Energy levels. From Last Time. Emitting and absorbing light. Hydrogen atom. Energy conservation for Bohr atom. Summary of Hydrogen atom

Size: px
Start display at page:

Download "Energy levels. From Last Time. Emitting and absorbing light. Hydrogen atom. Energy conservation for Bohr atom. Summary of Hydrogen atom"

Transcription

1 From Last Time Hydrogen atom: One electron orbiting around one proton (nucleus) Electron can be in different quantum states Quantum states labeled by integer,2,3,4, In each different quantum state, electron has Different orbital radius Different energy Different wavelength is lowest energy state, energy depends on state as " 13.6 n 2 ev Fri. Mar. 24, 2006 Phy107 Lect Energy levels Instead of drawing orbits, we can just indicate the energy an electron would have if it were in that orbit. Fri. Mar. 24, 2006 Phy107 Lect Energy axis Photon emitted hf=e 2 -E 1 Emitting and absorbing light Photon is emitted when electron drops from one quantum state to another Photon absorbed hf=e 2 -E 1 Fri. Mar. 24, 2006 Phy107 Lect Absorbing a photon of correct energy makes electron jump to higher quantum state. Hydrogen atom An electron drops from an -1.5 ev energy level to one with energy of -3.4 ev. What is the wavelength of the photon emitted? A. 650 nm B. 400 nm C. 250 nm Photon emitted hf=e 2 -E 1 hf = hc/λ = 1240 ev-nm/ λ E 3 = "1.5 ev E 2 = "3.4 ev E 1 = "13.6 ev Fri. Mar. 24, 2006 Phy107 Lect Energy conservation for Bohr atom Each orbit has a specific energy E n =-13.6/n 2 Photon emitted when electron jumps from high energy to low energy orbit. E i E f = h f Photon absorption induces electron jump from low to high energy orbit. E f E i = h f Agrees with experiment Fri. Mar. 24, 2006 Phy107 Lect Summary of Hydrogen atom Hydrogen atom: One electron orbiting around one proton (nucleus) Electron can be in different quantum states Quantum states labeled by integer,2,3,4, In each different quantum state, electron has Different orbital radius Different energy Different wavelength is lowest energy state, energy depends on state as " 13.6 n 2 ev Fri. Mar. 24, 2006 Phy107 Lect

2 Example: the Balmer series All transitions terminate at the level Each energy level has energy E n =-13.6 / n 2 ev E.g. to transition Emitted photon has energy ## E photon = " 13.6 & # % ( " " 13.6 && % % ( $ $ 3 2 ' $ 2 2 ( =1.89 ev '' Emitted wavelength E photon = hf = hc ", " = hc 1240 ev # nm = = 656 nm E photon 1.89 ev Fri. Mar. 24, 2006 Phy107 Lect Compare the wavelength of a photon produced from a transition from to with that of a photon produced from a transition to. A. λ 31 < λ 21 B. λ 31 = λ 21 C. λ 31 > λ 21 E 31 > E 21 so λ 31 < λ 21 Spectral Question Fri. Mar. 24, 2006 Phy107 Lect But why? Why should only certain orbits be stable? Bohr had a complicated argument based on correspondence principle That quantum mechanics must agree with classical results when appropriate (high energies, large sizes) But incorporating wave nature of electron gives a natural understanding of these quantized orbits Fri. Mar. 24, 2006 Phy107 Lect Resonance Most physical objects will vibrate at some set of natural frequencies Ringing bell Wine glass Musical instrument The electrons in an atom analogous to sound waves in a musical instrument. In instrument, only certain pitches produced, corresponding to particular vibration wavelengths. Since the electrons orbiting around the nucleus are waves, only certain wavelengths are allowed. Fri. Mar. 24, 2006 Phy107 Lect Resonance on a string Easier to think about in a normal wind instrument, or vibrations of a string. Wind instrument with particular fingering plays a particular pitch, particular wavelength. Guitar string vibrates at frequency, wavelength determined by string length. λ=l/2 f=v/λ Fri. Mar. 24, 2006 Phy107 Lect λ/2 λ/2 Resonances of a string λ/2 Fundamental, wavelength 2L/1=2L, frequency f 1st harmonic, wavelength 2L/2=L, frequency 2f 2nd harmonic, wavelength 2L/3, frequency 3f frequency... Fri. Mar. 24, 2006 Phy107 Lect Vibrational modes equally spaced in frequency 2

