULSION SYSTEM Larry Kos In-Space Technical Lead Engineer NASA Marshall Space Flight Center MSFC, Alabama, 35812 (USA) E-mail: larry.kos@msfc.nasa.gov

More information

The ROSETTA/CNSR Mission

The ROSETTA/CNSR Mission The ROSETTA/CNSR Mission 88-009 A possible application of electric propulsion to interplanetary missions A. Atzei, 0/SCI, ESA/ESTEC, Noordwijk, The Netherlands 1. SUMMARY AND INTRODUCTION 4000 kg, including

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

NEW HORIZONS 2. New Horizons: A Journey to New Frontiers

NEW HORIZONS 2. New Horizons: A Journey to New Frontiers NEW HORIZONS 2 New Horizons: A Journey to New Frontiers WHY NEW HORIZONS 2? PROVIDE BACKUP FOR THE HIGHEST PRIORITY NF OBJECTIVE OF THE DECADAL SURVEY. ENABLE THE FIRST EXPLORATION OF A LARGE (500 KM CLASS)

More information

Orbital Dynamics and Impact Probability Analysis

Orbital Dynamics and Impact Probability Analysis Orbital Dynamics and Impact Probability Analysis (ISAS/JAXA) 1 Overview This presentation mainly focuses on a following point regarding planetary protection. - How to prove that a mission satisfies the

More information

Helicon Plasma Thruster Persepective and At University of Padua

Helicon Plasma Thruster Persepective and At University of Padua Helicon Plasma Thruster Persepective and Development status and future development At University of Padua D.Pavarin, M.Manente, F.Trezzolani, A.Selmo, M.Magarotto, E.Toson Outline Helicon Thruster overview

More information

Factors Affecting the Beam Divergence of a T5 Ion Engine

Factors Affecting the Beam Divergence of a T5 Ion Engine IEPC-97-095 594 Factors Affecting the Beam Divergence of a T5 Ion Engine by David H Mundy Space Department, Defence Evaluation and Research Agency, Farnborough, Hampshire, GU14 OLX, UK Abstract The aim

More information

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory IEPC-2015-90161 Presented at Joint Conference of 30th International

More information

OPTIMISATION COMPETITION

OPTIMISATION COMPETITION 1 ST ACT GLOBAL TRAJECTORY OPTIMISATION COMPETITION Carlos Corral Van Damme Raul Cadenas Gorgojo Jesus Gil Fernandez (GMV, S.A.) ESTEC, 2 nd February, 2006 GMV S.A., 2006 Property of GMV S.A. All rights

More information

Overview of the Jovian Exploration Technology Reference Studies

Overview of the Jovian Exploration Technology Reference Studies Overview of the Jovian Exploration Technology Reference Studies The Challenge of Jovian System Exploration Peter Falkner & Alessandro Atzei Solar System Exploration Studies Section ESA/ESTEC Peter.Falkner@esa.int,

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

Experimental study of a high specific impulse plasma thruster PlaS-120

Experimental study of a high specific impulse plasma thruster PlaS-120 Experimental study of a high specific impulse plasma thruster PlaS-120 IEPC-2015-154 /ISTS-2015-b-154 Presented at Joint Conference of 30 th International Symposium on Space Technology and Science 34 th

More information

Mission Design Options for Solar-C Plan-A

Mission Design Options for Solar-C Plan-A Solar-C Science Definition Meeting Nov. 18, 2008, ISAS Mission Design Options for Solar-C Plan-A Y. Kawakatsu (JAXA) M. Morimoto (JAXA) J. A. Atchison (Cornell U.) J. Kawaguchi (JAXA) 1 Introduction 2

More information

Astrodynamics tools in the ESTEC Concurrent Design Facility. Robin Biesbroek CDF Technical Assistant ESA/ESTEC Noordwijk - NL

Astrodynamics tools in the ESTEC Concurrent Design Facility. Robin Biesbroek CDF Technical Assistant ESA/ESTEC Noordwijk - NL Astrodynamics tools in the ESTEC Concurrent Design Facility Robin Biesbroek CDF Technical Assistant ESA/ESTEC Noordwijk - NL CDF Astrodynamics CDF Presentation - 1 Introduction Concurrent Design Facility

