Relativistic Constant Acceleration Distance Factor. Copyright 2010 Joseph A. Rybczyk

Size: px
Start display at page:

Download "Relativistic Constant Acceleration Distance Factor. Copyright 2010 Joseph A. Rybczyk"

Transcription

1 Relativistic Constant Acceleration Distance Factor Copyright 2010 Joseph A. Rybczyk Abstract A formalized treatment of a previously discovered principle involving relativistic constant acceleration distances is presented for the first time. The principle was first discovered in an earlier work by this investigator in 2001 and expounded upon in succeeding works but never singled out for separate treatment as will be given here. 1. Introduction When the principles of relativistic physics are properly understood it is apparent that the fundamental relationships between Newtonian uniform motion and constant acceleration including the distances traveled do not hold for relativistic speeds. In the case of distances, which is our focus in this present work, an earlier defined relationship 1 between relativistic constant acceleration and uniform motion was discovered that showed a divergence from what is observed regarding Newtonian speeds. Our purpose here is to formalize that relationship and reduce it to a new fundamental principle of relativistic physics to be referred to as the relativistic constant acceleration distance factor. 2. The Newtonian Constant Acceleration Distance Factor Given the Newtonian formulas for uniform motion and constant acceleration distances we have 1 and where 3 is the rate of constant acceleration used in equation (2). In the case of equation (1) v is the uniform motion speed used during time interval T to travel uniform motion distance D u. In the case of equation (2) a is the constant rate of acceleration used during time interval T to travel constant acceleration distance D a. By substituting the right side of equation (3) in place of a in equation (2) we then derive where v is the speed reached at the end of time interval T during which distance D a is traveled. In viewing equations (1) and (4) it is apparent by way of substitution that 1

2 1 2 5 gives the relationship of uniform motion distance D u to constant acceleration distance D a. With that being the case, we can then refer to the fraction as the Newtonian constant acceleration distance factor. This then provides a convenient way to correlate the distances traveled at uniform motion speeds to the distances traveled during constant acceleration when transitioning between inertial frames. In other words if we want to know what distance we will travel relative to the distance traveled by a uniform motion object during the time we accelerate at a constant rate of acceleration to reach that same speed from a state of rest, we can simply apply the distance factor given in expression (6) to the uniform motion distance as shown in equations (4) and (5). The distance factor then isolates and defines the relationship between uniform motion distances and constant acceleration distances and helps us to understand the difference in behavior involved in the two different phenomena. Now, let us see how this understanding can benefit us when it is applied to the far more difficult to understand phenomena involving the total relationship between uniform motion and constant acceleration that includes both Newtonian and relativistic speeds from 0 to c. 3. The Relativistic Constant Acceleration Distance Factor Whereas equation (1) for uniform motion distances traveled at Newtonian speeds is equally valid at relativistic speeds, i.e., speeds from 0 to c, the same in not true for equations (2) through (5). As shown in earlier works 2 by this investigator, the relativistic form of distance equation (2) for relativistic constant acceleration is given by 7 Relativistic Constant Acceleration Distance where acceleration rate a r is given by 8 and is the rate of acceleration relative to the stationary frame for an object under constant acceleration as determined in the frame of the accelerating object. The constant rate of acceleration is given by 9 where a c is the constant rate of acceleration experience in the acceleration frame and t is the time interval in the transitioned to uniform motion frame v that corresponds to stationary frame time 2

3 interval T during which the acceleration takes place. The relationship of uniform motion frame time interval t to stationary frame time interval T is then given by 10 that is the millennium relativity 3 (MR) version of the Lorentz time transformation formula 4. If we now take equations (8) and (9) and express them in terms of speed v, we obtain 11 by which the left sides of the resultant equations can be place equal to each other to derive 12 for the relationship between the two. We can then substitute the right side of equation (10) in place of interval t of equation (12) to derive, upon simplification 13 giving the transformation relationship between the constant rate of acceleration a c in the frame of the accelerating object and its value a r relative to the stationary frame to which the acceleration is referenced. Next, we take the right side of equation (8) and substitute it in place of acceleration rate a r in equation (7) to derive 14 Relativistic Constant Acceleration Distance that upon simplification gives 15 Relativistic Constant Acceleration Distance for the stationary frame constant acceleration distance resulting from constant acceleration during stationary frame time interval T. By re-expressing equation (15) in the form 16 Relativistic Constant Acceleration Distance or by way of substitution with the left side of uniform motion distance equation (1) in place of the term vt in equation (16) in the form 3

