Matrix-valued functions

Size: px
Start display at page:

Download "Matrix-valued functions"

Transcription

1 Matrix-valued functions Aim lecture: We solve some first order linear homogeneous differential equations using exponentials of matrices. Recall as in MATH2, the any function R M mn (C) : t A(t) can be thought of as a matrix of functions A(t) = (a ij (t)) ij with each a ij : R C. We thus have Defn The derivative of the matrix-valued function A(t) is Similarly, we may integrate t d A(t + t) A(t) (A(t)) = lim = t 0 t t 0 A(t) = ( t t 0 ) a ij (t). ij ( ) daij. ij Rem In the special case that A(t) = y(t) is vector-valued, differentiation is also given by d... d so is linear. Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

2 First order matrix DE We will be interested in solving DEs in the vector-valued function y(t) of the following form. First-order DE with constant co-efficients Let A M nn (C) & v(t) be a C n -valued fn. dy = Ay(t) + v(t) is a first order differential equation with constant co-efficients. It is homogeneous if v(t) = 0. We may also specify an initial condition such as y(0) = w for some given w C n. We keep this as standard notation throughout. Rem Let V be the space of infinitely differentiable functions from R C n & suppose v(t) V. Then the DE above is linear in the following sense. Note that T = d A : V V is linear & the eqn can be re-written as T y = v. Hence homogenous solns correspond to ker T. Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

3 Product rule Below we let A(t) be a fn with values in M lm (C) & B(t) be a fn with values in M mn (C). Prop d da (A(t)B(t)) = B(t) + A(t)dB. In particular, for a constant matrix B M mn (C) we have d da (A(t)B) = B. Proof is just a computation e.g. if l = m = 2, n = then given fns of t, a, a 2, a 2, a 22, b, b 2 we have [( ) ( )] d a a 2 b = d ( ) a b + a 2 b 2 a 2 a 22 b 2 a 2 b + a 22 b 2 ( a = b + a 2 b 2 + a b + a ) 2b 2 a 2 b + a 22 b 2 + a 2 b + a 22b 2 ) ( ) b + b 2 = ( a a 2 a 2 a 22 ( a a 2 a 2 a 22 ) ( b b 2 ) Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

4 Properties of the exponential function Prop Let A, B M nn (C) be commuting matrices. exp(0) = I 2 exp(a + B) = exp(a) exp(b) 3 exp(a) = exp( A). Proof. For ) note exp(0) = Also 2) & ) = 3) so we prove 2) only. We assume the standard (Cauchy) product formula for power series. exp(a + B) = k 0 = k 0 k! (A + B)k = k 0 i+j=k, i,j 0 k! i!j! Ai B j = i 0 i+j=k, i,j 0 i! Ai ( ) k A i B j i j 0 j! Bj = exp(a) exp(b) Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

5 Derivative of the exponential function Theorem Let A M nn (C). d (exp(ta)) = A exp(ta). 2 For any w C n, y(t) = exp(ta)w is a soln to dy condition y(0) = w. = Ay(t) with initial Proof. For ) all the entries e ij (t) of exp(ta) are analytic fns of t so we may differentiate term by term d (exp(ta)) = d k! Ak t k = (k )! Ak t k k 0 k = A k (k )! Ak t k = A exp(ta) For 2) note y(0) = exp(0)w = I w = w & the product rule gives dy = d (exp(ta)w) = d (exp(ta)) w = A exp(ta)w = Ay(t). Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

6 Uniqueness of soln Theorem y(t) = exp(ta)w gives the unique soln to the initial value problem, dy = Ay(t), y(0) = w Proof. Saw last slide, that y(t) = exp(ta)w solves the IVP. We show uniqueness by giving another method of solving the IVP. We first triangularise A with some change of co-ords matrix C GL n (C) so that C AC = U for some upper triangular U. We change co-ords to z(t) = C y(t). The new initial condn is z(0) = C w = x & the new DE is d (Cz(t)) = ACz(t). Left multiplying by C & using the product rule this simplifies to dz = C d (Cz(t)) = C ACz(t) = Uz(t). Suffice show new IVP in z(t) has a unique soln. Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