More information

Research Article Analysis of Electric Propulsion System for Exploration of Saturn

Research Article Analysis of Electric Propulsion System for Exploration of Saturn Mathematical Problems in Engineering Volume 29, Article ID 75637, 4 pages doi:.55/29/75637 Research Article Analysis of Electric Propulsion System for Exploration of Saturn Carlos Renato Huaura Solórzano,

More information

Development of Methods for Rapid Electric Propulsion System Design and Optimization

Development of Methods for Rapid Electric Propulsion System Design and Optimization Development of Methods for Rapid Electric Propulsion System Design and Optimization IEPC-2009-220 Presented at the 31st International Electric Propulsion Conference, University of Michigan Ann Arbor, Michigan

More information

Gravitational Potential Energy and Total Energy *

Gravitational Potential Energy and Total Energy * OpenStax-CNX module: m58347 Gravitational Potential Energy and Total Energy * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of

More information

Electric Propulsion for Space Travel

Electric Propulsion for Space Travel Electric Propulsion for Space Travel Sarah Cusson Ph.D. Candidate NASA Space Technology Research Fellow University of Michigan Plasmadynamics and Electric Propulsion Laboratory Agenda History of electric

More information

Interplanetary Mission Opportunities

Interplanetary Mission Opportunities Interplanetary Mission Opportunities Introduction The quest for unravelling the mysteries of the universe is as old as human history. With the advent of new space technologies, exploration of space became

More information

Prospects for the use of nuclear power sources in outer space. Working document submitted by the Russian Federation

Prospects for the use of nuclear power sources in outer space. Working document submitted by the Russian Federation United Nations A/AC.105/C.1/L.265 General Assembly Distr.: Limited 19 February 2003 English Original: Russian Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Fortieth

More information

Figure 1, Schematic Illustrating the Physics of Operation of a Single-Stage Hall 4

Figure 1, Schematic Illustrating the Physics of Operation of a Single-Stage Hall 4 A Proposal to Develop a Double-Stage Hall Thruster for Increased Efficiencies at Low Specific-Impulses Peter Y. Peterson Plasmadynamics and Electric Propulsion Laboratory (PEPL) Aerospace Engineering The

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

Friday, November 29, The challenge of interstellar travel

Friday, November 29, The challenge of interstellar travel The challenge of interstellar travel The challenge of interstellar travel Interstellar travel - travel between star systems - presents one overarching challenge: The distances between stars are enormous

More information

In-situ temperature, grid curvature, erosion, beam and plasma characterization of a gridded ion thruster RIT-22

In-situ temperature, grid curvature, erosion, beam and plasma characterization of a gridded ion thruster RIT-22 In-situ temperature, grid curvature, erosion, beam and plasma characterization of a gridded ion thruster RIT-22 IEPC-2009-160 Presented at the 31st International Electric Propulsion Conference, University

More information

EXPERIMENTAL EVALUATION OF SUB-SCALE CBIO ION OPTICS SYSTEMS

EXPERIMENTAL EVALUATION OF SUB-SCALE CBIO ION OPTICS SYSTEMS 39 th Joint Propulsion Conference AIAA 2003-5165 Huntsville Alabama, 21-24 July 2003 EXPERIMENTAL EVALUATION OF SUB-SCALE CBIO ION OPTICS SYSTEMS D. Mark Laufer, *, John D. Williams, Casey C. Farnell,

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title High current density beamlets from RF Argon source for heavy ion fusion applications Permalink https://escholarship.org/uc/item/6zh6c50m

More information

Physics 122, Fall September 2012

Physics 122, Fall September 2012 Today in Physics 122: Gauss Day Electrostatic ion drive Flux of E Flux of E through closed surfaces, and enclosed charge Gauss s law: an easier way to calculate E for symmetrical charge distributions.

