Chapter 24: Capacitance and Dielectrics. Capacitor: two conductors (separated by an insulator) usually oppositely charged. (defines capacitance)

Size: px
Start display at page:

Download "Chapter 24: Capacitance and Dielectrics. Capacitor: two conductors (separated by an insulator) usually oppositely charged. (defines capacitance)"

Transcription

1 hapter 4: apacitance and Dielectrics apacitor: two conductors (separated by an insulator) usually oppositely charged a b - ab proportional to charge / ab (defines capacitance) units: F / pc4: The parallel plate capacitor A E σ ε 0 A ε 0 d - A ab Ed d Aε 0 A ε 0 ab d apacitance does not depend upon,! > depends upon geometric factors only How big is Farad? (parallel plate example) pc4:

2 Typical apacitances ~ µf, nf, pf Example: A parallel plate capacitor has plates.00 m in area, separated by a distance of 5.00 mm. A potential difference of 0,000 is applied across the capacitor. Determine the capacitance the charge on each plate the magnitude of the electric field in the region between the plates. pc4: 3 A long cylindrical capacitor ab λ ln r b πε 0 λl πε L 0 lnr b L πε 0 lnr b coax: 70 pf m r b L pc4: 4

3 A long cylindrical capacitor, small distance between cylinder walls πε L 0 lnr b r b d πε 0 L ln d r b R >> d [( ) ] πε L 0 ln( x) x x x 3 3 L πε L 0 d R πrlε 0 d ln d R A d ε 0 r b L apacitor looks approximately like parallel plates, in appropriate limit. pc4: 5 apacitors in circuits symbols analysis follow from conservation of energy (in terms of electric potential) conservation of charge pc4: 6

4 pc4: 7 apacitors in series ab a c b eq eq A 3 µf capacitond a 6 µf capacitore connected in series across an 8 battery. Determine the equivalent capacitance, the charge on each capacitond the potential difference across each capacitor. pc4: 8 apacitors in parallel eq eq A 3 µf capacitond a 6 µf capacitore connected in parallel across an 8 battery. Determine the equivalent capacitance, the potential difference across each capacitond the charge on each capacitor. ab a b

5 ombinations of combinations can be analyzed piecewise 3 Some configurations are not combinations that can be treated as combinations that can be analyzed as serial/parallel pc4: 9 Energy stored in a capacitor When charged: harging q v dw dqv dq W q q 0 dq q q U dq q -q -dq v q/ dq q -q dq U pc4: 0

6 Electric Field Energy Uniform field: parallel plate capacitor U ε A 0 volume Ad Ed d u U / volume energy density ε 0 A d (Ed) /(Ad) u ε 0 E pc4: In the circuit shown 48, 9µF, 4µF and 3 8µF. (a)determine the equivalent capacitance of the circuit, (b) determine the energy stored in the combination by calculating the energy stored in the equivalent capacitance, (c) calculate the charge on and potential difference across each capacitond (d) calculate the energy stored in each individual physical capacitor. 3 pc4:

7 Dielectrics: insulating materials with other interesting properties In parallel plate capacitors Fo charged, isolated capacitor 0 potential difference decreases same charge > capacitance increases / > 0 / 0 Dielectric onstant: K / 0 material property pc4: 3 Effect of dielectric on Electric field parallel plates, constant charge 0 0 > 0 / (reduced) > E E 0 /K Material is polarized Effective surface charge distribution E 0 σ ε 0 ε Kε 0 E σ net σ σ i σ i σ ε 0 ε 0 K permittivity of dielectric σ σ σ i σ i E σ ε Kε 0 A d ε A d u Kε 0E εe σ net σ σ i σ net (σ σ i ) pc4: 4

8 Example 5-8: Take a parallel plate capacitor whose plates have an area of 000 cm and are separated by a distance of cm. The capacitor is charged to an initial voltage of 3 k and then disconnected from the charging source. An insulating material is placed between the plates, completely filling the space, resulting in a decrease in the capacitors voltage to k. Determine the original and new capacitance, the charge on the capacitor, the dielectric constant of the material, the permittivity of the dielectric, the original and new electric fields, the energy stored in the capacitor with and without the dielectric. pc4: 5 How does an insulating dielectric material reduce electric fields by producing effective surface charge densities? Reorientation of polar molecules Induced polarization of non-polar molecules Dielectric Breakdown: breaking of molecular bonds/ionization of molecules. pc4: 6