4 17 Relativistic Constant Acceleration Distance we have derived the relativistic version of the Newtonian equations (4) and (5) derived at the beginning. These last two equations show clearly the distance relationship between uniform motion and constant acceleration for all values of v from 0 to c. The resultant expression 18 for the relativistic constant acceleration distance factor can now be analyzed to develop an improved understanding of what happens during constant acceleration to relativistic speeds. 4. Analysis of the Relativistic Constant Acceleration Distance Factor Before analyzing the relativistic constant acceleration distance factor it is necessary to clarify the meanings of all of the variables involved in deriving the factor. This is necessary because those variables must be used to determine the value of v used in the distance equations (15), (16), and (17). Due to the asymptotic nature of accelerating to relativistic speeds, the rate of acceleration a r measured in the stationary frame, to which the constant rate of acceleration a c in the frame of the accelerating object is referenced, will drop toward zero as speed v of the accelerating object approaches light speed c relative to the stationary frame. That is, the constant rate of a c is the rate that applies to the frame of the accelerating object and is not affected by the acceleration. The relative rate of acceleration a r is the corresponding rate that is measured in the stationary frame, and this rate diminishes inversely with the rise in speed v relative to the stationary frame. As for speed v, although it has the same value for acceleration as it does for uniform motion there is a difference in its meaning in each of those cases. With regard to acceleration, it is the speed reached at any instant in time. Thus, with respect to acceleration from a state of rest in the stationary frame, it begins with a value of 0 and increases toward speed c as the acceleration continues during stationary frame time interval T. In the uniform motion frames that are transitioned to at each instant during the acceleration, speed v is the non-changing uniform motion speed that takes place during the entire same time interval T. For example, assume that an object is accelerated at a constant rate of acceleration a c, from a state of rest in the stationary frame to a speed v, during some stationary frame time interval T. From the beginning of the period of acceleration, an object in the inertial frame visited at the end of time T, has traveled a distance vt relative to the stationary frame that the acceleration is referenced to. Thus, v was always the speed traveled at in the visited frame relative to the stationary frame, but it is only the most recent speed achieved by the accelerating object, relative to the stationary frame when the two speeds are equal. Now let us analyze the behavior defined by the relativistic constant acceleration distance factor. If we set speed v in the distance factor to v = 0 we obtain 0 19 giving 4

5 T Relativistic Constant Acceleration Distance for a constant acceleration distance of 0 as is expected. If we next set speed v in the distance factor to a speed that is just on the border of a relativistic speed, say at v = 0.01c, then the distance factor will reduce to approximately giving Relativistic Constant Acceleration Distance for constant acceleration distance D a relative to uniform motion distance D u that occurs simultaneously during the time interval in which the acceleration takes place. This, of course is a Newtonian result as it should be for the speed used. For the final example, let us set speed v to v = c. This then gives 0 23 for the distance factor which in turn gives 24 Relativistic Constant Acceleration Distance or an equality of distances traveled by both constant acceleration and uniform motion. As can be seen then, as the speed from constant acceleration approaches light speed c, the distance traveled by an object under constant acceleration approaches the distance traveled at a uniform motion rate of speed. From the analysis just completed it is apparent that an object under constant acceleration will travel distances that follow the principles of Newtonian constant acceleration at Newtonian speeds and in an asymptotic manner change to Newtonian uniform motion distances as the speed of light is approached. This behavior was originally discovered during an earlier research effort by the investigator involving kinetic energy Dual Definitions for Uniform Motion and Constant Acceleration Distances If an object traveling at a uniform motion speed v relative to the stationary frame travels distance vt during stationary frame time interval T, and if the corresponding time t in the frame of that moving object is given by time transformation equation (10), then that same stationary frame distance can be expressed as Vt using values of V and t that are valid in the moving frame of the uniform motion object. Since time interval t is smaller than time interval T and since it is the same stationary frame distance vt that is being defined, it follows that V must be a faster speed than v. More specifically, if we redefine distance D u given by equation (1) as 25 5

6 we can then place the right side of equation (25) equal to the right side of equation (1) and solve for speed V to obtain 26 where speed V is the moving frame uniform motion speed that corresponds to stationary frame speed v. Substituting the right side of time transformation equation (10) for t in equation (26) then gives 27 that simplifies to 28 for the final version of the formula that relates moving frame uniform motion speed V to stationary frame uniform motion speed v. It should be noted that the fraction to the right of speed v in equation (28) is simply the MR form of the special relativity 6 Lorentz gamma transformation factor. As might be expected, a similar, although a bit more complicated, distance conversion process is also available for constant acceleration distances. If equation (15) gives the constant acceleration distance for speed v relative to the stationary frame during stationary frame time interval T, and if V and t are the respective corresponding variables for speed and time in the moving inertial frame, it stands to reason that 29 Relativistic Constant Acceleration Distance gives the same constant acceleration distance as equation (15) but in terms of moving frame speed V and time interval t. If we now solve equation (29) for speed V, we obtain

7 or in rearranged form 2 41 for the constant acceleration speed V in moving frame terms. By substituting the right side of equation (15) for D a in equation (41), we obtain 2 42 for the final version of the formula for moving frame speed V that corresponds to stationary frame speed v. By substituting the right side of time transformation equation (10) in place of t in equation (42) and simplifying, the remaining time variable T will cancel out of the equation. The resulting equation is more complex then equation (42) and adds nothing to the intended purpose of this paper, so it has been left out of the analysis. Important: In consideration of that fact that the same constant acceleration distance can be expressed in terms of the lower stationary frame speed v or its corresponding higher moving frame speed V, it must be understood that the two different values must not be intermixed within the expression that contains the distance factor. For example, in referring to the bracketed expressions in equation (42), it must be understood that the variable v in the denominator must be the same as the variable v in the numerator. Stated another way, the variable v used in the distance factor of equation (16) must be the same as the variable v acted upon at the right side of the equation. 6. The Special Relativity Version of the Constant Acceleration Distance Factor The constant acceleration distance factor formalized in the form of expression (18) can be expressed in the more familiar form typical of Einstein s special theory of relativity 6. By dividing the top and bottom of expression (18) by c, we obtain 7

