LAB # 5 HANDOUT. »»» The N-point DFT is converted into two DFTs each of N/2 points. N = -W N Then, the following formulas must be used. = k=0,...

Size: px
Start display at page:

Download "LAB # 5 HANDOUT. »»» The N-point DFT is converted into two DFTs each of N/2 points. N = -W N Then, the following formulas must be used. = k=0,..."

Transcription

1 EEE4 Lab Handout. FAST FOURIER TRANSFORM LAB # 5 HANDOUT Data Sequence A = x, x, x, x3, x4, x5, x6, x7»»» The N-point DFT is converted into two DFTs each of N/ points. x, x, x4, x6 x, x3, x5, x7»»» N =e -jπ/n x, x x, x N = N/ (+N/) N = - N Then, the following formulas must be used. =,,,3 ( ) ( ) ( ) = =,...,7 + N =,,,3 = ( ) = ( ) ( ) ( ) ( ) ( ) + N / 3 + N / 4 =, =, =, =, ( ) = x + N / 4 x4 ( ) = x + N / 4 x6 3( ) = x + N / 4x5 4 ( ) = x3 + N / 4x7 ()= x + x 4 ()= x + x 6 3 ()= x + x 5 4 ()= x 3 + x 7 ()= x - x 4 ()= x x 6 3 ()= x x 5 4 ()= x 3 x 7 ( ) = ( ) + ( ) ( ) = 3 ( ) + 4 ( ) () = () j () () = 3 () j 4 () ( ) = ( ) ( ) ( ) = 3 ( ) 4 ( ) ( 3) = () + j () () 3 = () + j () 3 4 By using fft and ifft functions in matlab: In command window: >> x=[ ] x = >> fft(x) ans = Columns through i i i.44-.i >> ifft(ans) ans =.....

2 EEE4 Lab Handout. THE BUTTERFLY () () = () + () () () = () - () FFT Butterflies () () = () + () () (3) = () - () The butterfly that shows all of the connections is shown below: x () () () x 4 () () () x () () () x 6 () (3) (3) x 3 () () (4) x 5 3 () () (5) x 3 4 () () (6) x 7 4 () (3) 3 (7)

3 EEE4 Lab Handout 3. SAMPLING OF A SINUSOIDAL SIGNAL In this program we will investigate the sampling of a continuous-time sinusoidal signal x a (t) at various sampling rate. Since MATLAB cannot strictly generate a continuoustime signal, we will generate a sequence {x a (nt H )} from x a (t) by sampling it at a very high rate T H such that the samples are very close to each other. A plot of x a (nt H ) using the plot command will then loo lie a continuous-time signal. As a result, x[n] is generated by periodically sampling a (t) at uniform time interval T. x[n]= a (n,t) T=sampling interval F s =sampling rate, sampling frequency= /T M-file: % Illustration of the Sampling Process in the Time-Domain clf; % Clear current figure clear all; % Clear all variables % Generation of the continuous-time signal t = :.5 : ; f = 3; xa = cos(*pi*f*t); subplot(,,) plot(t,xa);grid xlabel('time, msec'); ylabel(''); title('continuous-time signal x_{a}(t)'); axis([ -..]); subplot(,,) % Sampling in time-domain T =.; n = : T : ; xs = cos(*pi*f*n); = : length(n)-; stem(,xs,'r');grid xlabel('time index n'); ylabel(''); title('discrete-time signal x[n]'); axis([ length(n)- -..]) 3

4 EEE4 Lab Handout Continuous-time signal x a (t) Time, msec Discrete-time signal x[n] Time index n 4. ALIASING EFFECT IN THE TIME-DOMAIN In this program we will generate a continuous-time equivalent y a (t) of the discretetime signal x[n] generated in previous program to investigate the relation between the frequency of the sinusoidal signal x a (t) and sampling period. To generate the reconstructed signal y a (t) from x[n], we pass x[n] through an ideal lowpass filter. The higher frequency analog signal can be reconstructed in lower freq. form after sampling. Formula of Reconstruction: n= [ Fs( t nts ] a ( t) = x( n).sinc ) To prevent aliasing f s >f. The colors of the plots: Some other representations: b represents blue o represents circle g represents green * represents star r represents red. c represents cyan. m represents magenta. y represents yellow represents blac 4