7 Proof by cascaded system of DEs We proceed by back-subtitution. Write U = (u ij ) ij, z(t) = (z (t),..., z n (t)) T, x = (x,..., x n ) T & look first at the last row of dz = Uz(t). We solve first uniquely for z n (t) which is possible as it is the soln to the first order linear ODE dz n = u nnz n (t), z n (0) = x n. We now look at the second last row of dz = Uz(t) to solve uniquely for z n (t). Indeed, this has a unique soln as it is the soln to dz n = u n,n z n (t) + u n,n z n (t), z n (0) = x n. which can be re-written as the linear st order ODE dz n u n,n z n (t) = u n,n z n (t), & z n (t) has been determined uniquely. z n (0) = x n Continuing in this fashion, we see that the IVP must have a unique soln. This completes the proof of the thm. Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

8 Example E.g Solve the IVP dy = Ay(t), y(0) = (2, 0,, )T if A = C(J (5) J 3 (2))C & 0 0 C = Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

9 Example cont d Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

10 Space of homogeneous solns Let V be the space of infinitely differentiable functions from R C n. Prop Let A M nn (C) and Y be the set of solns y(t) to the DE dy = Ay(t). Then Y is n-dimensional with basis the columns of exp(ta), that is, if for j =,..., n we write y (j) (t) = (exp(ta) j,..., exp(ta) nj ) T, then {y () (t),..., y (n) (t)} is a basis for Y. Proof. Any y(t) = (y (t),..., y n (t)) T Y is a linear combn of columns of exp(ta) since y(t) = exp(ta)y(0) = y (0)y () (t) y n (0)y (n) (t). Hence the columns span Y. Lin indep of the columns follows easily from the fact that exp(ta) is invertible so exp(ta) : C n Y is an isomorphism. Daniel Chan (UNSW) Lecture 27: Homogeneous differential equations Semester / 0

Matrix-valued functions

Matrix-valued functions Matrix-valued functions Aim lecture: We solve some first order linear homogeneous differential equations using exponentials of matrices. Recall as in MATH2, the any function R M mn (C) : t A(t) can be

More information

Data fitting. Ideal equation for linear relation

Data fitting. Ideal equation for linear relation Problem Most likely, there will be experimental error so you should take more than 2 data points, & they will not lie on a line so the ideal eqn above has no solution. The question is what is the best

More information

Kernel. Prop-Defn. Let T : V W be a linear map.

Kernel. Prop-Defn. Let T : V W be a linear map. Kernel Aim lecture: We examine the kernel which measures the failure of uniqueness of solns to linear eqns. The concept of linear independence naturally arises. This in turn gives the concept of a basis

More information

Rank & nullity. Defn. Let T : V W be linear. We define the rank of T to be rank T = dim im T & the nullity of T to be nullt = dim ker T.

Rank & nullity. Defn. Let T : V W be linear. We define the rank of T to be rank T = dim im T & the nullity of T to be nullt = dim ker T. Rank & nullity Aim lecture: We further study vector space complements, which is a tool which allows us to decompose linear problems into smaller ones. We give an algorithm for finding complements & an

More information

Old & new co-ordinates

Old & new co-ordinates Old & new co-ordinates Aim lecture: A wise choice of co-ordinates can make life much easier. We give some examples showing how to make a linear change of co-ords to facilitate calculations. Suppose we

More information

Quadratic forms. Defn

Quadratic forms. Defn Quadratic forms Aim lecture: We use the spectral thm for self-adjoint operators to study solns to some multi-variable quadratic eqns. In this lecture, we work over the real field F = R. We use the notn

More information

Non-square diagonal matrices

Non-square diagonal matrices Non-square diagonal matrices Aim lecture: We apply the spectral theory of hermitian operators to look at linear maps T : V W which are not necessarily endomorphisms. This gives useful factorisations of

More information

Definition of adjoint

Definition of adjoint Definition of adjoint Aim lecture: We generalise the adjoint of complex matrices to linear maps between fin dim inner product spaces. In this lecture, we let F = R or C. Let V, W be inner product spaces

More information

Jordan chain. Defn. E.g. T = J 3 (λ) Daniel Chan (UNSW) Lecture 29: Jordan chains & tableaux Semester / 10

