Mechanistic-Empirical Pavement Design Guide Distress Models

Size: px
Start display at page:

Download "Mechanistic-Empirical Pavement Design Guide Distress Models"

Transcription

1 Mechanistic-Empirical Pavement Design Guide Distress Models By: Mohamed El-Basyouny Arizona State University Pavement Performance Models Symposium Laramie - Wyoming June 23, 2006

2 Outline Analysis Methodology Distress models for MEPDG Calibration of MEPDG distress models under NCHRP-37A NCHRP -40D modifications NCHRP -40D recalibration Further work under NCHRP -40D

3 M-E Pavement Design Guide Methodology Asphalt Concrete Unbound Base Asphalt Concrete Asphalt Surface Asphalt Binder Unbound Sub-Base Unbound Base Asphalt Base Compacted Subgrade Compacted Subgrade Compacted Subgrade Natural Subgrade Natural Subgrade Natural Subgrade Asphalt Concrete Asphalt Concrete Asphalt Concrete Asphalt Treated Base Cement Treated Base Unbound Base Unbound Sub-Base Compacted Subgrade Natural Subgrade Unbound Sub-Base Compacted Subgrade Natural Subgrade Asphalt Treated or Cement Treated Layer Compacted Subgrade Natural Subgrade

4 Computation Methodology Define sub-layers Adjust layer properties for environmental effects: Temp./Aging of HMA Frost/Moisture in unbound materials Simulate traffic loads. Compute pavement critical response. FEA MELT - JULEA

5 Critical Response Values ε c ε t ε t at surface + bottom of all bound layers (cracking) ε c at midthickness of all layers + top of subgrade (rutting)

6 Damage Methodology Fracture: Distortion: ΔRD ΔDI = = m j n i = = N i ( ε ) i t m k j [ )( )] ε ( h P d d k = i= d = l k k, i k = load level i = time/season d = sublayer

7 Design Criteria RUT DEPTH Criterion TIME FATIGUE CRACKING Criterion Design Period TIME

8 Predicted Distresses Fatigue Cracking IRI Thermal Cracking Longitudinal Cracking Rutting

9 Smoothness Model IRI = IRI O + ΔIRI D + Δ IRI SF IRI O = Initial IRI ΔIRI D = Change in IRI due to distress ΔIRI SF = Change in IRI due to site factors

10 IRI vs. Distress Summary Variable Unbound Base ATB CTB HMA OVERLAY HMA PCC Site Factor Age Alligator Ckg Rut Depth Transverse Ckg. Block Ckg. Longitudinal Ckg. Pot Holes Patching

11 Fatigue Cracking

12 N f = M C = 0 M Fatigue Cracking Models Asphalt Institute MS β f C εt Vb = Va + Vb 3.29β f2 E 0.854β N f = number of repetitions to fatigue cracking ε t = tensile strain at the critical location E = material stiffness β f, β f2, β f3 = calibration factors Va = air voids, % f3

13 Calibration Test Sections 94 LTPP Sections

14 Fatigue Cracking Calibration MS- Combination of Minimum Damage Maximum Damage Damage β f2 and β f3 (%) (%) Start of Crack Propagation 0.8, ,497,000 7, ,.5 80,0 9.5E E , E+09.6E+5 5.0E+2.0, ,77 0.0, , , ,540,000 50,000.0,2.5 5,020,000 6.E+2 7.0e+09.2, E , , ,2.5 4, E+0.0E+07

15 Alligator Cracking Calibration Shifting Thin Sections k ' k' = e ( *hac) R 2 = AC Layer Thickness (in)

16 Alligator Cracking Calibration N f k' = * k' * C εt E = e ( *hac).28 F C + e = C ' + C ' *log( )) ( 2 D * 60 C' C' ' = * ( + hac) = 2* C

17 Alligator Cracking Calibration Number of observations = 46 observations. Alligator Cracking (% of Total Lane Area) Sum of error square = Standard error (S e ) = 6.2 %. S e /S y = Log Damage (%)

18 Permanent Deformations

19 Rutting Unbound Layer Rut Calibration δ a ( ) N = βgb / SG ε The set 8-CB was selected β GB =.67 β SG =.35 v h ε o ε r e ρ N β Set β GB β SG -A A A A CB CB CB CB CB CB CB CB* CB-* CB** CB*.4.5 -CB* CB-* E F F F F G G G G G

20 Rutting in HMA ε p log ε = + r β log N r 3 log β ε p = plastic strain r +.734β ε r = resilient strain T = layer temperature (deg F) N = no of load repetition logt βr, β r 2, β r 3 = calibration factors r 2

21 Calibration Test Sections 94 LTPP Sections

22 AC Rutting Calibration MnRoad Study As depth increased the rut depth increased. This is because the confining pressure was not modeled in the HMA rut model. To model the confining pressure: 7 MnRoad Cells were used. ε ε p r = k * β r.5606 * 0 T N

23 HMA Rutting Calibration MnRoad Study Cell HMA Asphalt Surface Lift and Layer Deformation Layer Binder Rut Base Subgrade Thickness AC AC AC AC

24 HMA Rutting Calibration MnRoad Study k = C C * depth) * ( + 2 depth 2 C 0.039* h ac * h = ac 2 C * h ac.733* h + = ac Depth (inch) Cumulative % AC Rutting 0% 20% 40% 60% 80% 00% 20% Predicted Measured Depth (inch) Average % AC Rutting with Depth 0% 0% 20% 30% 40% 50% 60% 70% 80% 90% Predicted Measured 00 %

25 AC Rut Depth Predicted AC Rutting (in) R 2 = N = 387 S e = SSe = Average Estimated Measured AC Rutting (in) Predicted vs Ave. Estimated Measured AC Rutting Equality Line

26 GB Rut Depth R 2 = N = 387 S e = SSe =0.243 Predicted GB Rutting (in) Average Estimated Measured GB Rutting (in) Predicted vs Est. Measured GB Rutting Equality Line