5 EEE4 Lab Handout M-file: % Illustrating of Aliasing Effect in the Time-Domain clf; clear all; T =.; f = 3; n = (:T:)'; xs = cos(*pi*f*n); %linspace(x,x,n) generates N points between x and x. %for N<, linspace returns x. t = linspace(-.5,.5,5)'; %reconstruction formula is shown below. ya = sinc((/t)*t(:,ones(size(n))) - (/T)*n(:,ones(size(t)))')*xs; plot(n,xs,'o',t,ya);grid; xlabel('time index n'); ylabel(''); title('reconstructed continuous-time signal y_{a}(t)'); axis([ -..]) Reconstructed continuous-time signal y a (t) Time index n 5

6 EEE4 Lab Handout 5. EFFECT OF SAMPLING IN THE FREQUENCY-DOMAIN In order to convert a continuous-time signal x a (t) into an equivalent discrete-time signal x[n], the former must be band-limited in the frequency-domain. To illustrate the effect of sampling in the frequency-domain we choose an exponentially decaying continuous-time signal with a CTFT that is approximately band-limited. M-file: % Illustrating of the Aliasing Effect % In the Frequency-Domain clf; clear all; % Generation of the continuous-time signal t = :.5 : ; xa = *t.*exp(-t); subplot(,,) plot(t,xa);grid % grid is used for grid lines xlabel('time, msec'); ylabel(''); title('continuous-time signal x_{a}(t)'); subplot(,,) wa = : /5 : ; % H=freqs(B,A,) returns the complex frequency response % vector H of the filter B/A; the frequency response is % evaluated at the points specified in vector. Ha = freqs(,[ ],wa); plot(wa/(*pi),abs(ha));grid xlabel('frequency, KHz'); ylabel(''); title(' _{a}(j\omega) '); axis([ 5/pi ]); subplot(,,3) % Sampling of the signal T = ; n = : T : ; xs = *n.*exp(-n); = : length(n)-; stem(,xs);grid; xlabel('time index n'); ylabel(''); title('discrete-time signal x[n]'); subplot(,,4) wd = : pi/55 : pi; 6

7 EEE4 Lab Handout % H=freqz(B,A,) returns the frequency response at % frequencies designated in vector. Hd = freqz(xs,,wd); plot(wd/(t*pi),t*abs(hd));grid; xlabel('frequency, KHz'); ylabel(''); title(' (e^{j\omega}) '); axis([ /T ]);. Continuous-time signal x a (t) a (jω) Time, msec.5.5 Frequency, KHz. Discrete-time signal x[n] (e jω ) Time index n.5 Frequency, KHz 7

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 4 Digital Signal Processing Pro. Mark Fowler ote Set # Using the DFT or Spectral Analysis o Signals Reading Assignment: Sect. 7.4 o Proakis & Manolakis Ch. 6 o Porat s Book /9 Goal o Practical Spectral

More information

FFT Octave Codes (1B) Young Won Lim 7/6/17

FFT Octave Codes (1B) Young Won Lim 7/6/17 FFT Octave Codes (1B) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w))

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w)) T=1 sec sinc function 3 angle(f(w)) T=2 sec angle(f(w)) 1 A quick script to plot mag & phase in MATLAB w=0:0.2:50; Real exponential func b=5; Fourier transform (filter) F=1.0./(b+j*w); subplot(211), plot(w,

More information

CE 513: STATISTICAL METHODS

CE 513: STATISTICAL METHODS 28-8-217/CE 68 CE 513: STATISTICAL METHODS IN CIVIL ENGINEERING Lecture: Introduction to Fourier transforms Dr. Budhaditya Hazra Room: N-37 Department of Civil Engineering 1 Fourier Analysis Fourier Series

More information

DFT Octave Codes (0B) Young Won Lim 4/15/17

DFT Octave Codes (0B) Young Won Lim 4/15/17 Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Overview of Sampling Topics

Overview of Sampling Topics Overview of Sampling Topics (Shannon) sampling theorem Impulse-train sampling Interpolation (continuous-time signal reconstruction) Aliasing Relationship of CTFT to DTFT DT processing of CT signals DT

More information

Audio Signal Generation. Young Won Lim 2/2/18

Audio Signal Generation. Young Won Lim 2/2/18 Generation Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