9 Polarization (approximately) proportional to applied Electric Field beyond lineapproximation: nonlinear optics... Dielectric materials and Gauss s Law r r KE da ε 0 r r εe da enclosed enclosed r r D da enclosed enclosed free charge r r D εe Electric Displacement ( trivia) pc4: 7

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics hapter 4: apacitance and Dielectrics apacitor: two conductors (separated by an insulator) usually oppositely charged a + b - ab proportional to charge = / ab (defines capacitance) units: F = / pc4: The

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics Lecture by Dr. Hebin Li Goals for Chapter 24 To understand capacitors and calculate capacitance To analyze networks of capacitors To calculate the energy stored in

More information

Chapter 29. Electric Potential: Charged Conductor

Chapter 29. Electric Potential: Charged Conductor hapter 29 Electric Potential: harged onductor 1 Electric Potential: harged onductor onsider two points (A and B) on the surface of the charged conductor E is always perpendicular to the displacement ds

More information

Look over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 1-8. Chapter 19 section 5 Example 10, 11

Look over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 1-8. Chapter 19 section 5 Example 10, 11 PHYS Look over hapter 5 section -8 examples,, 3, 5, 6 PHYS Look over hapter 7 section 7-9 Examples 8, hapter 9 section 5 Example 0, Things to Know ) How to find the charge on a apacitor. ) How to find

More information

Capacitance and capacitors. Dr. Loai Afana

Capacitance and capacitors. Dr. Loai Afana apacitance and capacitors apacitors apacitors are devices that store energy in an electric field. apacitors are used in many every-day applications Heart defibrillators amera flash units apacitors are

More information

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics. Slide 1 / 39 Slide 2 / 39 P Physics & M apacitance and ielectrics 20151205 www.njctl.org Slide 3 / 39 apacitors capacitor is any two conductors seperated by an insulator, such as air or another material.

More information

Chapter 2: Capacitors And Dielectrics

Chapter 2: Capacitors And Dielectrics hapter 2: apacitors And Dielectrics 2.1 apacitance and capacitors in series and parallel L.O 2.1.1 Define capacitance and use capacitance apacitor is a device that is capable of storing electric charges

More information

Electricity and Magnetism. Capacitance

Electricity and Magnetism. Capacitance Electricity and Magnetism apacitance Sources of Electric Potential A potential difference can be created by moving charge from one conductor to another. The potential difference on a capacitor can produce

More information

Capacitance. PHY2049: Chapter 25 1

Capacitance. PHY2049: Chapter 25 1 apacitance PHY049: hapter 5 1 oulomb s law Electric fields Equilibrium Gauss law What You Know: Electric Fields Electric fields for several charge configurations Point Dipole (along axes) Line Plane (nonconducting)

More information

Chapter 25. Capacitance

Chapter 25. Capacitance Chapter 25 Capacitance 1 1. Capacitors A capacitor is a twoterminal device that stores electric energy. 2 2. Capacitance The figure shows the basic elements of any capacitor two isolated conductors of

More information

Chapter 2: Capacitor And Dielectrics

Chapter 2: Capacitor And Dielectrics hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor

More information

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is apacitors and Dielectrics The ideas of energy storage in E-fields can be carried a step further by understanding the concept of "apacitance" onsider a sphere with a total charge, Q, and a radius, R From

More information

Capacitance and Dielectrics

Capacitance and Dielectrics Slide 1 / 39 Capacitance and Dielectrics 2011 by Bryan Pflueger Capacitors Slide 2 / 39 A capacitor is any two conductors seperated by an insulator, such as air or another material. Each conductor has

More information

which checks. capacitance is determined entirely by the dimensions of the cylinders.

which checks. capacitance is determined entirely by the dimensions of the cylinders. 4.3. IDENTIFY and SET UP: It is a parallel-plate air capacitor, so we can apply the equations of Section 4.. EXEUTE: (a) (b) = ε 0 A d (c) V ab so Q V = so 0 ab V ab 6 Q 0. 48 0 = = = 604 V. 45 0 F 3 d