27 SG Rut Depth R 2 = 0.36 N = 387 S e = SSe =0.93 Predicted SG Rutting (in) Average Estimated Measured SG Rutting (in) Predicted vs Est. Measured SG Rutting Equality Line

28 Total Rut Depth.2 Predicted Total Rutting (in) R 2 = N = 387 S e = 0.2 SSe = Average Measured Total Rutting (in) Predicted vs Measured Total Rutting Equality Line

29 Rut Depth Calibration AC Rut Depth Model ε ε p r = k * T N k = C C * depth) * ( + 2 depth 2 C 0.039* h ac * h = ac 2 C * h ac.733* h + = ac

30 NCHRP -40D Project We enhanced the MEPDG between Version 0.8 and 0.9: Climate New models from NCHRP 9-23 developed by Arizona State University (using Thornthwaite Moisture Index - TMI for suction prediction in unbound layers) Correct of software bugs (discontinuity in distress predictions) Improvement of the running time of the program Enhancement of outputs and some screens Revision of Unbound Mr default values Revision of Level 3 creep compliance prediction models for Thermal cracking prediction Revision of Calibration data Recalibrate Distress models Revision of IRI models

31 NCHRP -40D Calibration Predicted AC Rutting (in) Average Estimated Measured AC Rutting (in) R 2 = 0.62 N = 334 S e = 0.05 Se/Sy = Predicted vs Ave. Estimated Measured AC Rutting Equality Line

32 NCHRP -40D Calibration 0.5 Predicted GB Rutting (in) R 2 = N = 334 S e = Se/Sy = Average Estimated Measured GB Rutting (in) Predicted vs Est. Measured GB Rutting Equality Line

33 NCHRP -40D Calibration 0.6 Predicted SG Rutting (in) R 2 = N = 334 S e = Se/Sy = Average Estimated Measured SG Rutting (in) Predicted vs Est. Measured SG Rutting Equality Line

34 NCHRP -40D Calibration.2 Predicted Total Rutting (in) R 2 = N = 334 S e = 0.07 Se/Sy = Average Measured Total Rutting (in) Predicted vs Measured Total Rutting Equality Line

35 NCHRP -40D work Still working on additional enhancements for Version.0 Using G* for HMA Dynamic modulus Including Modified mixture such as Asphalt Rubber Incorporating new models for the Treated Bases Incorporation of new local calibration models from NCHRP -40B and 9-30

36 Distress To be Modeled There is still the need for more mechanical models to characterize: reflective cracking longitudinal (Top-down) cracking Transverse Fatigue cracking

Flexible Pavement Design

Flexible Pavement Design Flexible Pavement Design The Mechanistic-Empirical Way Presented by: Keith D. Herbold, P.E. 1 Presentation Outline What s new in flexible design Example of new design Differences Capabilities Tests and

More information

2002 Design Guide Preparing for Implementation

2002 Design Guide Preparing for Implementation 2002 Preparing for Implementation By Monte Symons 2003 NCUAPG Annual Meeting Excerpts from the 2002 Guide Implementation Package 2002 Presentation Overview Need for NCHRP 1-37A - Status Guide Basics Asphalt

More information

Flexible Pavement Analysis

Flexible Pavement Analysis Reliability in Mechanistic-Empirical Pavement Design Guide Flexible Pavement Analysis Presented By: Manuel Ayres Jr., Ph.D. At: TRB Workshop 152 Date: Jan 21, 2007 S1SP ARA0127-1 Summary 1. MEPDG Performance

More information

Mechanistic-Empirical Pavement Design Guide: A User s Perspective. Brian D. Prowell, Ph.D., P.E.

Mechanistic-Empirical Pavement Design Guide: A User s Perspective. Brian D. Prowell, Ph.D., P.E. Mechanistic-Empirical Pavement Design Guide: A User s Perspective Brian D. Prowell, Ph.D., P.E. Empirical Approach Based on results of experiments or experience Scientific basis not established AASHTO

More information

Sensitivity Analysis Of Aashto's 2002 Flexible And Rigid Pavement Design Methods

Sensitivity Analysis Of Aashto's 2002 Flexible And Rigid Pavement Design Methods University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Sensitivity Analysis Of Aashto's 2002 Flexible And Rigid Pavement Design Methods 2006 Sanjay Shahji University

More information

MECHANISTIC-EMPIRICAL PAVEMENT ANALYSIS AND DESIGN. University of Wisconsin Milwaukee Paper No. 13-2

MECHANISTIC-EMPIRICAL PAVEMENT ANALYSIS AND DESIGN. University of Wisconsin Milwaukee Paper No. 13-2 MECHANISTIC-EMPIRICAL PAVEMENT ANALYSIS AND DESIGN University of Wisconsin Milwaukee Paper No. 13-2 National Center for Freight & Infrastructure Research & Education College of Engineering Department of

More information

2008 SEAUPG CONFERENCE-BIRMINGHAM, ALABAMA

2008 SEAUPG CONFERENCE-BIRMINGHAM, ALABAMA Introduction Overview M E E Design Inputs MEPDG Where are we now MEPDG Inputs, Outputs, and Sensitivity Southeast Asphalt User Producer Group Bill Vavrik 19 November 2008 2 Implementation Timeframe DARWin

More information

ACKNOWLEDGMENT OF SPONSORSHIP

ACKNOWLEDGMENT OF SPONSORSHIP ACKNOWLEDGMENT OF SPONSORSHIP This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted

More information

Implementation of M-E PDG in Kansas

Implementation of M-E PDG in Kansas Implementation of M-E PDG in Kansas Mustaque Hossain, Ph.D.,P.E. Kansas State University 1 Projects related to the M-E Guide Implementation and Calibration Kansas HMA Fatigue and Stiffness Study Pool Fund