J. McNames Portland State University ECE 223 Sampling Ver

J. McNames Portland State University ECE 223 Sampling Ver Overview of Sampling Topics (Shannon) sampling theorem Impulse-train sampling Interpolation (continuous-time signal reconstruction) Aliasing Relationship of CTFT to DTFT DT processing of CT signals DT

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 02 DSP Fundamentals 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Digital Signal Processing: Signal Transforms

Digital Signal Processing: Signal Transforms Digital Signal Processing: Signal Transforms Aishy Amer, Mohammed Ghazal January 19, 1 Instructions: 1. This tutorial introduces frequency analysis in Matlab using the Fourier and z transforms.. More Matlab

More information

Audio Signal Generation. Young Won Lim 2/2/18

Audio Signal Generation. Young Won Lim 2/2/18 Generation Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Lab 3: The FFT and Digital Filtering. Slides prepared by: Chun-Te (Randy) Chu

Lab 3: The FFT and Digital Filtering. Slides prepared by: Chun-Te (Randy) Chu Lab 3: The FFT and Digital Filtering Slides prepared by: Chun-Te (Randy) Chu Lab 3: The FFT and Digital Filtering Assignment 1 Assignment 2 Assignment 3 Assignment 4 Assignment 5 What you will learn in

More information

TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 2

TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 2 Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT42 Digital Signal Processing Suggested Solutions for Problem Set 2 Problem (a) The spectrum X(ω) can be

More information

FFT, total energy, and energy spectral density computations in MATLAB Aaron Scher

FFT, total energy, and energy spectral density computations in MATLAB Aaron Scher FFT, total energy, and energy spectral density computations in MATLAB Aaron Scher Everything presented here is specifically focused on non-periodic signals with finite energy (also called energy signals

More information

Lecture 6: Discrete Fourier Transform

Lecture 6: Discrete Fourier Transform Lecture 6: Discrete Fourier Transform In the previous lecture we introduced the discrete Fourier transform as given either by summations or as a matrix vector product The discrete Fourier transform of

More information

INFE 5201 SIGNALS AND SYSTEMS

INFE 5201 SIGNALS AND SYSTEMS INFE 50 SIGNALS AND SYSTEMS Assignment : Introduction to MATLAB Name, Class&Student ID Aim. To give student an introduction to basic MATLAB concepts. You are required to produce basic program, learn basic

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

(i) Represent continuous-time periodic signals using Fourier series

(i) Represent continuous-time periodic signals using Fourier series Fourier Series Chapter Intended Learning Outcomes: (i) Represent continuous-time periodic signals using Fourier series (ii) (iii) Understand the properties of Fourier series Understand the relationship

More information

CHAPTER 7. The Discrete Fourier Transform 436

CHAPTER 7. The Discrete Fourier Transform 436 CHAPTER 7. The Discrete Fourier Transform 36 hfa figconfg( P7a, long ); subplot() stem(k,abs(ck), filled );hold on stem(k,abs(ck_approx), filled, color, red ); xlabel( k, fontsize,lfs) title( Magnitude

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

SIGNALS CONTINUOUS/DISCRETE TIME/FREQUENCY DOMAINS

SIGNALS CONTINUOUS/DISCRETE TIME/FREQUENCY DOMAINS SIGNALS CONTINUOUS/DISCRETE TIME/FREQUENCY DOMAINS Continuous-Time Signals Signals in the real world Frequency content (spectrum) for finite-time signals theoretically extends to infinity Ref: Discrete-Time

More information

Discrete Time Fourier Transform (DTFT) Digital Signal Processing, 2011 Robi Polikar, Rowan University

Discrete Time Fourier Transform (DTFT) Digital Signal Processing, 2011 Robi Polikar, Rowan University Discrete Time Fourier Transform (DTFT) Digital Signal Processing, 2 Robi Polikar, Rowan University Sinusoids & Exponentials Signals Phasors Frequency Impulse, step, rectangular Characterization Power /