8 where the similarity to the Lorentz gamma factor is unmistakable. 7. Conclusion The relativistic constant acceleration distance factor formalized in the form of expression (18) in the present paper is an important new factor in relativistic physics. When use in conjunction with the millennium relativity treatment of constant acceleration it helps clarify the fundamental nature of what takes place during the transition process between different inertial frames. These insights then allow a better understanding of the relativistic acceleration addition process and its comparison to the relativistic velocity addition process involving uniform motion. In that regard, it is the author s contention that Einstein s velocity addition formula is actually an acceleration addition formula as shown in the author s previous works. REFERENCES 1 Joseph A. Rybczyk, Time and Energy, (2001); Time and Energy, Inertia and Gravity, (2002); Relativistic Motion Perspective, (2003); Millennium Relativity Acceleration Composition, (2003); Integrated Relativistic Velocity and Acceleration Composition, (2004) 2 Joseph A. Rybczyk, Time and Energy, (2001); Relativistic Motion Perspective, (2003) 3 Joseph A. Rybczyk, A series of 30 main papers beginning with the Millennium Theory of Relativity in 2001 in addition to 35 supplemental papers including this present paper in All are available from the Millennium Relativity web site at 4 H. A. Lorentz, Dutch physicist, discovered a new way to transform distance and time measurements between two moving observers so the Maxwell s equations would give the same results for both, (1895); The use of the formula was expanded upon by Einstein in his special theory of relativity. 5 Joseph A. Rybczyk, Time and Energy, (2001) 6 Albert Einstein, On the Electrodynamics of Moving Bodies, now known as the Special Theory of Relativity, Annalen der Physik, (1905) 8

9 Relativistic Constant Acceleration Distance Factor Copyright 2010 Joseph A. Rybczyk All rights reserved including the right of reproduction in whole or in part in any form without permission. Note: If this document was accessed directly during a search, you can visit the Millennium Relativity web site by clicking on the Home link below: Home 9

Redefining Einstein s Velocity Addition Formula. Copyright 2010 Joseph A. Rybczyk

Redefining Einstein s Velocity Addition Formula. Copyright 2010 Joseph A. Rybczyk Redefining Einstein s Velocity Addition Formula Copyright 2010 Joseph A. Rybczyk Abstract It will be shown in the clearest and briefest terms practical that Einstein s velocity addition formula actually

More information

Most Direct Derivation of Relativistic Kinetic Energy Formula. Copyright 2010 Joseph A. Rybczyk

Most Direct Derivation of Relativistic Kinetic Energy Formula. Copyright 2010 Joseph A. Rybczyk Most Direct Derivation of Relativistic Kinetic Energy Formula Copyright 2010 Joseph A. Rybczyk Abstract The millennium relativity form of the kinetic energy formula is derived through direct modification

More information

Scientific Examination of Relativistic Velocity and Acceleration Addition. Copyright 2010 Joseph A. Rybczyk

Scientific Examination of Relativistic Velocity and Acceleration Addition. Copyright 2010 Joseph A. Rybczyk Scientific Examination of Relativistic Velocity and Acceleration Addition Copyright 2010 Joseph A. Rybczyk Abstract Direct comparison of the millennium relativity relativistic velocity and acceleration

More information

Relativistic Escape Velocity using Relativistic Forms of Potential and Kinetic Energy. Copyright (2009) Joseph A. Rybczyk

Relativistic Escape Velocity using Relativistic Forms of Potential and Kinetic Energy. Copyright (2009) Joseph A. Rybczyk Relativistic Escape Velocity using Relativistic Forms of Potential and Kinetic Energy Copyright (2009) Joseph A. Rybczyk Abstract Presented herein is the ultimate theoretical proof of the correctness of

More information

Relativistic Orbital Velocity. Copyright 2009 Joseph A. Rybczyk

Relativistic Orbital Velocity. Copyright 2009 Joseph A. Rybczyk Relativistic Orbital Velocity Copyright 2009 Joseph A. Rybczyk Abstract The relativistic orbital velocity formula for circular orbits is derived through direct application of the Newtonian orbital velocity

More information

Fundamental Orbital to Escape Velocity Relationship. Copyright 2009 Joseph A. Rybczyk

Fundamental Orbital to Escape Velocity Relationship. Copyright 2009 Joseph A. Rybczyk Fundamental Orbital to Escape Velocity Relationship Copyright 2009 Joseph A. Rybczyk Abstract Presented herein is the entire orbital velocity to escape velocity relationship recently elevated to the relativistic

More information

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk The True Nature of the Special Relativity Light Clock Copyright 2012 Joseph A. Rybczyk Abstract It is generally believed that the light clock typically associated with special relativity correlates the