More information

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Units of Chapter 24 Capacitors (1, 2, & 3) Determination of Capacitance (4 & 5) Capacitors in Series and Parallel (6 & 7) Electric Energy Storage

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies energy-storing

More information

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a

More information

Definition of Capacitance

Definition of Capacitance Definition of Capacitance The capacitance, C, of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the potential difference between the conductors Q C = ΔV The SI

More information

Chapter 25. Capacitance

Chapter 25. Capacitance Chapter 25 Capacitance 25.2: Capacitance: 25.2: Capacitance: When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: q+ and q-. However, we refer to the charge of a

More information

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor Physics 24100 Electricity & Op-cs Lecture 8 Chapter 24 sec. 1-2 Fall 2017 Semester Professor Kol@ck How Much Energy? V 1 V 2 Consider two conductors with electric potentials V 1 and V 2 We can always pick

More information

W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors

W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors W05D1 Reading Assignment Course Notes: Sections 3.3, 4.5, 5.1-5.4 1 Outline Conductors and Insulators Conductors as

More information

Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68

Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitance and Dielectrics Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitors Capacitors are devices that store electric charge and energy Examples of where capacitors are used include: radio

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

Chapter 6 Objectives

Chapter 6 Objectives hapter 6 Engr8 ircuit Analysis Dr urtis Nelson hapter 6 Objectives Understand relationships between voltage, current, power, and energy in inductors and capacitors; Know that current must be continuous

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

= (series) Capacitors in series. C eq. Hence. Capacitors in parallel. Since C 1 C 2 V 1 -Q +Q -Q. Vab V 2. C 1 and C 2 are in series

= (series) Capacitors in series. C eq. Hence. Capacitors in parallel. Since C 1 C 2 V 1 -Q +Q -Q. Vab V 2. C 1 and C 2 are in series Capacitors in series V ab V + V Q( + C Vab + Q C C C Hence C C eq eq + C C C (series) ) V ab +Q -Q +Q -Q C and C are in series C V V C +Q -Q C eq C eq is the single capacitance equivalent to C and C in

More information

Capacitors (Chapter 26)

Capacitors (Chapter 26) Capacitance, C Simple capacitive circuits Parallel circuits Series circuits Combinations Electric energy Dielectrics Capacitors (Chapter 26) Capacitors What are they? A capacitor is an electric device

More information

Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont.

Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont. Chapter 6 Capacitance and Dielectrics Capacitors! Capacitors are devices that store electric charge! Examples of where capacitors are used include:! radio receivers (tune frequency)! filters in power supplies!

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

EXAM REVIEW ON MONDAY

EXAM REVIEW ON MONDAY EXAM REVIEW ON MONDAY 6:5 8:5 PM McCarty A Room G86 By JJ Stankowicz Also, formula sheet has been posted. PHY049: Chapter 5 Capacitance calculation review +q q Why do we always consider only +q and q pairs?

More information

Energy Stored in Capacitors

Energy Stored in Capacitors Energy Stored in Capacitors U = 1 2 qv q = CV U = 1 2 CV 2 q 2 or U = 1 2 C 37 Energy Density in Capacitors (1) We define the, u, as the electric potential energy per unit volume Taking the ideal case

More information

Class 5 : Conductors and Capacitors

Class 5 : Conductors and Capacitors Class 5 : Conductors and Capacitors What is a conductor? Field and potential around conductors Defining and evaluating capacitance Potential energy of a capacitor Recap Gauss s Law E. d A = Q enc and ε

More information

Capacitors And Dielectrics

Capacitors And Dielectrics 1 In this small e-book we ll learn about capacitors and dielectrics in short and then we ll have some questions discussed along with their solutions. I ll also give you a practices test series which you

More information

(3.5.1) V E x, E, (3.5.2)

(3.5.1) V E x, E, (3.5.2) Lecture 3.5 Capacitors Today we shall continue our discussion of electrostatics and, in particular, the concept of electrostatic potential energy and electric potential. The main example which we have

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 07. Capacitors I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

HIGH VOLTAGE TECHNIQUES Basic Electrode Systems (3)

HIGH VOLTAGE TECHNIQUES Basic Electrode Systems (3) HIGH VOLTAGE TECHNIQES Basic Electrode Systems (3) Assistant Professor Suna BOLAT KRÖGER Eastern Mediterranean niversity Department of Electric & Electronic Engineering 1 Basic electrode systems Different

More information

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed?