More information

HW13 Solutions. Pr (a) The DTFT of c[n] is. C(e jω ) = 0.5 m e jωm e jω + 1

HW13 Solutions. Pr (a) The DTFT of c[n] is. C(e jω ) = 0.5 m e jωm e jω + 1 HW3 Solutions Pr..8 (a) The DTFT of c[n] is C(e jω ) = = =.5 n e jωn + n=.5e jω + n= m=.5 n e jωn.5 m e jωm.5e jω +.5e jω.75 =.5 cos(ω) }{{}.5e jω /(.5e jω ) C(e jω ) is the power spectral density. (b)

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY 1 Lucas Parra, CCNY BME 50500: Image and Signal Processing in Biomedicine Lecture 2: Discrete Fourier Transform Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear systems, Fourier and z-transform

CCNY. BME I5100: Biomedical Signal Processing. Linear systems, Fourier and z-transform BME I5100: Biomedical Signal Processing Linear systems, Fourier and z-transform Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff

More information

Discrete-Time Gaussian Fourier Transform Pair, and Generating a Random Process with Gaussian PDF and Power Spectrum Mark A.

Discrete-Time Gaussian Fourier Transform Pair, and Generating a Random Process with Gaussian PDF and Power Spectrum Mark A. Discrete-Time Gaussian Fourier Transform Pair, and Generating a Random Process with Gaussian PDF and Power Spectrum Mark A. Richards October 3, 6 Updated April 5, Gaussian Transform Pair in Continuous

More information

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by Code No: RR320402 Set No. 1 III B.Tech II Semester Regular Examinations, Apr/May 2006 DIGITAL SIGNAL PROCESSING ( Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering,

More information

z as shift (delay) operator

z as shift (delay) operator z as shift (delay) operator We saw that in deriving the transfer function and frequency response of an averaging filter that it involved multiplying the input by e -j ω Y (k) =.5e j k +.5e j k e j Means

More information

LABORATORY 1 DISCRETE-TIME SIGNALS

LABORATORY 1 DISCRETE-TIME SIGNALS LABORATORY DISCRETE-TIME SIGNALS.. Introduction A discrete-time signal is represented as a sequence of numbers, called samples. A sample value of a typical discrete-time signal or sequence is denoted as:

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

EP375 Computational Physics

EP375 Computational Physics EP375 Computational Physics opic 11 FOURIER RANSFORM Department of Engineering Physics University of Gaziantep Apr 2014 Sayfa 1 Content 1. Introduction 2. Continues Fourier rans. 3. DF in MALAB and C++

More information

Discrete Fourier Transform (DFT) & Fast Fourier Transform (FFT) Lab 9

Discrete Fourier Transform (DFT) & Fast Fourier Transform (FFT) Lab 9 Discrete Fourier Transform (DFT) & Fast Fourier Transform (FFT) Lab 9 Last Time We found that an approximation to the Continuous Time Fourier Transform may be found by sampling x t at every mδt and turning

More information

The Z-Transform. For a phasor: X(k) = e jωk. We have previously derived: Y = H(z)X

The Z-Transform. For a phasor: X(k) = e jωk. We have previously derived: Y = H(z)X The Z-Transform For a phasor: X(k) = e jωk We have previously derived: Y = H(z)X That is, the output of the filter (Y(k)) is derived by multiplying the input signal (X(k)) by the transfer function (H(z)).

More information

2D Plotting with Matlab

2D Plotting with Matlab GEEN 1300 Introduction to Engineering Computing Class Meeting #22 Monday, Nov. 9 th Engineering Computing and Problem Solving with Matlab 2-D plotting with Matlab Script files User-defined functions Matlab

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

Digital Signal Processing Lab 3: Discrete Fourier Transform

Digital Signal Processing Lab 3: Discrete Fourier Transform Digital Signal Processing Lab 3: Discrete Fourier Transform Discrete Time Fourier Transform (DTFT) The discrete-time Fourier transform (DTFT) of a sequence x[n] is given by (3.1) which is a continuous

More information

BEE604 Digital Signal Processing

BEE604 Digital Signal Processing BEE64 Digital Signal Processing Copiled by, Mrs.S.Sherine Assistant Professor Departent of EEE BIHER. COTETS Sapling Discrete Tie Fourier Transfor Properties of DTFT Discrete Fourier Transfor Inverse Discrete

More information

EE Homework 13 - Solutions

EE Homework 13 - Solutions EE3054 - Homework 3 - Solutions. (a) The Laplace transform of e t u(t) is s+. The pole of the Laplace transform is at which lies in the left half plane. Hence, the Fourier transform is simply the Laplace

More information

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d!