More information

Velocity Composition for Dummies. Copyright 2009 Joseph A. Rybczyk

Velocity Composition for Dummies. Copyright 2009 Joseph A. Rybczyk Velocity Composition for Dummies Copyright 29 Joseph A. Rybczyk Abstract Relativistic velocity addition is given in terms so simple that anyone should be able to understand the process. In so doing it

More information

Stellar Aberration, Relative Motion, and the Lorentz Factor. Copyright 2010 Joseph A. Rybczyk

Stellar Aberration, Relative Motion, and the Lorentz Factor. Copyright 2010 Joseph A. Rybczyk Stellar Aberration, Relative Motion, and the Lorentz Factor Copyright 2010 Joseph A. Rybczyk Abstract Presented are the results of an in-depth investigative analysis conducted to determine the relationship

More information

Rethinking the Principles of Relativity. Copyright 2010 Joseph A. Rybczyk

Rethinking the Principles of Relativity. Copyright 2010 Joseph A. Rybczyk Rethinking the Principles of Relativity Copyright 2010 Joseph A. Rybczyk Abstract An analysis of all of the principles involved in light propagation lead to the discovery that the relativistic principle

More information

Reinterpreting Newton s Law of Gravitation. Copyright 2012 Joseph A. Rybczyk

Reinterpreting Newton s Law of Gravitation. Copyright 2012 Joseph A. Rybczyk Reinterpreting Newton s Law of Gravitation Copyright 2012 Joseph A. Rybczyk Abstract A new approach in interpreting Newton s law of gravitation leads to an improved understanding of the manner in which

More information

Relativistic Kinetic Energy Simplified. Copyright Joseph A. Rybczyk

Relativistic Kinetic Energy Simplified. Copyright Joseph A. Rybczyk Relativistic Kinetic Energy Simplified Copyright 207 Joseph A. Rybczyk Abstract The relativistic form of the kinetic energy formula is derived directly from the relativized principles of the classical

More information

Gravitational Effects on Light Propagation. Copyright 2009 Joseph A. Rybczyk

Gravitational Effects on Light Propagation. Copyright 2009 Joseph A. Rybczyk Gravitational Effects on Light Propagation Copyright 2009 Joseph A. Rybczyk Abstract An examination of the theoretical relationship between gravity and light propagation is presented that focuses on the

More information

The Complete Nature of Stellar Aberration. Copyright 2010 Joseph A. Rybczyk

The Complete Nature of Stellar Aberration. Copyright 2010 Joseph A. Rybczyk The Complete Nature of Stellar Aberration Copyright 2010 Joseph A. Rybczyk Abstract Presented is a detailed explanation of the complete nature of stellar aberration that goes beyond the basic principles

More information

The Greatest Failure of the Scientific Method - Special Relativity. Copyright Joseph A. Rybczyk

The Greatest Failure of the Scientific Method - Special Relativity. Copyright Joseph A. Rybczyk The Greatest Failure of the Scientific Method - Special Relativity Copyright 207 Joseph A. Rybczyk Abstract It is only a matter of time when the scientific authorities will have to face the inevitable

More information

Einstein s Special Theory of Relativity. Dr. Zdzislaw Musielak UTA Department of Physics

Einstein s Special Theory of Relativity. Dr. Zdzislaw Musielak UTA Department of Physics Einstein s Special Theory of Relativity Dr. Zdzislaw Musielak UTA Department of Physics OUTLINE Einstein s Miraculous Year 1905 Time and Space before 1905 Einstein s Paper # 3 Time and Space after 1905

More information

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation.

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation. Background The curious "failure" of the Michelson-Morley experiment in 1887 to determine the motion of the earth through the aether prompted a lot of physicists to try and figure out why. The first attempt

More information

Newton s Gravity from Heisenberg s Uncertainty Principle An In-Depth Study of the McCulloch Derivation

Newton s Gravity from Heisenberg s Uncertainty Principle An In-Depth Study of the McCulloch Derivation Newton s Gravity from Heisenberg s Uncertainty Principle An In-Depth Study of the McCulloch Derivation Espen Gaarder Haug Norwegian University of Life Sciences March 5, 208 Abstract Mike McCulloch has

More information

Special Relativity: Derivations

Special Relativity: Derivations Special Relativity: Derivations Exploring formulae in special relativity Introduction: Michelson-Morley experiment In the 19 th century, physicists thought that since sound waves travel through air, light

More information

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Special College - PHY2054C Special & 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Special 1 Special 2 3 4 Special Galilean and Light Galilean and electromagnetism do predict

More information

Time dilation and length contraction without relativity: The Bohr atom and the semi-classical hydrogen molecule ion

Time dilation and length contraction without relativity: The Bohr atom and the semi-classical hydrogen molecule ion Time dilation and length contraction without relativity: The Bohr atom and the semi-classical hydrogen molecule ion Allan Walstad * Abstract Recently it was shown that classical "relativistic" particle

More information

Special Theory of Relativity. PH101 Lec-1 Soumitra Nandi

Special Theory of Relativity. PH101 Lec-1 Soumitra Nandi Special Theory of Relativity PH101 Lec-1 Soumitra Nandi Background Modern Physics is based on the three major theories : I. Relativity (space, time and gravity) II. Quantum Mechanics (subatomic particles)