Jordan chain. Defn. E.g. T = J 3 (λ) Daniel Chan (UNSW) Lecture 29: Jordan chains & tableaux Semester / 10 Jordan chain Aim lecture: We introduce the notions of Jordan chains & Jordan form tableaux which are the key notions to proving the Jordan canonical form theorem. Throughout this lecture we fix the following

More information

Jordan blocks. Defn. Let λ F, n Z +. The size n Jordan block with e-value λ is the n n upper triangular matrix. J n (λ) =

Jordan blocks. Defn. Let λ F, n Z +. The size n Jordan block with e-value λ is the n n upper triangular matrix. J n (λ) = Jordan blocks Aim lecture: Even over F = C, endomorphisms cannot always be represented by a diagonal matrix. We give Jordan s answer, to what is the best form of the representing matrix. Defn Let λ F,

More information

Matrix of linear maps. Matrix-vector product

Matrix of linear maps. Matrix-vector product Matrix of linear maps. Matrix-vector product Aim lecture: Introduce matrices of linear maps as a way of understanding more complicated linear maps. Consider direct sums of F-spaces V = m j=1 V j, W = n

More information

i.e. the i-th column of A is the value of T at the i-th standard basis vector e i R n.

i.e. the i-th column of A is the value of T at the i-th standard basis vector e i R n. Aim lecture In first year you learnt that you can mutliply not only a (real matrix with a (real vector, but more generally, matrices together (of compatible sizes. Furthermore, you learnt the following

More information

Orthogonal complement

Orthogonal complement Orthogonal complement Aim lecture: Inner products give a special way of constructing vector space complements. As usual, in this lecture F = R or C. We also let V be an F-space equipped with an inner product

More information

Rotations & reflections

Rotations & reflections Rotations & reflections Aim lecture: We use the spectral thm for normal operators to show how any orthogonal matrix can be built up from rotations & reflections. In this lecture we work over the fields

More information

Here are some additional properties of the determinant function.

Here are some additional properties of the determinant function. List of properties Here are some additional properties of the determinant function. Prop Throughout let A, B M nn. 1 If A = (a ij ) is upper triangular then det(a) = a 11 a 22... a nn. 2 If a row or column

More information

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33 Chapter 5: Matrices Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018 1 / 33 In this chapter Matrices were first introduced in the Chinese Nine Chapters on the Mathematical

More information

Eigenvectors. Prop-Defn

Eigenvectors. Prop-Defn Eigenvectors Aim lecture: The simplest T -invariant subspaces are 1-dim & these give rise to the theory of eigenvectors. To compute these we introduce the similarity invariant, the characteristic polynomial.

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

Jordan normal form notes (version date: 11/21/07)

Jordan normal form notes (version date: 11/21/07) Jordan normal form notes (version date: /2/7) If A has an eigenbasis {u,, u n }, ie a basis made up of eigenvectors, so that Au j = λ j u j, then A is diagonal with respect to that basis To see this, let

More information

Rotations & reflections

Rotations & reflections Rotations & reflections Aim lecture: We use the spectral thm for normal operators to show how any orthogonal matrix can be built up from rotations. In this lecture we work over the fields F = R & C. We

More information

Lecture 11: Dimension. How does Span(S) vary with S

Lecture 11: Dimension. How does Span(S) vary with S Lecture 11: Dimension Aim Lecture A basis {v 1,..., v n } of V gives n-dim coord system. Suggests V is n-dimensional. Need theory to ensure any two bases have the same number of vectors. How does Span(S)

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations. The Initial Value Problem. Linear variable coefficients equations. The Bernoulli equation: A nonlinear equation.