More information

Problem A: Solar Sailing to Mars

Problem A: Solar Sailing to Mars Problem A: Solar Sailing to Mars Team 670 November 13, 017 Abstract Solar sails became reality lately, being far more affordable then most of modern methods of propulsion in space. They obviously have

More information

Performance mapping of new gn-rits at Giessen

Performance mapping of new gn-rits at Giessen Performance mapping of new gn-rts at Giessen EPC-2005-252 Presented at the 29 th nternational Electric Propulsion ConJerence, Princeton University, D. Feili*,H. W. Loeb, K. H. Schartner, St. Weis, D. Kirmse,

More information

K.F.Long, P.Galea, R.W.Swinney, A.Hein, A.Mann, M.Millis + Project Icarus Study Group

K.F.Long, P.Galea, R.W.Swinney, A.Hein, A.Mann, M.Millis + Project Icarus Study Group PROJECT ICARUS: EXPLORING THE INTERSTELLAR ROADMAP USING THE ICARUS PATHFINDER PROBE AND ICARUS STARFINDER PROBE A LEVEL ONE (CONCEPT BUILDER) TRADE STUDY REPORT. K.F.Long, P.Galea, R.W.Swinney, A.Hein,

More information

Electrodynamic Tether at Jupiter 1. Capture operation and constraints

Electrodynamic Tether at Jupiter 1. Capture operation and constraints Electrodynamic Tether at Jupiter 1. Capture operation and constraints Juan R. Sanmartin and M. Charro, Universidad Politecnica de Madrid E. Lorenzini, University of Padova, H. Garrett, Jet Propulsion Laboratory

More information

L eaving Earth and arriving at another planet or asteroid requires

L eaving Earth and arriving at another planet or asteroid requires Designing Interplanetary Transfers L eaving Earth and arriving at another planet or asteroid requires a spacecraft to implement a sequence of manoeuvres. These include changes of velocity needed to escape

More information

Effect of Plasma Plume on CubeSat Structures as a Function of Thrust Vectoring

Effect of Plasma Plume on CubeSat Structures as a Function of Thrust Vectoring Effect of Plasma Plume on CubeSat Structures as a Function of Thrust Vectoring IEPC-2015-157 /ISTS-2015-b-157 Presented at Joint Conference of 30th International Symposium on Space Technology and Science

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

Experimental Studies of Helicon Double Layers for Future High Power Plasma Propulsion

Experimental Studies of Helicon Double Layers for Future High Power Plasma Propulsion AIAA 26-4844 Experimental Studies of Helicon Double Layers for Future High Power Plasma Propulsion Roger Walker * ESA-ESTEC, Keplerlaan 1, 221 AZ Noordwijk, The Netherlands Nicolas Plihon, Pascal Chabert,

More information

Development and qualification of Hall thruster KM-60 and the flow control unit

Development and qualification of Hall thruster KM-60 and the flow control unit Development and qualification of Hall thruster KM-60 and the flow control unit IEPC-2013-055 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington,

More information

- 581 IEPC the ion beam diagnostics in detail such as measurements of xenon with double charges, Introduction

- 581 IEPC the ion beam diagnostics in detail such as measurements of xenon with double charges, Introduction - 581 IEPC-95-89 300 HOURS ENDURANCE TEST OF MICROWAVE ION THRUSTER Shin Satori*, Hitoshi Kuninaka* and Kyoichi Kuriki** Institute of Space and Astronautical Science 3-1-1, Yoshinodai, Sagamihara, Kanagawa

More information

ANALYSIS OF CHEMICAL, REP, AND SEP MISSIONS TO THE TROJAN ASTEROIDS

ANALYSIS OF CHEMICAL, REP, AND SEP MISSIONS TO THE TROJAN ASTEROIDS AAS 05-396 ANALYSIS OF CHEMICAL, REP, AND SEP MISSIONS TO THE TROJAN ASTEROIDS Eugene P. Bonfiglio *, David Oh, and Chen-Wan Yen Recent studies suggest significant benefits from using 1 st and 2 nd generation

More information

Thermal Radiation Studies for an Electron-Positron Annihilation Propulsion System

Thermal Radiation Studies for an Electron-Positron Annihilation Propulsion System Thermal Radiation Studies for an Electron-Positron Annihilation Propulsion System Jonathan A. Webb Embry Riddle Aeronautical University Prescott, AZ 8631 Recent studies have shown the potential of antimatter

More information

Earth-Mars Halo to Halo Low Thrust

Earth-Mars Halo to Halo Low Thrust Earth-Mars Halo to Halo Low Thrust Manifold Transfers P. Pergola, C. Casaregola, K. Geurts, M. Andrenucci New Trends in Astrodynamics and Applications V 3 June / -2 July, 28 Milan, Italy Outline o Introduction