More information

I will make this assumption for my starting point. I substitute the appropriate values into the second form of the force equation given above:

I will make this assumption for my starting point. I substitute the appropriate values into the second form of the force equation given above: This is the magnitude of the potential energy of the electron. This value divided by the radius of the orbit would give the magnitude of the force shown above. What must be decided at this point is what

More information

Simultaneit. Pg. 524

Simultaneit. Pg. 524 Simultaneit Pg. 524 y Inertial frame of reference: Review 0 At rest or moving with constant speed in a straight line 0 On in which Newton s Cirst law is true Galilean transformation: 0 y = y z = z t =

More information

4-Vector Notation. Chris Clark September 5, 2006

4-Vector Notation. Chris Clark September 5, 2006 4-Vector Notation Chris Clark September 5, 2006 1 Lorentz Transformations We will assume that the reader is familiar with the Lorentz Transformations for a boost in the x direction x = γ(x vt) ȳ = y x

More information

Introduction to Relativity & Time Dilation

Introduction to Relativity & Time Dilation Introduction to Relativity & Time Dilation The Principle of Newtonian Relativity Galilean Transformations The Michelson-Morley Experiment Einstein s Postulates of Relativity Relativity of Simultaneity

More information

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory Relativity Relativity In 1905 Albert Einstein published five articles in Annalen Der Physik that had a major effect upon our understanding of physics. They included:- An explanation of Brownian motion

More information

Chapter 26 Special Theory of Relativity

Chapter 26 Special Theory of Relativity Chapter 26 Special Theory of Relativity Classical Physics: At the end of the 19 th century, classical physics was well established. It seems that the natural world was very well explained. Newtonian mechanics

More information

Super theory of relativity-explanation to rest mass of photon, quantum entanglement and consciousness

Super theory of relativity-explanation to rest mass of photon, quantum entanglement and consciousness American Journal of Modern Physics 2014; 3(6): 232-239 Published online November 20, 2014 (http://www.sciencepublishinggroup.com/j/ajmp) doi: 10.11648/j.ajmp.20140306.15 ISSN: 2326-8867 (Print); ISSN:

More information

Special Relativity Lecture

Special Relativity Lecture Special Relativity Lecture Prateek Puri August 24, 200 The Lorentz Transformation So far, we have proved length contraction and time dilation only for very specific situations involving light clocks; however,

More information

Constant Light Speed The Greatest Misconception of Modern Science. Copyright Joseph A. Rybczyk

Constant Light Speed The Greatest Misconception of Modern Science. Copyright Joseph A. Rybczyk Constant Light Speed The Greatest Misconception of Modern Science Copyright 2015 Joseph A. Rybczyk Abstract With no valid evidence to support it, the speed of light is claimed to be constant in empty space

More information

Rigid body motion Limits on Acceleration

Rigid body motion Limits on Acceleration Rigid body motion Limits on Acceleration John Freidenfelds, PhD December 23, 2016 Abstract It is well-known that, according to special relativity, there is an absolute speed limit on objects traveling

More information

Advantages of Three-Dimensional Space-Time Frames

Advantages of Three-Dimensional Space-Time Frames Frontiers in Science 01, (3): 18-3 DOI: 10.593/j.fs.01003.01 Advantages of Three-Dimensional Space-Time Frames Tower Chen 1,*, Zeon Chen 1 Unit of Mathematical Sciences, College of Natural and Applied

More information

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63.

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63. Slide 1 / 63 The Special Theory of Relativity E = mc 2 Inertial Reference Frames Slide 2 / 63 Newton's laws are only valid in inertial reference frames: n inertial reference frame is one which is not accelerating

More information

Spacetime Diagrams Lab Exercise

Spacetime Diagrams Lab Exercise Spacetime Diagrams Lab Exercise The spacetime diagram (also known as a Minkowski diagram) is a tool that can used to graphically describe complex problems in special relativity. In many cases, with a properly

More information

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Relativity Physics 102 11 April 2002 Lecture 8 Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Physics around 1900 Newtonian Mechanics Kinetic theory and thermodynamics Maxwell s equations

More information

CONSEQUENCES FOR SPECIAL RELATIVITY THEORY OF RESTORING EINSTEIN S NEGLECTED ADDITIVE CONSTANTS IN THE LORENTZ TRANSFORMATION

CONSEQUENCES FOR SPECIAL RELATIVITY THEORY OF RESTORING EINSTEIN S NEGLECTED ADDITIVE CONSTANTS IN THE LORENTZ TRANSFORMATION Fundamental J. Modern Physics, Vol. 2, Issue 2, 2011, Pages 139-145 Published online at http://www.frdint.com/ CONSEQUENCES FOR SPECIAL RELATIVITY THEORY OF RESTORING EINSTEIN S NEGLECTED ADDITIVE CONSTANTS

More information

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 24 Current Density Four Vector and Maxwell Equation Hello, so we have now come to

More information

Special Relativity 05/09/2008. Lecture 14 1

Special Relativity 05/09/2008. Lecture 14 1 How Fast Are You Moving Right Now? Special Relativity Einstein messes with space and time 0 m/s relative to your chair 400 m/s relative to earth center (rotation) 30,000 m/s relative to the sun (orbit)