More information

Pavement Design Where are We? By Dr. Mofreh F. Saleh

Pavement Design Where are We? By Dr. Mofreh F. Saleh Pavement Design Where are We? By Dr. Mofreh F. Saleh Pavement Design Where are We?? State-of-Practice State-of-the-Art Empirical Mechanistic- Empirical Mechanistic Actual Current Practice?? Inputs Structure

More information

NCHRP. Project No. NCHRP 9-44 A. Validating an Endurance Limit for Hot-Mix Asphalt (HMA) Pavements: Laboratory Experiment and Algorithm Development

NCHRP. Project No. NCHRP 9-44 A. Validating an Endurance Limit for Hot-Mix Asphalt (HMA) Pavements: Laboratory Experiment and Algorithm Development NCHRP Project No. NCHRP 9-44 A Validating an Endurance Limit for Hot-Mix Asphalt (HMA) Pavements: Laboratory Experiment and Algorithm Development Appendix 1 Integrated Predictive Model for Healing and

More information

Mechanistic Pavement Design

Mechanistic Pavement Design Seminar on Pavement Design System and Pavement Performance Models Reykjavik, 22. 23. March, 2007 Mechanistic Pavement Design A Road to Enhanced Understanding of Pavement Performance Sigurdur Erlingsson

More information

Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations

Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations ENOC 2017, June 25 30, 2017, Budapest, Hungary Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations Amal Abdelaziz *, Chun-Hsing Ho *, and Junyi Shan * *

More information

Guide for Mechanistic-Empirical Design

Guide for Mechanistic-Empirical Design Copy No. Guide for Mechanistic-Empirical Design OF NEW AND REHABILITATED PAVEMENT STRUCTURES FINAL DOCUMENT APPENDIX BB: DESIGN RELIABILITY NCHRP Prepared for National Cooperative Highway Research Program

More information

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance Michael I. Darter, Jag Mallela, and Leslie Titus-Glover 1 ABSTRACT Concrete overlays are increasingly being constructed

More information

Beta Testing and. Validation of HMA PRS 1

Beta Testing and. Validation of HMA PRS 1 Beta Testing and NCHRP 9-22 WEBINAR April 27, 2009 NCHRP 9-22 Beta Testing and 1 Introduction to Project Project Team Specification Developments Materials and Method Specifications Performance Based Specifications

More information

Evaluation of Rutting Depth in Flexible Pavements by Using Finite Element Analysis and Local Empirical Model

Evaluation of Rutting Depth in Flexible Pavements by Using Finite Element Analysis and Local Empirical Model American Journal of Engineering and Applied Sciences, 2012, 5 (2), 163-169 ISSN: 1941-7020 2014 Abed and Al-Azzawi, This open access article is distributed under a Creative Commons Attribution (CC-BY)

More information

SENSITIVITY EVALUATION OF THE MEPDG FOR FLEXIBLE PAVEMENTS TRB Webinar July 25, 2012

SENSITIVITY EVALUATION OF THE MEPDG FOR FLEXIBLE PAVEMENTS TRB Webinar July 25, 2012 SENSITIVITY EVALUATION OF THE MEPDG FOR FLEXIBLE PAVEMENTS TRB Webinar July 25, 2012 Moderator: Trenton Clark Virginia Asphalt Association Presenter: Charles W. Schwartz University of Maryland 2 University

More information

Dynamic Resilient Modulus and the Fatigue Properties of Superpave HMA Mixes used in the Base Layer of Kansas Flexible Pavements

Dynamic Resilient Modulus and the Fatigue Properties of Superpave HMA Mixes used in the Base Layer of Kansas Flexible Pavements 06-1012 Dynamic Resilient Modulus and the Fatigue Properties of Superpave HMA Mixes used in the Base Layer of Kansas Flexible Pavements by Stefan A. Romanoschi, Nicoleta Dumitru, Octavian Dumitru and Glenn

More information

LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE

LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE Task 4 Report Calibration Bruce Tanquist, Assistant Pavement Design Engineer Minnesota Department of Transportation May 23, 2008 Introduction

More information

Comparison of Ontario Pavement Designs Using the AASHTO 1993 Empirical Method and the Mechanistic-Empirical Pavement Design Guide Method

Comparison of Ontario Pavement Designs Using the AASHTO 1993 Empirical Method and the Mechanistic-Empirical Pavement Design Guide Method Comparison of Ontario Pavement Designs Using the AASHTO 1993 Empirical Method and the Mechanistic-Empirical Pavement Design Guide Method by Jonathan Nathan Boone A thesis presented to the University of

More information

Guide for Mechanistic-Empirical Design

Guide for Mechanistic-Empirical Design Copy No. Guide for Mechanistic-Empirical Design OF NEW AND REHABILITATED PAVEMENT STRUCTURES FINAL DOCUMENT APPENDIX EE-1: INPUT DATA FOR THE CALIBRATION AND VALIDATION OF THE DESIGN GUIDE FOR NEW CONSTRUCTED

More information

APPENDIX A PROGRAM FLOW CHARTS

APPENDIX A PROGRAM FLOW CHARTS APPENDIX A PROGRAM FLOW CHARTS LIST OF FIGURES Figure Page A-1 Structure of the MEPDG software... A-1 A-2 Relationship of the reflection cracking design program of this project to the MEPDG design software...