More information

Chapter 4: Linear Equations

Chapter 4: Linear Equations Chapter 4: Linear Equations Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 4: Linear Equations Semester 1 2018 1 / 42 An Ancient Chinese Problem The following maths problem was taken from

More information

Linear Algebra Review (Course Notes for Math 308H - Spring 2016)

Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Dr. Michael S. Pilant February 12, 2016 1 Background: We begin with one of the most fundamental notions in R 2, distance. Letting (x 1,

More information

Chapter 2: Vector Geometry

Chapter 2: Vector Geometry Chapter 2: Vector Geometry Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 2: Vector Geometry Semester 1 2018 1 / 32 Goals of this chapter In this chapter, we will answer the following geometric

More information

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini DM559 Linear and Integer Programming Lecture 3 Matrix Operations Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline and 1 2 3 and 4 2 Outline and 1 2

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

1 Smooth manifolds and Lie groups

1 Smooth manifolds and Lie groups An undergraduate approach to Lie theory Slide 1 Andrew Baker, Glasgow Glasgow, 12/11/1999 1 Smooth manifolds and Lie groups A continuous g : V 1 V 2 with V k R m k open is called smooth if it is infinitely

More information

Data for a vector space

Data for a vector space Data for a vector space Aim lecture: We recall the notion of a vector space which provides the context for describing linear phenomena. Throughout the rest of these lectures, F denotes a field. Defn A

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

ODEs Cathal Ormond 1

ODEs Cathal Ormond 1 ODEs Cathal Ormond 2 1. Separable ODEs Contents 2. First Order ODEs 3. Linear ODEs 4. 5. 6. Chapter 1 Separable ODEs 1.1 Definition: An ODE An Ordinary Differential Equation (an ODE) is an equation whose

More information

Linear Variable coefficient equations (Sect. 1.2) Review: Linear constant coefficient equations

Linear Variable coefficient equations (Sect. 1.2) Review: Linear constant coefficient equations Linear Variable coefficient equations (Sect. 1.2) Review: Linear constant coefficient equations. The Initial Value Problem. Linear variable coefficients equations. The Bernoulli equation: A nonlinear equation.

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

Section 9.2: Matrices.. a m1 a m2 a mn

Section 9.2: Matrices.. a m1 a m2 a mn Section 9.2: Matrices Definition: A matrix is a rectangular array of numbers: a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn In general, a ij denotes the (i, j) entry of A. That is, the entry in

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Math 60. Rumbos Spring Solutions to Assignment #17

Math 60. Rumbos Spring Solutions to Assignment #17 Math 60. Rumbos Spring 2009 1 Solutions to Assignment #17 a b 1. Prove that if ad bc 0 then the matrix A = is invertible and c d compute A 1. a b Solution: Let A = and assume that ad bc 0. c d First consider

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

Lecture 8: Determinants I

Lecture 8: Determinants I 8-1 MATH 1B03/1ZC3 Winter 2019 Lecture 8: Determinants I Instructor: Dr Rushworth January 29th Determinants via cofactor expansion (from Chapter 2.1 of Anton-Rorres) Matrices encode information. Often

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Section 1.1: Systems of Linear Equations

Section 1.1: Systems of Linear Equations Section 1.1: Systems of Linear Equations Two Linear Equations in Two Unknowns Recall that the equation of a line in 2D can be written in standard form: a 1 x 1 + a 2 x 2 = b. Definition. A 2 2 system of

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Mathematics 13: Lecture 10

Mathematics 13: Lecture 10 Mathematics 13: Lecture 10 Matrices Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 10 January 25, 2008 1 / 19 Matrices Recall: A matrix is a

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Differential equations

Differential equations Differential equations Math 7 Spring Practice problems for April Exam Problem Use the method of elimination to find the x-component of the general solution of x y = 6x 9x + y = x 6y 9y Soln: The system

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Anton & Rorres, 10 th Edition Lecture Set 05 Chapter 4: General Vector Spaces 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2554 1006003 คณตศาสตรวศวกรรม

More information

Lecture 31. Basic Theory of First Order Linear Systems

Lecture 31. Basic Theory of First Order Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 31. Basic Theory of First Order Linear Systems April 4, 2012 Konstantin Zuev (USC) Math 245, Lecture 31 April 4, 2012 1 / 10 Agenda Existence

More information

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation. function Matrices Calculus III Summer 2013, Session II Wednesday, July 10, 2013 Agenda function 1. 2. function function Definition An m n matrix is a rectangular array of numbers arranged in m horizontal