More information

Astrodynamics of Interplanetary Cubesats

Astrodynamics of Interplanetary Cubesats Astrodynamics of Interplanetary Cubesats F. Topputo Politecnico di Milano, Italy 06 F. Topputo, Politecnico di Milano. All rights reserved. icubesat 06, 5th Interplanetary CubeSat Workshop 4-5 May 06,

More information

Status of the European Student Moon Orbiter (ESMO) Project:

Status of the European Student Moon Orbiter (ESMO) Project: Status of the European Student Moon Orbiter (ESMO) Project: Roger Walker, Project Manager Education Projects Unit, ESA Education Office, ESTEC 1 What is ESMO? Fourth mission in the ESA Education Satellite

More information

Experimental Studies of Ion Beam Neutralization: Preliminary Results

Experimental Studies of Ion Beam Neutralization: Preliminary Results Experimental Studies of Ion Beam Neutralization: Preliminary Results N. Ding, J. Polansky, R. Downey and J. Wang Department of Astronautical Engineering University of Southern California Los Angeles, CA

More information

Alberto Garbayo - MEng (hons) CEng Business Development Manager

Alberto Garbayo - MEng (hons) CEng Business Development Manager www.a-v-s.uk.com SME Engineering company with headquarters near Bilbao, Spain and Harwell Campus, Oxfordshire, UK. Founded in 2006, formed by highly qualified personnel (80% MEng, MSc and Doctors) with

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

Development of Long Pulse Neutral Beam Injector on JT-60U for JT-60SA

Development of Long Pulse Neutral Beam Injector on JT-60U for JT-60SA Development of Long Pulse Neutral Beam Injector on JT-60U for JT-60SA M.Hanada, Y.Ikeda, L. Grisham 1, S. Kobayashi 2, and NBI Gr. Japan Atomic Energy Agency, 801-1 Mukohyama, Naka, Ibaraki-ken, 311-0193,

More information

A review of plasma thruster work at the Australian National University

A review of plasma thruster work at the Australian National University A review of plasma thruster work at the Australian National University IEPC-2015-90850 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric

More information

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin Low Cost Helicon Propulsion System for CubeSat future mission scenarios T4i - University of Padova D.Pavarin Centro di Ateneo Studi e Attività Spaziali University of Padova Padova, Italy Technology for

More information

AUTOMATIC INTERPLANETARY MISSIONS. OPTIMISATION OF A MISSION WITH LOW THRUST STRATEGY.

AUTOMATIC INTERPLANETARY MISSIONS. OPTIMISATION OF A MISSION WITH LOW THRUST STRATEGY. IEPC-03-0222 AUTOATIC INTEPLANETAY ISSIONS. OPTIISATION OF A ISSION WITH LOW THUST STATEGY. Nicolas Pillet *, Sophie Geffroy **, égis Bertrand **, CNES Toulouse, Space Technic's Directory Denis oura CNES

More information

BepiColombo Mission to Mercury - コロンボ. October Jan van Casteren, Mauro Novara.

BepiColombo Mission to Mercury - コロンボ. October Jan van Casteren, Mauro Novara. ベピ - コロンボ BepiColombo Mission to Mercury October 2010 Jan van Casteren, Mauro Novara http://www.esa.int/science/bepicolombo June 2010 1 BepiColombo Scientific Objectives Origin and evolution of a planet

More information

Electric Sail Propulsion Modeling and Mission Analysis

Electric Sail Propulsion Modeling and Mission Analysis Electric Sail Propulsion Modeling and Mission Analysis IEPC-007-35 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Pekka Janhunen Finnish Meteorological Institute,

More information

arxiv:gr-qc/ v1 15 Nov 2004

arxiv:gr-qc/ v1 15 Nov 2004 Mission design for LISA Pathfinder arxiv:gr-qc/0411071v1 15 Nov 2004 M Landgraf, M Hechler, and S Kemble ESA/ESOC, Robert-Bosch-Straße 5, D-64293 Darmstadt, Germany E-mail: Markus.Landgraf@esa.int EADS

More information

Development of VASIMR Helicon Source

Development of VASIMR Helicon Source Development of VASIMR Helicon Source Verlin T. Jacobson, Franklin R. Chang Díaz, Jared P. Squire, Greg E., McCaskill, James E. McCoy, Andrew J. Petro, D. Scott Winter and Hugh M. Jamison Advanced Space