More information

APPENDIX B DISTRESSES

APPENDIX B DISTRESSES 144 APPENDIX B DISTRESSES 145 INTRODUCTION The purpose of this appendix is not to provide a detailed discussion of the various descriptions and causes of distresses that may occur in any given pavement

More information

Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based on Viscoelastic Analysis

Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based on Viscoelastic Analysis Technical Paper ISSN 1996-6814 Int. J. Pavement Res. Technol. 6(4):379-385 Copyright @ Chinese Society of Pavement Engineering Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based

More information

Superpave Implementation Phase II: Comparison of Performance-Related Test Results

Superpave Implementation Phase II: Comparison of Performance-Related Test Results July 2014 UCPRC-RR-2015-01 Superpave Implementation Phase II: Comparison of Performance-Related Test Results Authors: J. Harvey, A. Liu, J. Zhou, J. M. Signore, E. Coleri, and Y. He Part of Partnered Pavement

More information

Mn/DOT Flexible Pavement Design Mechanistic-Empirical Method

Mn/DOT Flexible Pavement Design Mechanistic-Empirical Method Mn/DOT Flexible Pavement Design Mechanistic-Empirical Method Pavement Design Systems and Pavement Performance Models March 22-23, 2007 - Reykjavik, Iceland Bruce Chadbourn Assistant Pavement Design Engineer

More information

IMPROVEMENTS TO STRAIN COMPUTATION AND RELIABILTY ANALYSIS OF FLEXIBLE PAVEMENTS IN THE MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE

IMPROVEMENTS TO STRAIN COMPUTATION AND RELIABILTY ANALYSIS OF FLEXIBLE PAVEMENTS IN THE MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE IMPROVEMENTS TO STRAIN COMPUTATION AND RELIABILTY ANALYSIS OF FLEXIBLE PAVEMENTS IN THE MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE By SENTHILMURUGAN THYAGARAJAN A dissertation submitted in partial fulfillment

More information

Workshop 4PBB First Steps for the perpetual pavement design: through the analysis of the fatigue life

Workshop 4PBB First Steps for the perpetual pavement design: through the analysis of the fatigue life Workshop 4PBB First Steps for the perpetual pavement design: through the analysis of the fatigue life N. Hernández & D. Suarez Introduction In Mexico, asphalt pavements often exhibit premature failures

More information

ACKNOWLEDGMENT OF SPONSORSHIP

ACKNOWLEDGMENT OF SPONSORSHIP ACKNOWLEDGMENT OF SPONSORSHIP This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted

More information

Fatigue Endurance Limits for Perpetual Pavements

Fatigue Endurance Limits for Perpetual Pavements Fatigue Endurance Limits for Perpetual Pavements By Waleed Zeiada, Ph.D. November 14, 2013 Civil, Environmental, and Sustainable Engineering Tempe, AZ 85287 5306 1 Outline Background Research Statement

More information

Role of Binders in Pavement Performance

Role of Binders in Pavement Performance Role of Binders in Pavement Performance Presented by H. Bahia Research conducted by The University of Wisconsin-Asphalt Group The Pavement Performance Prediction Symposium Western Research Institute, Laramie,

More information

DEVELOPMENT AND EVALUATION OF AN HMA FRACTURE MECHANICS BASED MODEL TO PREDICT TOP-DOWN CRACKING IN HMA LAYERS

DEVELOPMENT AND EVALUATION OF AN HMA FRACTURE MECHANICS BASED MODEL TO PREDICT TOP-DOWN CRACKING IN HMA LAYERS DEVELOPMENT AND EVALUATION OF AN HMA FRACTURE MECHANICS BASED MODEL TO PREDICT TOP-DOWN CRACKING IN HMA LAYERS By JIAN ZOU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN

More information

MPC T. Kasperick and K. Ksaibati

MPC T. Kasperick and K. Ksaibati MPC 15-294 T. Kasperick and K. Ksaibati Calibration of the Mechanistic-Empirical Pavement Design Guide for Local Paved Roads in Wyoming A University Transportation Center sponsored by the U.S. Department

More information

ALACPA-ICAO Seminar on PMS. Lima Peru, November 2003

ALACPA-ICAO Seminar on PMS. Lima Peru, November 2003 ALACPA-ICAO Seminar on PMS Lima Peru, 19-22 November 2003 Airport Pavements FWD/HWD Testing and Evaluation By: Frank B. Holt Vice President Dynatest International A/S Dynamic Testing The method of FWD/HWD

More information

Asphalt Pavement Response and Fatigue Performance Prediction Using. Warm Mix Asphalt

Asphalt Pavement Response and Fatigue Performance Prediction Using. Warm Mix Asphalt Asphalt Pavement Response and Fatigue Performance Prediction Using the VECD Approach ApplicationApplication to Warm Mix Asphalt Y. Richard Kim, Ph.D, P.E. North Carolina State University Presented at the

More information

2002 Pavement Design

2002 Pavement Design 2002 Pavement Design Federal Highway Administration June 2001 Thomas P. Harman Asphalt Team Leader Predicting Pavement Performance Pavements are designed to fail But how do they perform? Defining Performance

More information

IDAHO TRANSPORTATION DEPARTMENT

IDAHO TRANSPORTATION DEPARTMENT RESEARCH REPORT RP 193 IDAHO TRANSPORTATION DEPARTMENT Implementation of the MEPDG for Flexible Pavements in Idaho By Fouad Bayomy Professor of Civil Engineering Sherif El-Badawy Research Fellow Ahmed

More information

Abu Ahmed Sufian. B.S., Bangladesh University of Engineering and Technology, 2013 A THESIS

Abu Ahmed Sufian. B.S., Bangladesh University of Engineering and Technology, 2013 A THESIS Local Calibration of the Mechanistic Empirical Pavement Design Guide for Kansas by Abu Ahmed Sufian B.S., Bangladesh University of Engineering and Technology, 2013 A THESIS submitted in partial fulfillment

More information

V. Mandapaka, I. Basheer, K. Sahasi & P. Vacura CalTrans, Sacramento, CA B.W. Tsai, C. L. Monismith, J. Harvey & P. Ullidtz UCPRC, UC-Davis, CA

V. Mandapaka, I. Basheer, K. Sahasi & P. Vacura CalTrans, Sacramento, CA B.W. Tsai, C. L. Monismith, J. Harvey & P. Ullidtz UCPRC, UC-Davis, CA Application of four-point bending beam fatigue test for the design and construction of a long-life asphalt concrete rehabilitation project in Northern California V. Mandapaka, I. Basheer, K. Sahasi & P.