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? 1 iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? q A: C->2 C0 B: C-> C0 C: C-> C0/2 D: C->- C0 E: C->-2 C0 2 iclicker A metal ball of

More information

Physics (

Physics ( Exercises Question 2: Two charges 5 0 8 C and 3 0 8 C are located 6 cm apart At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero

More information

Today in Physics 122: capacitors

Today in Physics 122: capacitors Today in Physics 122: capacitors Parallelplate and cylindrical capacitors: calculation of capacitance as a review in the calculation of field and potential Dielectrics in capacitors Capacitors, dielectrics

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics + Capacitors (Chapters 21-24) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential.

More information

Chapter 18. Circuit Elements, Independent Voltage Sources, and Capacitors

Chapter 18. Circuit Elements, Independent Voltage Sources, and Capacitors Chapter 18 Circuit Elements, Independent Voltage Sources, and Capacitors Ideal Wire _ + Ideal Battery Ideal Resistor Ideal Capacitor Series Parallel An ideal battery provides a constant potential difference

More information

Class 6 : Insulating Materials

Class 6 : Insulating Materials Class 6 : Insulating Materials What is an insulator? Electric dipoles Polarization of an insulator, and how it modifies electric field Electric displacement Boundary conditions for E Recap (1) Maxwell

More information

Physics Electricity and Magnetism Lecture 06 - Capacitance. Y&F Chapter 24 Sec. 1-6

Physics Electricity and Magnetism Lecture 06 - Capacitance. Y&F Chapter 24 Sec. 1-6 Physics - lectricity and Magnetism Lecture 6 - apacitance Y&F hapter 4 Sec. - 6 Overview Definition of apacitance alculating the apacitance Parallel Plate apacitor Spherical and ylindrical apacitors apacitors

More information

Physics Electricity and Magnetism Lecture 06 - Capacitance. Y&F Chapter 24 Sec. 1-6

Physics Electricity and Magnetism Lecture 06 - Capacitance. Y&F Chapter 24 Sec. 1-6 Physics - lectricity and Magnetism Lecture 6 - apacitance Y&F hapter 4 Sec. - 6 Overview Definition of apacitance alculating the apacitance Parallel Plate apacitor Spherical and ylindrical apacitors apacitors

More information

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential Lecture 7. Capacitors and Electric Field Energy Last lecture review: Electrostatic potential V r = U r q Q Iclicker question The figure shows cross sections through two equipotential surfaces. In both

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Circuits and Circuit Elements Electric circuits are the basis for the vast majority of the devices used in society. Circuit elements can be connected with wires to

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapter 23 University Physics (PHY 2326) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors 3/26/2015

More information

Capacitance and Dielectrics

Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 24 To understand capacitors

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics (Chapters 21-24.6) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential. Interaction

More information

I. Conductors and Insulators :

I. Conductors and Insulators : Chapter 6 : Conductors - Insulators - Capacitors We have, till now, studied the electric charges and the interactions between them but not evoked how the electricity can be transfered? which meterials

More information

Chapter 17. Potential and Capacitance

Chapter 17. Potential and Capacitance Chapter 17 Potential and Capacitance Potential Voltage (potential) is the analogue of water pressure while current is the analogue of flow of water in say gal/min or Kg/s Think of a potential as the words

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate

More information

12 Electrostatics. Target Publications Pvt. Ltd (1) Chapter 12: Electrostatics. q E = Hints to Problems for Practice

12 Electrostatics. Target Publications Pvt. Ltd (1) Chapter 12: Electrostatics. q E = Hints to Problems for Practice hapter : Electrostatics Electrostatics Hints to Problems for Practice q. N or q N ε ε q 8. 5 8.85 5 µ q q. N or k εk NK 8 7.7 k 5 8.85 8. q 8.85 µ 8.85, l cm m, ε 8.85 /Nm q φ ε 8.85 8.85 Nm /. q µ, r