More information

Solving Ax = b w/ different b s: LU-Factorization

Solving Ax = b w/ different b s: LU-Factorization Solving Ax = b w/ different b s: LU-Factorization Linear Algebra Josh Engwer TTU 14 September 2015 Josh Engwer (TTU) Solving Ax = b w/ different b s: LU-Factorization 14 September 2015 1 / 21 Elementary

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

Linear Algebra I Lecture 8

Linear Algebra I Lecture 8 Linear Algebra I Lecture 8 Xi Chen 1 1 University of Alberta January 25, 2019 Outline 1 2 Gauss-Jordan Elimination Given a system of linear equations f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n

More information

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 Scott Strong sstrong@mines.edu Colorado School of Mines What is the Matrix? p. 1/20 Overview/Keywords/References Advanced

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

Review of Basic Concepts in Linear Algebra

Review of Basic Concepts in Linear Algebra Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra

More information

Linear algebra and differential equations (Math 54): Lecture 20

Linear algebra and differential equations (Math 54): Lecture 20 Linear algebra and differential equations (Math 54): Lecture 20 Vivek Shende April 7, 2016 Hello and welcome to class! Last time We started discussing differential equations. We found a complete set of

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. Section 9.2: Matrices Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. That is, a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn A

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.3 Composition Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information

Matrices and Linear Algebra

Matrices and Linear Algebra Contents Quantitative methods for Economics and Business University of Ferrara Academic year 2017-2018 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

Matrix Multiplication

Matrix Multiplication 3.2 Matrix Algebra Matrix Multiplication Example Foxboro Stadium has three main concession stands, located behind the south, north and west stands. The top-selling items are peanuts, hot dogs and soda.

More information

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why?

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why? KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices Why? Lecture 5 Ch. 5, Norms for vectors and matrices Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Problem: Measure size of

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

MTH 215: Introduction to Linear Algebra

MTH 215: Introduction to Linear Algebra MTH 215: Introduction to Linear Algebra Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 20, 2017 1 LU Factorization 2 3 4 Triangular Matrices Definition

More information

Math 304 (Spring 2010) - Lecture 2

Math 304 (Spring 2010) - Lecture 2 Math 304 (Spring 010) - Lecture Emre Mengi Department of Mathematics Koç University emengi@ku.edu.tr Lecture - Floating Point Operation Count p.1/10 Efficiency of an algorithm is determined by the total

More information

Linear ODEs. Existence of solutions to linear IVPs. Resolvent matrix. Autonomous linear systems

Linear ODEs. Existence of solutions to linear IVPs. Resolvent matrix. Autonomous linear systems Linear ODEs p. 1 Linear ODEs Existence of solutions to linear IVPs Resolvent matrix Autonomous linear systems Linear ODEs Definition (Linear ODE) A linear ODE is a differential equation taking the form

More information

Chapter 1: Introduction to Vectors (based on Ian Doust s notes)

Chapter 1: Introduction to Vectors (based on Ian Doust s notes) Chapter 1: Introduction to Vectors (based on Ian Doust s notes) Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 1: Introduction to Vectors Semester 1 2018 1 / 38 A typical problem Chewie points

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu, University

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

1 Linear Regression and Correlation

1 Linear Regression and Correlation Math 10B with Professor Stankova Worksheet, Discussion #27; Tuesday, 5/1/2018 GSI name: Roy Zhao 1 Linear Regression and Correlation 1.1 Concepts 1. Often when given data points, we want to find the line

More information

Math Exam 1 Solutions October 12, 2010

Math Exam 1 Solutions October 12, 2010 Math 415.5 Exam 1 Solutions October 1, 1 As can easily be expected, the solutions provided below are not the only ways to solve these problems, and other solutions may be completely valid. If you have

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

Chapter 7. Tridiagonal linear systems. Solving tridiagonal systems of equations. and subdiagonal. E.g. a 21 a 22 a A =

Chapter 7. Tridiagonal linear systems. Solving tridiagonal systems of equations. and subdiagonal. E.g. a 21 a 22 a A = Chapter 7 Tridiagonal linear systems The solution of linear systems of equations is one of the most important areas of computational mathematics. A complete treatment is impossible here but we will discuss

More information