More information

Analysis of pavement structural performance for future climate

Analysis of pavement structural performance for future climate P2R2C2 Analysis of pavement structural performance for future climate Report No. 7 July 2010 Project Coordinator University of Nottingham, UK ZAG, Slovenia VTT, Finland SINTEF, Norway This project was

More information

TECHNICAL REPORT STANDARD PAGE

TECHNICAL REPORT STANDARD PAGE TECHNICAL REPORT STANDARD PAGE 1. Report No. FHWA/LA.11/499 2. Government Accession No. 3. Recipient's Catalog No. 4. Title and Subtitle Characterization of Louisiana Asphalt Mixtures Using Simple Performance

More information

NOTTINGHAM DESIGN METHOD

NOTTINGHAM DESIGN METHOD NOTTINGHAM DESIGN METHOD Dr Andrew Collop Reader in Civil Engineering University of Nottingham CONTENTS Introduction Traffic Design temperatures Material properties Allowable strains Asphalt thickness

More information

NJDOT RESEARCH PROJECT MANAGER: Mr. Anthony Chmiel

NJDOT RESEARCH PROJECT MANAGER: Mr. Anthony Chmiel Project Title: RFP NUMBER: CAIT NJDOT Bureau of Research QUARTERLY PROGRESS REPORT Evaluation of Poisson s Ratio NJDOT RESEARCH PROJECT MANAGER: Mr. Anthony Chmiel TASK ORDER NUMBER/Study Number: Task

More information

ACET 406 Mid-Term Exam B

ACET 406 Mid-Term Exam B ACET 406 Mid-Term Exam B SUBJECT: ACET 406, INSTRUCTOR: Dr Antonis Michael, DATE: 24/11/09 INSTRUCTIONS You are required to answer all of the following questions within the specified time (90 minutes).you

More information

Application of DCP in Prediction of Resilient Modulus of Subgrade Soils

Application of DCP in Prediction of Resilient Modulus of Subgrade Soils Application of DCP in Prediction of Resilient Modulus of Subgrade Soils Louay Mohammad, Ph.D. Louisiana Transportation Research Center Louisiana State University 2006 Pavement Performance Seminar April

More information

What is on the Horizon in HMA. John D AngeloD Federal Highway Administration

What is on the Horizon in HMA. John D AngeloD Federal Highway Administration What is on the Horizon in HMA John D AngeloD Federal Highway Administration Are they all the same? Internal Angle of Gyration Internal Angle of Gyration Development of the Dynamic Angle Validator (DAV)

More information

MECHANISTIC-EMPIRICAL LOAD EQUIVALENCIES USING WEIGH IN MOTION

MECHANISTIC-EMPIRICAL LOAD EQUIVALENCIES USING WEIGH IN MOTION MECHANISTIC-EMPIRICAL LOAD EQUIVALENCIES USING WEIGH IN MOTION Prepared By: Curtis Berthelot Ph.D., P.Eng. Dept. of Civil Engineering University of Saskatchewan Tanya Loewen Dept. of Civil Engineering

More information

ME PDG Rigid Pavement Design Reliability Update. Further Calibration of the Distress Prediction Models & Reliability Effects

ME PDG Rigid Pavement Design Reliability Update. Further Calibration of the Distress Prediction Models & Reliability Effects ME PDG Rigid Pavement Design Reliability Update Further Calibration of the Distress Prediction Models & Reliability Effects NCHRP 1-40B 1 & 1-40D 1 Team Applied Research Associates Michael Darter Jagannath

More information

NCHRP Calibration of Fracture Predictions to Observed Reflection Cracking in HMA Overlays

NCHRP Calibration of Fracture Predictions to Observed Reflection Cracking in HMA Overlays NCHRP 1-41 Calibration of Fracture Predictions to Observed Reflection Cracking in HMA Overlays Robert L. Lytton Fang-Ling Tsai, Sang-Ick Lee Rong Luo, Sheng Hu, Fujie Zhou Pavement Performance Prediction

More information

Impact of Water on the Structural Performance of Pavements

Impact of Water on the Structural Performance of Pavements Impact of Water on the Structural Performance of Pavements S. Erlingsson Highway Engineering, VTI The Swedish National Road and Transport Research Institute, Linköping, Sweden & Faculty of Civil and Environmental

More information

Development and Implementation of the Reflective Cracking Model in the Mechanistic-Empirical Pavement Design Guide

Development and Implementation of the Reflective Cracking Model in the Mechanistic-Empirical Pavement Design Guide Development and Implementation of the Reflective Cracking Model in the Mechanistic-Empirical Pavement Design Guide Organizer: TRB Standing Committee on Pavement Rehabilitation August 17, 2016 Today s Presenters

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance Introduction and Review of Linear Viscoelastic Behaviors About the webinar series Past, current, and future plan for webinar series Introduction to

More information

Development and Validation of Mechanistic-Empirical Design Method for Permeable Interlocking Concrete Pavement

Development and Validation of Mechanistic-Empirical Design Method for Permeable Interlocking Concrete Pavement Development and Validation of Mechanistic-Empirical Design Method for Permeable Interlocking Concrete Pavement Hui Li, David Jones, Rongzong Wu, and John Harvey University of California Pavement Research

More information

Calibration of CalME models using WesTrack Performance Data

Calibration of CalME models using WesTrack Performance Data Research Report Calibration of CalME models using WesTrack Performance Data November 2006 Per Ullidtz John Harvey Bor-Wen Tsai Carl Monismith Institute of Transportation Studies University of California,

More information

TECHNICAL PAPER INVESTIGATION INTO THE VALIDATION OF THE SHELL FATIGUE TRANSFER FUNCTION

TECHNICAL PAPER INVESTIGATION INTO THE VALIDATION OF THE SHELL FATIGUE TRANSFER FUNCTION Authors: TECHNICAL PAPER INVESTIGATION INTO THE VALIDATION OF THE SHELL FATIGUE TRANSFER FUNCTION Anthony Stubbs (Presenter), BE(Hons), Masters student, University of Canterbury. aps49@student.canterbury.ac.nz.