More information

Capacitor: any two conductors, one with charge +Q, other with charge -Q Potential DIFFERENCE between conductors = V

Capacitor: any two conductors, one with charge +Q, other with charge -Q Potential DIFFERENCE between conductors = V Physics 2102 Gabriela González Capacitor: any two conductors, one with charge +Q, other with charge -Q Potential DIFFERENCE between conductors = V Units of capacitance: Farad (F) = Coulomb/Volt -Q +Q Uses:

More information

PH213 Chapter 24 Solutions

PH213 Chapter 24 Solutions PH213 Chapter 24 Solutions 24.12. IDENTIFY and S ET UP: Use the expression for derived in Example 24.4. Then use Eq. (24.1) to calculate Q. E XECUTE: (a) From Example 24.4, The conductor at higher potential

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2 = Chapter 21 Chapter 25 Capacitance K = C / C o V = V o / K 1 / Ceq = 1 / C 1 + 1 / C 2 Ceq = C 1 + C 2 Copyright 25-2 Capacitance 25.01 Sketch a schematic diagram of a circuit with a parallel-plate capacitor,

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate

More information

Solution to Quiz 2. April 18, 2010

Solution to Quiz 2. April 18, 2010 Solution to Quiz April 8, 00 Four capacitors are connected as shown below What is the equivalent capacitance of the combination between points a and b? a µf b 50 µf c 0 µf d 5 µf e 34 µf Answer: b (A lazy

More information

Physics Jonathan Dowling. Physics 2102 Lecture 7 Capacitors I

Physics Jonathan Dowling. Physics 2102 Lecture 7 Capacitors I Physics 2102 Jonathan Dowling Physics 2102 Lecture 7 Capacitors I Capacitors and Capacitance Capacitor: any two conductors, one with charge +, other with charge Potential DIFFERENCE etween conductors =

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

Lecture 20. March 22/24 th, Capacitance (Part I) Chapter , Pages

Lecture 20. March 22/24 th, Capacitance (Part I) Chapter , Pages Lecture 0 March /4 th, 005 Capacitance (Part I) Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 10.1-6, Pages 8-94 Assignment: Assignment #10 Due: March 31 st, 005 Preamble: Capacitance

More information

Question 1. The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis.

Question 1. The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis. Question 1 The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis. For which pairs is there a point at which V net = 0 between

More information

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor

More information

Physics 219 Question 1 January

Physics 219 Question 1 January Lecture 6-16 Physics 219 Question 1 January 30. 2012. A (non-ideal) battery of emf 1.5 V and internal resistance 5 Ω is connected to a light bulb of resistance 50 Ω. How much power is delivered to the

More information

Electricity. Revision Notes. R.D.Pilkington

Electricity. Revision Notes. R.D.Pilkington Electricity Revision Notes R.D.Pilkington DIRECT CURRENTS Introduction Current: Rate of charge flow, I = dq/dt Units: amps Potential and potential difference: work done to move unit +ve charge from point

More information

Electronics Capacitors

Electronics Capacitors Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

More information

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106.

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106. and in and Energy Winter 2018 Press CTRL-L to view as a slide show. From last time: The field lines are related to the field as follows: What is the electric potential? How are the electric field and the

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

More information

C = V Q. To find the capacitance of two conductors:

C = V Q. To find the capacitance of two conductors: Capacitance Capacitance is a measure of the ability of two conductors to store charge when a given potential difference is established between them. Two conductors, on one of which is charge +Q and on

More information

Dielectrics. Chapter 24. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Dielectrics. Chapter 24. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapter 24 Capacitance and Dielectrics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Main Points 1. Equipotential ti regions (lines,

More information

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V.