More information

Class 5: Equivalence Principle

Class 5: Equivalence Principle Class 5: Equivalence Principle In this class we will discuss the conceptual foundations of General Relativity, in which gravity may be associated with the reference frames in which perceive events Class

More information

The relativistic length contraction rebutted

The relativistic length contraction rebutted The relativistic length contraction rebutted Radwan M. Kassir 016 radwan.elkassir@dar.com Abstract In this paper, it is established that Einstein s interpretation of the Lorentz transformation in predicting

More information

Recall from last time

Recall from last time Welcome back to Physics 215 Today s agenda: Relative Motion Special relativity Forces Physics 215 Spring 2017 Lecture 05-1 1 Recall from last time If we want to use (inertial) moving frames of reference,

More information

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. College - PHY2054C 11/10/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline 1 2 3 1 The speed of light is the maximum possible speed, and it is always measured to have the same value

More information

Module 2: Special Theory of Relativity - Basics

Module 2: Special Theory of Relativity - Basics Lecture 01 PH101: Physics 1 Module 2: Special Theory of Relativity - Basics Girish Setlur & Poulose Poulose gsetlur@iitg.ac.in Department of Physics, IIT Guwahati poulose@iitg.ac.in ( 22 October 2018 )

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Introduction to Special Relativity

Introduction to Special Relativity 1 Introduction to Special Relativity PHYS 1301 F99 Prof. T.E. Coan version: 20 Oct 98 Introduction This lab introduces you to special relativity and, hopefully, gives you some intuitive understanding of

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Consequences of Einstein s Postulates Lorentz Transformations Albert Einstein 1879-1955 Einstein s Postulates: 1. The laws of physics are invariant to observers

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2003 Introduction to Special Relativity January 6, 2003 Assignment 1 Corrected version Due January 13, 2003 Announcements Please

More information

NEW RELATIVITY GAMMA

NEW RELATIVITY GAMMA NEW RELATIVITY GAMMA James A. Putnam 2003 What is the meaning of gamma? In relativity theory there appears the mathematical expression: It originated from the Lorentz transforms. The question I will answer

More information

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics CHAPTER 12 ELECTRODYNAMICS & RELATIVITY Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. The special theory of relativity 2. Relativistic Mechanics 3. Relativistic

More information

Chapter 11 Reference Frames

Chapter 11 Reference Frames Chapter 11 Reference Frames Chapter 11 Reference Frames... 2 11.1 Introduction... 2 11.2 Galilean Coordinate Transformations... 2 11.2.1 Relatively Inertial Reference Frames and the Principle of Relativity...

More information

The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory.

The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory. The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory. By James Carter When Einstein first used his equations to predict the transverse gravitational red shift of photons

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Momentum and Energy Conservation Albert Einstein 879-955 Review: Transforming Velocity Remember: u = dx dt x = γ ν (x + vt ) t = γ ν ( v c 2 x + t ) From this

More information

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame.

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame. Special Theory of Relativity (I) Newtonian (Classical) Relativity Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Assumption It is assumed that

More information

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER Modern Physics Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER 1 RELATIVITY 1.1 Special Relativity 1.2 The Principle of Relativity, The Speed of Light 1.3 The Michelson Morley Experiment,

More information

Applying Newton s Second Law. 8.01T Sept 22, 2004

Applying Newton s Second Law. 8.01T Sept 22, 2004 Applying Newton s Second Law 8.01T Sept 22, 2004 Reference Frame Coordinate system with an observer placed at origin is a reference frame in which the position, velocity, and acceleration of objects are

More information

Why Does Gravity Obey an Inverse Square Law?

Why Does Gravity Obey an Inverse Square Law? Why Does Gravity Obey an Inverse Square Law? This paper uncovers the reason why gravity obeys an inverse square law and not, for example, an inverse cubic law, or any other law with any other power. A

More information

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes. Relativistic Electrodynamics An inertial frame = coordinate system where Newton's 1st law of motion - the law of inertia - is true. An inertial frame moves with constant velocity with respect to any other

More information

CHAPTER 2 Special Theory of Relativity-part 1

CHAPTER 2 Special Theory of Relativity-part 1 CHAPTER 2 Special Theory of Relativity-part 1 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

RELATIVITY. Special Relativity

RELATIVITY. Special Relativity RELATIVITY Special Relativity FROM WARMUP How does special relativity differ from general? Special relativity deals with inertial reference frames. General relativity deals with gravity and acceleration

More information

Modern Physics Part 2: Special Relativity

Modern Physics Part 2: Special Relativity Modern Physics Part 2: Special Relativity Last modified: 23/08/2018 Links Relative Velocity Fluffy and the Tennis Ball Fluffy and the Car Headlights Special Relativity Relative Velocity Example 1 Example

More information

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Velocities in Special Relativity - As was done in Galilean relativity,

More information

Physics 225 Relativity and Math Applications. Fall Unit 5 E = mc 2

Physics 225 Relativity and Math Applications. Fall Unit 5 E = mc 2 Physics 225 Relativity and Math Applications Fall 2012 Unit 5 E = mc 2 N.C.R. Makins University of Illinois at Urbana-Champaign 2010 Physics 225 5.2 5.2 Physics 225 5.3 Unit 5: E = mc 2 Relativistic kinematics