More information

FULL-DEPTH HMA PAVEMENT DESIGN

FULL-DEPTH HMA PAVEMENT DESIGN FULL-DEPTH HMA PAVEMENT DESIGN Marshall R. Thompson Department of Civil Engineering University of Illinois @ U-C FULL-DEPTH HMA FULL QUALITY HMA IDOT & FULL-DEPTH HMA PAVEMENT (FD-HMA) BEFORE 1989 *AASHTO

More information

MANAGEMENT OF UNCERTAINTY FOR FLEXIBLE PAVEMENT DESIGN UTILIZING ANALYTICAL AND PROBABILISTIC METHODS. Jennifer Queen Retherford.

MANAGEMENT OF UNCERTAINTY FOR FLEXIBLE PAVEMENT DESIGN UTILIZING ANALYTICAL AND PROBABILISTIC METHODS. Jennifer Queen Retherford. MANAGEMENT OF UNCERTAINTY FOR FLEXIBLE PAVEMENT DESIGN UTILIZING ANALYTICAL AND PROBABILISTIC METHODS By Jennifer Queen Retherford Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt

More information

DYNAMIC MODULUS MASTER CURVE AND CHARACTERIZATION OF SUPERPAVE HMA CONTAINING VARIOUS POLYMER TYPES

DYNAMIC MODULUS MASTER CURVE AND CHARACTERIZATION OF SUPERPAVE HMA CONTAINING VARIOUS POLYMER TYPES DYNAMIC MODULUS MASTER CURVE AND CHARACTERIZATION OF SUPERPAVE HMA CONTAINING VARIOUS POLYMER TYPES Al-Hosain M. Ali 1, Mohamed S. Aazam 2, and Mohamed A. Alomran 3 1 Assistant Professor, Civil Engineering.

More information

Perpetual Asphalt Pavements: Materials, Analysis/Design, Construction, and Other Considerations

Perpetual Asphalt Pavements: Materials, Analysis/Design, Construction, and Other Considerations Perpetual Asphalt Pavements: Materials, Analysis/Design, Construction, and Other Considerations Carl L. Monismith Pavement Research Center University of California, Berkeley 2006 International Conference

More information

Flexural Life of Unbound Granular Pavements with Chip Seal Surfacings

Flexural Life of Unbound Granular Pavements with Chip Seal Surfacings Flexural Life of Unbound Granular Pavements with Chip Seal Surfacings Austroads Design Checks vertical strains at top of subgrade, ie primary function is to limit rutting BUT - trigger for rehabilitation

More information

Background PG G* sinδ

Background PG G* sinδ Full-Scale Accelerated Performance Testing for Superpave & Structural Validation Outcomes - Ongoing Activities - Future APT Experiments Hilton Head Island, South Carolina November 9-12, 2009 FHWA Turner-Fairbank

More information

Local Calibration Studies on DARWin-ME / Mechanistic- Empirical Pavement Design Guide Jointed Plain Concrete Pavement Performance Prediction Models

Local Calibration Studies on DARWin-ME / Mechanistic- Empirical Pavement Design Guide Jointed Plain Concrete Pavement Performance Prediction Models TRB Paper 13-2667 Local Calibration Studies on DARWin-ME / Mechanistic- Empirical Pavement Design Guide Jointed Plain Concrete Pavement Performance Prediction Models by Sunghwan Kim, Ph.D., P.E. (corresponding

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[pan, Ernian] [Pan, Ernian] On: 23 May 2007 Access Details: [subscription number 778682963] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

An evaluation of Pavement ME Design dynamic modulus prediction model for asphalt mixes containing RAP

An evaluation of Pavement ME Design dynamic modulus prediction model for asphalt mixes containing RAP An evaluation of Pavement ME Design dynamic modulus prediction model for asphalt mixes containing RAP Saman (Sam) Esfandiarpour Ph.D candidate, Department of Civil Engineering University of Manitoba E-mail:

More information

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY:

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY: April 2008 Technical Memorandum: Calibration of CalME Models Using Field Data Collected from US 101 near Redwood National Park, Humboldt County Author: Rongzong Wu Partnered Pavement Research Program (PPRC)

More information

Analyses of Laboratory and Accelerated Pavement Testing Data for Warm-Mix Asphalt Using California Mechanistic- Empirical Design Method

Analyses of Laboratory and Accelerated Pavement Testing Data for Warm-Mix Asphalt Using California Mechanistic- Empirical Design Method Analyses of Laboratory and Accelerated Pavement Testing Data for Warm-Mix Asphalt Using California Mechanistic- Empirical Design Method Rongzong Wu and David Jones UCPRC Imad Basheer and Venkata Mandapaka

More information

The Role of Subbase Support in Concrete Pavement Sustainability

The Role of Subbase Support in Concrete Pavement Sustainability The Role of Subbase Support in Concrete Pavement Sustainability TxDOT Project 6037 - Alternatives to Asphalt Concrete Pavement Subbases for Concrete Pavement Youn su Jung Dan Zollinger Andrew Wimsatt Wednesday,

More information

Modulus of Rubblized Concrete from Surface Wave Testing

Modulus of Rubblized Concrete from Surface Wave Testing from Surface Wave Testing Nenad Gucunski Center for Advanced Infrastructure and Transportation (CAIT) Infrastructure Condition Monitoring Program (ICMP) 84 th Annual NESMEA Conference October 8, 2008 Route

More information

MECHANISTIC CHARACTERIZATION OF RESILIENT MODULI FOR UNBOUND PAVEMENT LAYER MATERIALS

MECHANISTIC CHARACTERIZATION OF RESILIENT MODULI FOR UNBOUND PAVEMENT LAYER MATERIALS MECHANISTIC CHARACTERIZATION OF RESILIENT MODULI FOR UNBOUND PAVEMENT LAYER MATERIALS Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration

More information

Performance-Based Mix Design

Performance-Based Mix Design Performance-Based Mix Design Y. Richard Kim North Carolina State University Presented to the Asphalt Mixture ETG Fall River, MA September 14, 216 Integration between PBMD and PRS Same test methods and

More information

Calibration of Mechanistic-Empirical Fatigue Models Using the PaveLab Heavy Vehicle Simulator

Calibration of Mechanistic-Empirical Fatigue Models Using the PaveLab Heavy Vehicle Simulator 1 1 1 1 1 1 1 0 1 0 1 0 1 Calibration of Mechanistic-Empirical Fatigue Models Using the PaveLab Heavy Vehicle Simulator Eliecer Arias-Barrantes 1, José Pablo Aguiar-Moya, Luis Guillermo Loría-Salazar,

More information

Sensitivity Analysis of 2002 Design Guide Rigid Pavement Distress Prediction Models

Sensitivity Analysis of 2002 Design Guide Rigid Pavement Distress Prediction Models Research Report UCD-ITS-RR-06-31 Sensitivity Analysis of 2002 Design Guide Rigid Pavement Distress Prediction Models June 2006 Venkata Kannekanti John Harvey Institute of Transportation Studies University

More information

LTPP InfoPave TM Extracting Information out of LTPP Data

LTPP InfoPave TM Extracting Information out of LTPP Data LTPP InfoPave TM Extracting Information out of LTPP Data Jane Jiang PE, LTPP Database Manager, FHWA Riaz Ahmad, President, iengineering Jerome Daleiden PE, Director Pavement Engineering, Fugro Jonathan

More information

Study on How to Determine Repair Thickness of Damaged Layers for Porous Asphalt

Study on How to Determine Repair Thickness of Damaged Layers for Porous Asphalt Study on How to Determine Repair Thickness of Damaged Layers for Porous Asphalt K. Kamiya & T. Kazato Nippon Expressway Research Institute Company Limited, Tokyo, Japan ABSTRACT: Porous asphalt has been

More information

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY:

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY: April 2008 Technical Memorandum: Calibration of CalME Models Using Field Data Collected from US 101 near Redwood National Park, Humboldt County Author: Rongzong Wu Partnered Pavement Research Program (PPRC)

More information

RELIABILITY, DAMAGE, AND SEASONAL CONSIDERATIONS IN THE MNPAVE MECHANISTIC-EMPIRICAL ASPHALT PAVEMENT DESIGN COMPUTER PROGRAM

RELIABILITY, DAMAGE, AND SEASONAL CONSIDERATIONS IN THE MNPAVE MECHANISTIC-EMPIRICAL ASPHALT PAVEMENT DESIGN COMPUTER PROGRAM RELIABILITY, DAMAGE, AND SEASONAL CONSIDERATIONS IN THE MNPAVE MECHANISTIC-EMPIRICAL ASPHALT PAVEMENT DESIGN COMPUTER PROGRAM INTRODUCTION Bruce A. Tanquist, Research Project Engineer Mn/DOT is in the

More information

SENSITIVITY ANALYSIS OF THE VESYS PROGRAM TO PREDICT CRITICAL PAVEMENT RESPONSES FOR RUTTING AND FATIGUE PERFORMANCES OF PAVEMENT INFRASTRUCTURES

SENSITIVITY ANALYSIS OF THE VESYS PROGRAM TO PREDICT CRITICAL PAVEMENT RESPONSES FOR RUTTING AND FATIGUE PERFORMANCES OF PAVEMENT INFRASTRUCTURES SENSITIVITY ANALYSIS OF THE VESYS PROGRAM TO PREDICT CRITICAL PAVEMENT RESPONSES FOR RUTTING AND FATIGUE PERFORMANCES OF PAVEMENT INFRASTRUCTURES Ghazi G. Al-Khateeb 1, Raghu Satyanarayana 2, and Katherine

More information

Developing Subgrade Inputs for Mechanistic- Empirical Pavement Design

Developing Subgrade Inputs for Mechanistic- Empirical Pavement Design University of Arkansas, Fayetteville ScholarWorks@UARK Computer Science and Computer Engineering Undergraduate Honors Theses Computer Science and Computer Engineering 5-2008 Developing Subgrade Inputs

More information

Flexible Pavement Stress Analysis

Flexible Pavement Stress Analysis Flexible Pavement Stress Analysis Dr. Antonis Michael Frederick University Notes Courtesy of Dr. Christos Drakos, University of Florida Need to predict & understand stress/strain distribution within the

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

Design and Construction Guidlines for Thermally Insulated Concrete Pavements

Design and Construction Guidlines for Thermally Insulated Concrete Pavements Design and Construction Guidlines for Thermally Insulated Concrete Pavements Lev Khazanovich, Principal Investigator Department of Civil Engineering University of Minnesota January 2013 Research Project

More information

Asphalt Stiffness and Fatigue Parameters from Fast Falling Weight

Asphalt Stiffness and Fatigue Parameters from Fast Falling Weight Asphalt Stiffness and Fatigue Parameters from Fast Falling Weight Deflectometer (FastFWD) Tests 1 1 1 1 1 1 1 1 0 1 0 1 Sadaf Khosravifar, PhD Dynatest North America, Inc. 1 South Jefferson Street, Suite

More information

ABSTRACT. The new pavement design methodology is based on mechanistic-empirical

ABSTRACT. The new pavement design methodology is based on mechanistic-empirical ABSTRACT Title of Document: CATALOG OF MATERIAL PROPERTIES FOR MECHANISTIC-EMPIRICAL PAVEMENT DESIGN Rui Li, Master of Science, 2011 Directed By: Dr. Charles W. Schwartz Department of Civil and Environmental