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Capacitors: parallel plate, cylindrical, spherical. You must be able to calculate the capacitance of capacitors

More information

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q =

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q = Andres La Rosa Portland State University Lecture Notes PH212 CAPACITANCE Parallelplates capacitor 1 2 Q Q E V 1 V 2 V 2 V 1 = 2 E E is assumed to be uniform between the plates Q Q V (Battery) V 2 V 1 =

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH -A Spring 15 Capacitance Lecture 7 Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 5 Capacitance In this chapter we will cover the following topics: -Capacitance

More information

Physics Lecture: 16 MON 23 FEB Capacitance I

Physics Lecture: 16 MON 23 FEB Capacitance I Physics 2113 Jonathan Dowling Physics 2113 Lecture: 16 MON 23 FEB Capacitance I Capacitors and Capacitance Capacitor: any two conductors, one with charge +Q, other with charge Q Potential DIFFERENCE between

More information

Electric Potential Energy Conservative Force

Electric Potential Energy Conservative Force Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,

More information

Continuing our discussion on Capacitors

Continuing our discussion on Capacitors Continuing our discussion on Capacitors Cylindrical Capacitors (I) Two concentric conducting cylinders of length L and radii R and R. We determine the electric field between the cylinders using Gauss s

More information

Electric Field of a uniformly Charged Thin Spherical Shell

Electric Field of a uniformly Charged Thin Spherical Shell Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the

More information

Chapter 19 Electric Potential and Electric Field

Chapter 19 Electric Potential and Electric Field Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done

More information

Can current flow in electric shock?

Can current flow in electric shock? Can current flow in electric shock? Yes. Transient current can flow in insulating medium in the form of time varying displacement current. This was an important discovery made by Maxwell who could predict

More information

Capacitor Construction

Capacitor Construction Capacitor Construction Topics covered in this presentation: Capacitor Construction 1 of 13 Introduction to Capacitors A capacitor is a device that is able to store charge and acts like a temporary, rechargeable

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 25 Capacitance

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 25 Capacitance EE 3318 pplied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of EE Notes 25 apacitance 1 apacitance apacitor [F] + V - +Q ++++++++++++++++++ - - - - - - - - - - - - - - - - - Q ε r

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Capacitive Touchscreen

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Capacitive Touchscreen EES 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 16 16.1 Introduction to apacitive Touchscreen We ve seen how a resistive touchscreen works by using the concept of voltage

More information

not to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor.

not to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor. Q1.The figure below shows a capacitor of capacitance 370 pf. It consists of two parallel metal plates of area 250 cm 2. A sheet of polythene that has a relative permittivity 2.3 completely fills the gap

More information

Chapter 24: Capacitance and dielectrics

Chapter 24: Capacitance and dielectrics Chapter 24: Capacitance and dielectrics Capacitor: a device store electric energy How to define capacitance In parallel and/or in series Electric energy stored in a capacitor Dielectric materials Capacitor:

More information

CAPACITORS / CAPACITANCE ECET11

CAPACITORS / CAPACITANCE ECET11 APAITORS / APAITANE - apacitance - apacitor types - apacitors in series & parallel - R ircuit harging phase - R ircuit Discharging phase - R ircuit Steady State model - Source onversions - Superposition

More information

Physics 2 for students of Mechanical Engineering

Physics 2 for students of Mechanical Engineering Homework #5 203-1-1721 Physics 2 for students of Mechanical Engineering Part A *Note that in all questions the symbol p (such as in pc or pf) represents pico=10-12, the symbol n represents nano=10-9, and

More information

Where C is proportionally constant called capacitance of the conductor.

Where C is proportionally constant called capacitance of the conductor. PITNE Page #. INTROUTION capacitor can store energy in the form of potential energy in an electric field. In this chapter well discuss the capacity of conductors to hold charge and energy.. apacitance

More information

Chapter 24. Capacitance and Dielectrics Lecture 1. Dr. Armen Kocharian

Chapter 24. Capacitance and Dielectrics Lecture 1. Dr. Armen Kocharian Chapter 24 Capacitance and Dielectrics Lecture 1 Dr. Armen Kocharian Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

Chapter 14 CAPACITORS IN AC AND DC CIRCUITS

Chapter 14 CAPACITORS IN AC AND DC CIRCUITS hapter 14--apacitors hapter 14 APAITORS IN A AND D IRUITS So far, all we have discussed have been electrical elements in which the voltage across the element is proportional to the current through the

More information

HIGH VOLTAGE TECHNIQUES Basic Electrode Systems

HIGH VOLTAGE TECHNIQUES Basic Electrode Systems HIGH VOLTAGE TECHNIQUES Basic Electrode Systems Basic electrode systems Different configurations Parallel plate electrodes Co-axial cylinders Concentric spheres Parallel plate electrodes Plane-plane electrode

More information