More information

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016 ENTER RELATIVITY RVBAUTISTA THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION The laws of mechanics must be the same in all inertial

More information

Today in Astronomy 102: relativity, continued

Today in Astronomy 102: relativity, continued Today in Astronomy 10: relativity, continued Einstein s procedures and results on the special theory of relativity. Formulas and numerical examples of the effects of length contraction, time dilation,

More information

Special Relativity Refutation through the Relativistic Doppler Effect Formula

Special Relativity Refutation through the Relativistic Doppler Effect Formula Special Relativity Refutation through the Relativistic Doppler Effect Formula Radwan M. Kassir Jan. 205 radwan.elkassir@dargroup.com Abstract The relativistic Doppler shift formula is shown to be based

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

Presentation by: Filip Tolovski March 2019

Presentation by: Filip Tolovski March 2019 Special and General Relativity Theory Presentation by: Filip Tolovski March 2019 The Special Theory of Relativity 01/03/2019 By: Filip Tolovski 2 Classical Mechanics and the restricted Principle of Relativity

More information

Physics 123 Unit #5 Review

Physics 123 Unit #5 Review Physics 123 Unit #5 Review I. Definitions & Facts world line propagator rest energy total energy kinetic energy and inertial reference frame Lorentz boost relativistic invariants half-life scattering angle

More information

THE CONTROLLED REFRACTIVE INDEX WARP DRIVE

THE CONTROLLED REFRACTIVE INDEX WARP DRIVE THE CONTROLLED REFRACTIVE INDEX WARP DRIVE Todd J. Desiato 1 March 14, 01 v10 Abstract When a space-time warp bubble is moving at velocity (i.e. v > c), Doppler shifted photons with energy tending to infinity,

More information

In defence of classical physics

In defence of classical physics In defence of classical physics Abstract Classical physics seeks to find the laws of nature. I am of the opinion that classical Newtonian physics is real physics. This is in the sense that it relates to

More information

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011 Preliminaries Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 6, 2011 NUCS 342 (Lecture 0) January 6, 2011 1 / 21 Outline 1 Useful links NUCS 342 (Lecture 0) January

More information

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 37 Relativity PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 37 Looking forward at why different

More information

CHAPTER 2 Special Theory of Relativity Part 2

CHAPTER 2 Special Theory of Relativity Part 2 CHAPTER 2 Special Theory of Relativity Part 2 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Mind Association. Oxford University Press and Mind Association are collaborating with JSTOR to digitize, preserve and extend access to Mind.

Mind Association. Oxford University Press and Mind Association are collaborating with JSTOR to digitize, preserve and extend access to Mind. Mind Association Response to Colyvan Author(s): Joseph Melia Source: Mind, New Series, Vol. 111, No. 441 (Jan., 2002), pp. 75-79 Published by: Oxford University Press on behalf of the Mind Association

More information

Notes - Special Relativity

Notes - Special Relativity Notes - Special Relativity 1.) The problem that needs to be solved. - Special relativity is an interesting branch of physics. It often deals with looking at how the laws of physics pan out with regards

More information

Relativistic Formulation of Maxwell s Equations for Free Space

Relativistic Formulation of Maxwell s Equations for Free Space The African Review of Physics (2016) 11:0024 187 Relativistic Formulation of Maxwell s Equations for Free Space Randy Wayne Laboratory of Natural Philosophy, Section of Plant Biology, School of Integrative

More information

Theory of General Relativity

Theory of General Relativity Theory of General Relativity Expansion on the concept of Special relativity Special: Inertial perspectives are Equivalent (unaccelerated) General: All perspectives are equivalent Let s go back to Newton

More information

SCI403: Physics. Course length: Two semesters. Materials: Physics: Problems and Solutions; materials for laboratory experiments

SCI403: Physics. Course length: Two semesters. Materials: Physics: Problems and Solutions; materials for laboratory experiments SCI403: Physics This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum, energy, thermodynamics, waves, electricity, and magnetism, and

More information

Theory of Relativity Final Quiz July 11, VERY short answers. Each worth 1 point.

Theory of Relativity Final Quiz July 11, VERY short answers. Each worth 1 point. Theory of Relativity Final Quiz July 11, 2012 Name: Below are short questions and problems. Answer to the best of your ability. All equations and constants you need are on a separate sheet. VERY short

More information

Einstein in a Nutshell

Einstein in a Nutshell Einstein in a Nutshell Richard Wolfson Benjamin F. Wissler Professor of Physics Middlebury College Insight Cruises/Scientific American January 15, 2011 Relativity in Recent News http://newscenter.berkeley.edu/2011/12/05/record-black-holes-bigger-than-our-solar-system/,

More information

Doppler shift and aberration for spherical electromagnetic waves

Doppler shift and aberration for spherical electromagnetic waves Doppler shift and aberration for spherical electromagnetic waves Teimuraz Bregadze tebr50@yahoo.com Spherical wave vs. plane wave approximation to the nature of the electromagnetic waves in regard to the

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

Special Relativity in a Model Universe Michael S. A. Graziano Draft Aug 2009

Special Relativity in a Model Universe Michael S. A. Graziano Draft Aug 2009 Special Relativity in a Model Universe Michael S. A. Graziano Draft Aug 2009 Introduction The present paper describes a model universe called Hubs and Spokes (HS). HS operates on the basis of two rules.