More information

Operation Characteristics of Diverging Magnetic Field Electrostatic Thruster

Operation Characteristics of Diverging Magnetic Field Electrostatic Thruster Operation Characteristics of Diverging Magnetic Field Electrostatic Thruster IEPC-07-9 Presented at the 5th International Electric Propulsion Conference Georgia Institute of Technology Atlanta, Georgia

More information

Solar Thermal Power System for Oxygen Production from Lunar Regolith

Solar Thermal Power System for Oxygen Production from Lunar Regolith VG08-036 Solar Thermal Power System for Oxygen Production from Lunar Regolith Takashi Nakamura 1, Aaron D. Van Pelt 1, Robert J. Gustafson 2, and Larry Clark 3 1 Physical Sciences Inc. 2 Orbital Technologies

More information

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado Boulder Lecture 29: Interplanetary 1 HW 8 is out Due Wednesday, Nov 12. J2 effect Using VOPs Announcements Reading:

More information

Overview of Astronautics and Space Missions

Overview of Astronautics and Space Missions Overview of Astronautics and Space Missions Prof. Richard Wirz Slide 1 Astronautics Definition: The science and technology of space flight Includes: Orbital Mechanics Often considered a subset of Celestial

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

Where you can put your asteroid

Where you can put your asteroid Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works

More information

John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009

John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009 Electric Propulsion Options for Small Body Missions John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009 1 How is EP Relevant to Small Body Missions? Nearly all small body missions

More information

Twin Engine Tests of the T6 Ion Engine for ESA s BepiColombo Mercury Mission

Twin Engine Tests of the T6 Ion Engine for ESA s BepiColombo Mercury Mission Twin Engine Tests of the T6 Ion Engine for ESA s BepiColombo Mercury Mission IEPC-2011-125 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany Ismat M. Ahmed Rudwan 1

More information

Solar & Electric Sailing Overview

Solar & Electric Sailing Overview Solar & Electric Sailing Overview KISS Technology Development Workshop (May 15-18, 2018) NASA Image NASA Image Jared Dervan NASA/MSFC Acknowledgments Les Johnson (MSFC Project Formulation Office) Bruce

More information

In situ Investigations of the Local Interstellar Medium. Science Mission Technology, TRL

In situ Investigations of the Local Interstellar Medium. Science Mission Technology, TRL Science Mission Technology, TRL 1 Introduction Astrospheres are a ubiquitous phenomenon... LL Orionis Visible Hubble Astrosphere: The region in space influenced by the outflowing stellar wind and embedded

More information

Commissioning of the Aerospazio s vacuum facilities with Safran s Hall Effect Thruster

Commissioning of the Aerospazio s vacuum facilities with Safran s Hall Effect Thruster Commissioning of the Aerospazio s vacuum facilities with Safran s Hall Effect Thruster IEPC-2017-414 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta,

More information

System and Concurrent Engineering for the e.deorbit Mission Assessment Studies Robin Biesbroek Jakob Hüsing Andrew Wolahan

System and Concurrent Engineering for the e.deorbit Mission Assessment Studies Robin Biesbroek Jakob Hüsing Andrew Wolahan System and Concurrent Engineering for the e.deorbit Mission Assessment Studies Robin Biesbroek Jakob Hüsing Andrew Wolahan Why Active Debris Removal? 17000 catalogued objects Less than 1000 active 600-800

More information

Jupiter Icy Moons Orbiter

Jupiter Icy Moons Orbiter Jupiter Icy Moons Orbiter Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter Science Capabilities & Workshop Goals Dr. Colleen Hartman Director of Solar System Exploration June 12, 2003 the

More information

Newton s Legacy. 1- accelerate to break free of Earth. Rocket Science: How to send a spacecraft to Mars

Newton s Legacy. 1- accelerate to break free of Earth. Rocket Science: How to send a spacecraft to Mars Reading: today: web-based reading on satellite orbits; Chap. 3 Sec. 5 Chap. 7, Sect. 1, 2 (for next week) Exam 1: Tuesday, September 26, 6:45-8:00. Room assignments on course website ESSAY QUESTION Homework

More information