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d! Summary of lecture I Continuous time: FS X FS [n] for periodic signals, FT X (i!) for non-periodic signals. II Discrete time: DTFT X T (e i!t ) III Poisson s summation formula: describes the relationship

More information

Department of Electrical and Computer Engineering Digital Speech Processing Homework No. 6 Solutions

Department of Electrical and Computer Engineering Digital Speech Processing Homework No. 6 Solutions Problem 1 Department of Electrical and Computer Engineering Digital Speech Processing Homework No. 6 Solutions The complex cepstrum, ˆx[n], of a sequence x[n] is the inverse Fourier transform of the complex

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Pro. Mark Fowler Discussion #9 Illustrating the Errors in DFT Processing DFT or Sonar Processing Example # Illustrating The Errors in DFT Processing Illustrating the Errors in

More information

Image Acquisition and Sampling Theory

Image Acquisition and Sampling Theory Image Acquisition and Sampling Theory Electromagnetic Spectrum The wavelength required to see an object must be the same size of smaller than the object 2 Image Sensors 3 Sensor Strips 4 Digital Image

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding Fourier Series & Transform Summary x[n] = X[k] = 1 N k= n= X[k]e jkω

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

Audio Signal Generation. Young Won Lim 1/29/18

Audio Signal Generation. Young Won Lim 1/29/18 Generation Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

An Introduction to Discrete-Time Signal Processing

An Introduction to Discrete-Time Signal Processing An Introduction to Discrete-Time Signal Processing John A. Gubner 5 4 3 2 1 0 0.5 0.3 0.1 0.1 0.3 0.5 i Contents 1 From Continuous Time to Discrete Time and Back 1 1.1 Does Sampling Always Lose Information?

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

0 for all other times. Suppose further that we sample the signal with a sampling frequency f ;. We can write x # n =

0 for all other times. Suppose further that we sample the signal with a sampling frequency f ;. We can write x # n = PSD, Autocorrelation, and Noise in MATLAB Aaron Scher Energy and power of a signal Consider a continuous time deterministic signal x t. We are specifically interested in analyzing the characteristics of

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Introduction to MatLab

Introduction to MatLab Introduction to MatLab 1 Introduction to MatLab Graduiertenkolleg Kognitive Neurobiologie Friday, 05 November 2004 Thuseday, 09 Novemer 2004 Kurt Bräuer Institut für Theoretische Physik, Universität Tübingen

More information

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding J. McNames Portland State University ECE 223 FFT Ver. 1.03 1 Fourier Series

More information

FOURIER TRANSFORM AND

FOURIER TRANSFORM AND Version: 11 THE DISCRETE TEX d: Oct. 23, 2013 FOURIER TRANSFORM AND THE FFT PREVIEW Classical numerical analysis techniques depend largely on polynomial approximation of functions for differentiation,

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

The Fourier Transform (and more )

The Fourier Transform (and more ) The Fourier Transform (and more ) imrod Peleg ov. 5 Outline Introduce Fourier series and transforms Introduce Discrete Time Fourier Transforms, (DTFT) Introduce Discrete Fourier Transforms (DFT) Consider

More information

ECGR4124 Digital Signal Processing Midterm Spring 2010

ECGR4124 Digital Signal Processing Midterm Spring 2010 ECGR4124 Digital Signal Processing Midterm Spring 2010 Name: LAST 4 DIGITS of Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting Open book, 1 sheet front/back

More information

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 3: DISCRETE TIME SYSTEM IN TIME DOMAIN

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 3: DISCRETE TIME SYSTEM IN TIME DOMAIN Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 3: DISCRETE TIME SYSTEM IN TIME DOMAIN Pusat Pengajian Kejuruteraan Komputer Dan Perhubungan Universiti Malaysia Perlis Discrete-Time

More information

The Discrete Fourier Transform

The Discrete Fourier Transform In [ ]: cd matlab pwd The Discrete Fourier Transform Scope and Background Reading This session introduces the z-transform which is used in the analysis of discrete time systems. As for the Fourier and

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

Exercises in Digital Signal Processing

Exercises in Digital Signal Processing Exercises in Digital Signal Processing Ivan W. Selesnick September, 5 Contents The Discrete Fourier Transform The Fast Fourier Transform 8 3 Filters and Review 4 Linear-Phase FIR Digital Filters 5 5 Windows

More information

!Sketch f(t) over one period. Show that the Fourier Series for f(t) is as given below. What is θ 1?