More information

JF Theoretical Physics PY1T10 Special Relativity

JF Theoretical Physics PY1T10 Special Relativity JF Theoretical Physics PY1T10 Special Relativity 12 Lectures (plus problem classes) Prof. James Lunney Room: SMIAM 1.23, jlunney@tcd.ie Books Special Relativity French University Physics Young and Freedman

More information

Special Theory of Relativity. The Newtonian Electron. Newton vs. Einstein. So if Newtonian Physics is wrong. It is all Relative.

Special Theory of Relativity. The Newtonian Electron. Newton vs. Einstein. So if Newtonian Physics is wrong. It is all Relative. Special Theory of Relativity Chapter 26 The Newtonian Electron Newtonian Theory (everything we have done so far in class) can be tested at high speeds by accelerating electrons or other charged particles

More information

Part One: Accounting for the experiments of Trouton and Noble with classical and with relativistic mechanics

Part One: Accounting for the experiments of Trouton and Noble with classical and with relativistic mechanics Part One: Accounting for the experiments of Trouton and Noble with classical and with relativistic mechanics Introduction: Larmor, Lorentz, and Laue on the experiments of Trouton and Noble In June 1903,

More information

Journal of Theoretics

Journal of Theoretics Journal of Theoretics Guest Commentary Volume 6-4, Aug/Sept 2004 From Space-time to Space Amrit Sorli, Kusum Sorli SpaceLife Institute, Podere San Giorgio 16, 53012 Chiusdino (SI), Italy www.directscientificexperience.com

More information

Special Theory of Relativity Prof. Dr. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay

Special Theory of Relativity Prof. Dr. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay (Refer Slide Time: 00:36) Special Theory of Relativity Prof. Dr. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 7 Examples of Length Contraction and Time Dilation Hello,

More information

Conclusions About the Simultaneity of Two Events. Vesselin C. Noninski

Conclusions About the Simultaneity of Two Events. Vesselin C. Noninski Conclusions About the Simultaneity of Two Events Vesselin C. Noninski vesselin.noninski@verizon.net Abstract A gedanken experiment is presented whereby two simultaneous events (from the point of view of

More information

Physics. Special Relativity

Physics. Special Relativity Physics Special Relativity 1 Albert Einstein, the high school dropout and patent office clerk published his ideas on Special Relativity in 1905. 2 Special vs. General Relativity Special Relativity deals

More information

Chapter 26. Relativity

Chapter 26. Relativity Chapter 26 Relativity Time Dilation The vehicle is moving to the right with speed v A mirror is fixed to the ceiling of the vehicle An observer, O, at rest in this system holds a laser a distance d below

More information

Einstein s Space and Time

Einstein s Space and Time Einstein s Space and Time Re-examining the Obvious Familiar things happen, and mankind does not bother about them. It requires a very unusual mind to make an analysis of the obvious." Alfred North Whitehead

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information

The Cyclotron: Exploration

The Cyclotron: Exploration The Cyclotron: Exploration The purpose of this exploration is to become familiar with how a cyclotron accelerates particles, and in particular to understand the roles of the electric and magnetic fields.

More information

Rotational Mechanics and Relativity --- Summary sheet 1

Rotational Mechanics and Relativity --- Summary sheet 1 Rotational Mechanics and Relativity --- Summary sheet 1 Centre of Mass 1 1 For discrete masses: R m r For continuous bodies: R dm i i M M r body i Static equilibrium: the two conditions for a body in static

More information

0 : Einstein s postulates of Special Relativity

0 : Einstein s postulates of Special Relativity Class 2 : The Special Theory of Relativity Recap of Einstein s postulates Time dilation Length contraction Energy and momentum Causality 0 : Einstein s postulates of Special Relativity Consider a group

More information

Physics 214 Examples of four-vectors Winter 2017

Physics 214 Examples of four-vectors Winter 2017 Physics 214 Examples of four-vectors Winter 2017 1. The velocity four-vector The velocity four-vector of a particle is defined by: u µ = dxµ dτ = γc; γ v), 1) where dτ = γ 1 is the differential proper

More information

Motivation. The Speed of Light. The Speed of Light. In Water Things Look Like This. Introduction to Special and General Relativity

Motivation. The Speed of Light. The Speed of Light. In Water Things Look Like This. Introduction to Special and General Relativity Introduction to Special and General Relativity Motivation: Michelson-Morley Experiment Induction versus Force Law The Basics Events Principles of Relativity Giving up on absolute space and time What Follows

More information

02. Special Relativity: The 2 Postulates and the Michaelson- Morley Experiment

02. Special Relativity: The 2 Postulates and the Michaelson- Morley Experiment 02. Special Relativity: The 2 ostulates and the Michaelson- Morley Experiment (1905) "On the Electrodynamics of Moving Bodies" ostulate 1: rinciple of Relativity The laws of physics are the same in all

More information