More information

TRB DETERMINATION OF CRITICAL BENDING STRESSES IN THE PCC LAYER WITH ASPHALT OVERLAY

TRB DETERMINATION OF CRITICAL BENDING STRESSES IN THE PCC LAYER WITH ASPHALT OVERLAY Saxena and Khazanovich 0 TRB - DETERMINTION OF CRITICL BENDING STRESSES IN THE PCC LYER WITH SPHLT OVERLY Priyam Saxena, Ph.D University of Minnesota Department of Civil Engineering 00 Pillsbury Drive

More information

Task 3. EICM Validation and Analysis

Task 3. EICM Validation and Analysis Task 3. EICM Validation and Analysis Lev Khazanovich Associate Professor Presentation Outline 1. Minimum AC thickness 2. Time of traffic opening 3. Comparisons of AC overlay and semi-rigid MEPDG models

More information

FACTORS AFFECTING RESILIENT MODULUS

FACTORS AFFECTING RESILIENT MODULUS FACTORS AFFECTING RESILIENT MODULUS Saleh M & S J JI University of Canterbury, Christchurch, New Zealand ABSTRACT: Resilient modulus is an important property for asphalt concrete design and for mechanistic

More information

AN INVESTIGATION OF DYNAMIC MODULUS AND FLOW NUMBER PROPERTIES OF ASPHALT MIXTURES IN WASHINGTON STATE

AN INVESTIGATION OF DYNAMIC MODULUS AND FLOW NUMBER PROPERTIES OF ASPHALT MIXTURES IN WASHINGTON STATE Final Report (Draft) TNW2012-02 Research Project Agreement No. 709867 AN INVESTIGATION OF DYNAMIC MODULUS AND FLOW NUMBER PROPERTIES OF ASPHALT MIXTURES IN WASHINGTON STATE Huanan Yu Graduate Research

More information

Technical Report Documentation Page 2. Government Accession No. 3. Recipient's Catalog No.

Technical Report Documentation Page 2. Government Accession No. 3. Recipient's Catalog No. 1. Report No. FHWA/TX-12/0-6622-1 4. Title and Subtitle TEXAS M-E FLEXIBLE PAVEMENT DESIGN SYSTEM: LITERATURE REVIEW AND PROPOSED FRAMEWORK Technical Report Documentation Page 2. Government Accession No.

More information

Design of Overlay for Flexible Pavement

Design of Overlay for Flexible Pavement Design of Overlay for Flexible Pavement Types of Overlays Asphalt overlay over asphalt pavements Asphalt overlays on CC pavements CC overlays on asphalt pavements CC overlays on CC pavements Steps in Design

More information

Development of specifications for the superpave simple performance tests

Development of specifications for the superpave simple performance tests Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports - Open Dissertations, Master's Theses and Master's Reports 2009 Development of specifications

More information

HPMS Rule on Collecting Pavement Condition Data. Roger Smith Sui Tan

HPMS Rule on Collecting Pavement Condition Data. Roger Smith Sui Tan HPMS Rule on Collecting Pavement Condition Data Roger Smith Sui Tan Final Rule Issued January Affects Local agencies that have non-state NHS roads/ street For which you report HPMS data to Caltrans 2 Final

More information

BONDED CONCRETE OVERLAY OF ASPHALT PAVEMENTS MECHANISTIC-EMPIRICAL DESIGN GUIDE (BCOA-ME)

BONDED CONCRETE OVERLAY OF ASPHALT PAVEMENTS MECHANISTIC-EMPIRICAL DESIGN GUIDE (BCOA-ME) BONDED CONCRETE OVERLAY OF ASPHALT PAVEMENTS MECHANISTIC-EMPIRICAL DESIGN GUIDE (BCOA-ME) THEORY MANUAL University of Pittsburgh Department of Civil and Environmental Engineering Pittsburgh, Pennsylvania

More information

Determination of Resilient Modulus Model for Road-Base Material

Determination of Resilient Modulus Model for Road-Base Material JOURNAL OF APPLIED SCIENCES RESEARCH ISSN: 1819-544X Published BY AENSI Publication EISSN: 1816-157X http://www.aensiweb.com/jasr 2017 January; 13(1): pages 10-16 Open Access Journal Determination of Resilient

More information

Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design

Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design Tanquist 1 Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design Submission date: August 1, 2001 Word Count: 4654 Bruce A. Tanquist Research Project Engineer Minnesota

More information

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Zhong Wu, Ph.D., P.E. Zhongjie Zhang, Bill King Louay Mohammad Outline Background Objectives

More information

Determination of Failure Point of Asphalt-Mixture Fatigue-Test Results Using the Flow Number Method

Determination of Failure Point of Asphalt-Mixture Fatigue-Test Results Using the Flow Number Method IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Determination of Failure Point of Asphalt-Mixture Fatigue-Test Results Using the Flow Number Method To cite this article: C E

More information

Prediction of Complex Shear Modulus and Fracture Properties of Asphalt Binders with Oxidative Aging

Prediction of Complex Shear Modulus and Fracture Properties of Asphalt Binders with Oxidative Aging Prediction of Complex Shear Modulus and Fracture Properties of Asphalt Binders with Oxidative Aging By Haifang Wen, PhD, PE Colf Distinguished Professor Director of Washington Center for Asphalt Technology

More information

Effect of Moisture on Full Scale Pavement Distress

Effect of Moisture on Full Scale Pavement Distress Effect of Moisture on Full Scale Pavement Distress José Aguiar-Moya, Edgar Camacho-Garita, Eliécer Arias-Barrantes, Luis Loría-Salazar ( LanammeUCR,San José, Costa Rica, jose.aguiar@ucr.ac.cr) ( LanammeUCR,San

More information

Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications. University of Illinois 12 February 2009

Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications. University of Illinois 12 February 2009 Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications Chandrakant S. Desai Kent Distinguished i Lecture University of Illinois 12 February 2009 Participation in Pavements.

More information