!Sketch f(t) over one period. Show that the Fourier Series for f(t) is as given below. What is θ 1? Second Year Engineering Mathematics Laboratory Michaelmas Term 998 -M L G Oldfield 30 September, 999 Exercise : Fourier Series & Transforms Revision 4 Answer all parts of Section A and B which are marked

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Digital Signal Processing, Lecture 2 Frequency description continued, DFT

Digital Signal Processing, Lecture 2 Frequency description continued, DFT Outline cture 2 2 Digital Signal Processing, cture 2 Frequency description continued, DFT Thomas Schön Division of Automatic Control Department of Electrical Engineering Linköping i University it E-mail:

More information

V. IIR Digital Filters

V. IIR Digital Filters Digital Signal Processing 5 March 5, V. IIR Digital Filters (Deleted in 7 Syllabus). (dded in 7 Syllabus). 7 Syllabus: nalog filter approximations Butterworth and Chebyshev, Design of IIR digital filters

More information

Assignment 2 Solutions

Assignment 2 Solutions EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 2 Solutions 1. Read Nishimura Ch. 3 2. Non-Uniform Sampling. A student has an assignment to monitor the level of Hetch-Hetchi reservoir

More information

Introduction to Signal Analysis Parts I and II

Introduction to Signal Analysis Parts I and II 41614 Dynamics of Machinery 23/03/2005 IFS Introduction to Signal Analysis Parts I and II Contents 1 Topics of the Lecture 11/03/2005 (Part I) 2 2 Fourier Analysis Fourier Series, Integral and Complex

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

An Introduction to MatLab

An Introduction to MatLab Introduction to MatLab 1 An Introduction to MatLab Contents 1. Starting MatLab... 3 2. Workspace and m-files... 4 3. Help... 5 4. Vectors and Matrices... 5 5. Objects... 8 6. Plots... 10 7. Statistics...

More information

Problem Weight Total 100

Problem Weight Total 100 EE 350 Problem Set 3 Cover Sheet Fall 2016 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: Submission deadlines: Turn in the written solutions by 4:00 pm on Tuesday September

More information

It is common to think and write in time domain. creating the mathematical description of the. Continuous systems- using Laplace or s-

It is common to think and write in time domain. creating the mathematical description of the. Continuous systems- using Laplace or s- It is common to think and write in time domain quantities, but this is not the best thing to do in creating the mathematical description of the system we are dealing with. Continuous systems- using Laplace

More information

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters. INTRODUCTION 2. IIR FILTER DESIGN 3. ANALOG FILTERS 4. THE BUTTERWORTH ANALOG FILTER 5. THE CHEBYSHEV-I

More information

SIGNALS AND SYSTEMS LABORATORY 4: Polynomials, Laplace Transforms and Analog Filters in MATLAB

SIGNALS AND SYSTEMS LABORATORY 4: Polynomials, Laplace Transforms and Analog Filters in MATLAB INTRODUCTION SIGNALS AND SYSTEMS LABORATORY 4: Polynomials, Laplace Transforms and Analog Filters in MATLAB Laplace transform pairs are very useful tools for solving ordinary differential equations. Most

More information

Discrete Time Systems

Discrete Time Systems Discrete Time Systems Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz 1 LTI systems In this course, we work only with linear and time-invariant systems. We talked about

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

Multidimensional digital signal processing

Multidimensional digital signal processing PSfrag replacements Two-dimensional discrete signals N 1 A 2-D discrete signal (also N called a sequence or array) is a function 2 defined over thex(n set 1 of, n 2 ordered ) pairs of integers: y(nx 1,

More information

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

! Circular Convolution.  Linear convolution with circular convolution. ! Discrete Fourier Transform.  Linear convolution through circular Previously ESE 531: Digital Signal Processing Lec 22: April 18, 2017 Fast Fourier Transform (con t)! Circular Convolution " Linear convolution with circular convolution! Discrete Fourier Transform " Linear

More information

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn Sampling Let x a (t) be a continuous time signal. The signal is sampled by taking the signal value at intervals of time T to get The signal x(t) has a Fourier transform x[n] = x a (nt ) X a (Ω) = x a (t)e

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform Discrete-Time Fourier Transform Chapter Intended Learning Outcomes: (i) (ii) (iii) Represent discrete-time signals using discrete-time Fourier transform Understand the properties of discrete-time Fourier

More information

EE 225D LECTURE ON DIGITAL FILTERS. University of California Berkeley

EE 225D LECTURE ON DIGITAL FILTERS. University of California Berkeley University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Professors : N.Morgan / B.Gold EE225D Digital Filters Spring,1999 Lecture 7 N.MORGAN

More information

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb.

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb. umerical solutions of higher order ODE We can convert a high order ODE into a system of first order ODEs and then apply RK method to solve it. Stiff ODEs Stiffness is a special problem that can arise in

More information

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. Lecture 10 Digital Signal Processing Chapter 7 Discrete Fourier transform DFT Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 016 Department of Electrical and Information Technology Lund University

More information

Frequency-domain representation of discrete-time signals

Frequency-domain representation of discrete-time signals 4 Frequency-domain representation of discrete-time signals So far we have been looing at signals as a function of time or an index in time. Just lie continuous-time signals, we can view a time signal as

More information

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods Fourier Analysis 1992 2008 R. C. Gonzalez & R. E. Woods Properties of δ (t) and (x) δ : f t) δ ( t t ) dt = f ( ) f x) δ ( x x ) = f ( ) ( 0 t0 x= ( 0 x0 1992 2008 R. C. Gonzalez & R. E. Woods Sampling

More information

Section Kamen and Heck And Harman. Fourier Transform

Section Kamen and Heck And Harman. Fourier Transform s Section 3.4-3.7 Kamen and Heck And Harman 1 3.4 Definition (Equation 3.30) Exists if integral converges (Equation 3.31) Example 3.7 Constant Signal Does not have a Fourier transform in the ordinary sense.

More information

! Downsampling/Upsampling. ! Practical Interpolation. ! Non-integer Resampling. ! Multi-Rate Processing. " Interchanging Operations

! Downsampling/Upsampling. ! Practical Interpolation. ! Non-integer Resampling. ! Multi-Rate Processing.  Interchanging Operations Lecture Outline ESE 531: Digital Signal Processing Lec 10: February 14th, 2017 Practical and Non-integer Sampling, Multirate Sampling! Downsampling/! Practical Interpolation! Non-integer Resampling! Multi-Rate

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

Lecture 4&5 MATLAB applications In Signal Processing. Dr. Bedir Yousif

Lecture 4&5 MATLAB applications In Signal Processing. Dr. Bedir Yousif Lecture 4&5 MATLAB applications In Signal Processing Dr. Bedir Yousif Signal Analysis Fourier Series and Fourier Transform Trigonometric Fourier Series Where w0=2*pi/tp and the Fourier coefficients a n

More information

DFT and Matlab with some examples.

DFT and Matlab with some examples. DFT and Matlab with some examples 1 www.icrf.nl Fourier transform Fourier transform is defined as: X + jωt = x( t e dt ( ω ) ) with ω= 2 π f Rad/s And x(t) a signal in the time domain. www.icrf.nl 2 Fourier

More information

ENGR Spring Exam 2

ENGR Spring Exam 2 ENGR 1300 Spring 013 Exam INSTRUCTIONS: Duration: 60 minutes Keep your eyes on your own work! Keep your work covered at all times! 1. Each student is responsible for following directions. Read carefully..

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Virtually all practical signals have finite length (e.g., sensor data, audio records, digital images, stock values, etc). Rather than considering such signals to be zero-padded

More information

EE 311 February 22, 2019 Lecture 13

EE 311 February 22, 2019 Lecture 13 EE 311 February, 019 Lecture 13 Minimum Phase FIR filters Geometric Interpretation of P/Z locations Minimum Phase System - A system is said to be a minimum phase system if the deviation from zero in the

More information

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1 Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, 7.49 Signals & Systems Sampling P1 Undersampling & Aliasing Undersampling: insufficient sampling frequency ω s < 2ω M Perfect

More information