3 String resonances A string has a fundamental frequency of 440 Hz. If I pluck it so that it vibrates at the first harmonic (half the wavelength) what is the frequency? Not always equally spaced n=7 n=6 A. 440 Hz B. 220 Hz C. 880 Hz Wavelength has decreased by factor of 2. Since f=v/λ, frequency has gone up by factor of two. frequency n=5 Fri. Mar. 24, 2006 Phy107 Lect Vibrational modes unequally spaced Fri. Mar. 24, 2006 Phy107 Lect Why not other wavelengths? Waves not in the harmonic series are quickly destroyed by interference In effect, the object selects the resonant wavelengths by its physical properties. Reflection from end interferes destructively and cancels out wave. Same happens in a wind instrument and in an atom Electron waves in an atom Electron is a wave. In the orbital picture, its propagation direction is around the circumference of the orbit. Wavelength = h / p (p=momentum, and energy determined by momentum) How can we think about waves on a circle? Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect Waves on a circle Wavelength Blow in here Here is my ToneNut Like a flute, but in the shape of a doughnut. Produces particular pitch. Air inside must be vibrating at that frequency Sound wave inside has wavelength λ=v/f (red line). What determines the frequency/wavelength of the sound? Waves on a ring Wavelength Condition on a ring slightly different. Integer number of wavelengths required around circumference. Otherwise destructive interference occurs when wave travels around ring and interferes with itself. Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect

4 Hydrogen atom music These are the five lowest energy orbits for the one electron in the hydrogen atom. Each orbit is labeled by the quantum number n. The radius of each is n 2 a o. Hydrogen has one electron: the electron must be in one of these orbits. The smallest orbit has the lowest energy. The energy is larger for larger orbits. Fri. Mar. 24, 2006 Phy107 Lect Hydrogen atom music Here the electron is in the orbit. Three wavelengths fit along the circumference of the orbit. The hydrogen atom is playing its third highest note. Highest note (shortest wavelength) is. Fri. Mar. 24, 2006 Phy107 Lect Hydrogen atom music Here the electron is in the orbit. Four wavelengths fit along the circumference of the orbit. The hydrogen atom is playing its fourth highest note (lower pitch than note). Hydrogen atom music Here the electron is in the n=5 orbit. Five wavelengths fit along the circumference of the orbit. The hydrogen atom is playing its next lowest note. The sequence goes on and on, with longer and longer wavelengths, lower and lower notes. Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect Hydrogen atom energies Wavelength gets longer in higher n states, (electron moving slower) so kinetic energy goes down. But energy of Coulomb interaction between electron (-) and nucleus (+) goes up faster with bigger n. End result is E n = " 13.6 n 2 ev Energy Hydrogen atom question Here is Peter Flanary s sculpture Wave outside Chamberlin Hall. What quantum state of the hydrogen atom could this represent? A. B. C. Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect

5 Another question Here is Donald Lipski s sculpture Nail s Tail outside Camp Randall Stadium. What could it represent? A. A pile of footballs B. I hear its made of plastic. For 200 grand, I d think we d get granite - Tim Stapleton (Stadium Barbers) C. I m just glad it s not my money - Ken Kopp (New Orlean s Take-Out) General aspects of Quantum Systems System has set of quantum states, labeled by an integer (,,, etc) Each quantum state has a particular frequency and energy associated with it. These are the only energies that the system can have: the energy is quantized Analogy with classical system: System has set of vibrational modes, labeled by integer fundamental (), 1st harmonic (), 2nd harmonic (), etc Each vibrational mode has a particular frequency and energy. These are the only frequencies at which the system resonates. Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect Example: Particle in a box Particle confined to a fixed region of space e.g. ball in a tube- ball moves only along length L Classically, ball bounces back and forth in tube. No friction, so ball continues to bounce back and forth, retaining its initial speed. This is a classical state of the ball. A different classical state would be ball bouncing back and forth with different speed. Could label each state with a speed, momentum=(mass)x(speed), or kinetic energy. L Any momentum, energy is possible. Can increase momentum in arbitrarily small increments. Fri. Mar. 24, 2006 Phy107 Lect Quantum Particle in a Box In Quantum Mechanics, ball represented by wave Wave reflects back and forth from the walls. Reflections cancel unless wavelength meets the standing wave condition: integer number of half-wavelengths fit in the tube. " = 2L One halfwavelength " = L Two halfwavelengths momentum p = h " = h 2L # p o momentum p = h " = h L = 2p o Fri. Mar. 24, 2006 Phy107 Lect Particle in box question Quantized energy levels A particle in a box has a mass m. It s energy is all energy of motion = p 2 /2m. We just saw that it s momentum in state n is np o. It s energy levels A. are equally spaced everywhere B. get farther apart at higher energy C. get closer together at higher energy. Quantized momentum p = h " = n h 2L = np o Energy = kinetic ( ) 2 E = p2 2m = np o 2m = n 2 E o Or Quantized Energy E n = n 2 E o Energy n=5 Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect

6 The wavefunction of a particle We use a probabilistic interpretation The wavefunction Ψ(x) (psi) of a particle describes the extended, wave-like properties. The square magnitude of the wavefunction Ψ 2 gives the probability of finding the particle at a particular spatial location Similar to the interpretation used for light waves Square of the electric field gives light intensity = number of photons / second. Particle in a box: Wavefunctions Wavefunction = (Wavefunction) 2 Ground state wavefunction and probability. Height of probability curve represents likelihood of finding particle at that point. Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect Next highest energy state Wavefunction = (Wavefunction) 2 Understanding Heads Tails Now here is something unusual. In the middle of the box, probability of finding the particle is ZERO How can we understand this? 1/ Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect Discrete vs continuous Particle in a box: Wavefunctions 1/6 1 Loaded die Third state Wavefunction Continuous probability distribution 1/ Next higher state Lowest energy state Fri. Mar. 24, 2006 Phy107 Lect Fri. Mar. 24, 2006 Phy107 Lect

7 of finding electron Quantum Corral Classically, equally likely to find particle anywhere QM - true on average for high n Zeroes in the probability Purely quantum, interference effect Fri. Mar. 24, 2006 Phy107 Lect D. Eigler (IBM) 48 Iron atoms assembled into a circular ring. The ripples inside the ring reflect the electron quantum states of a circular ring (interference effects). Fri. Mar. 24, 2006 Phy107 Lect

Hydrogen atom energies. From Last Time. Today. Another question. Hydrogen atom question. Compton scattering and Photoelectric effect

Hydrogen atom energies. From Last Time. Today. Another question. Hydrogen atom question. Compton scattering and Photoelectric effect From ast Time Observation of atoms indicated quantized energy states. Atom only emitted certain wavelengths of light Structure of the allowed wavelengths indicated the what the energy structure was Quantum

More information

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic From Last Time All objects show both wave-like properties and particle-like properties. Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete

More information

From Last time. Exam 3 results. Probability. The wavefunction. Example wavefunction. Discrete vs continuous. De Broglie wavelength

From Last time. Exam 3 results. Probability. The wavefunction. Example wavefunction. Discrete vs continuous. De Broglie wavelength From ast time Eam 3 results De Broglie wavelength Uncertainty principle Eam average ~ 70% Scores posted on learn@uw D C BC B AB A Wavefunction of a particle Course evaluations: Tuesday, Dec. 9 Tue. Dec.

More information

Wavelength of 1 ev electron

Wavelength of 1 ev electron HW8: M Chap 15: Question B, Exercises 2, 6 M Chap 16: Question B, Exercises 1 M Chap 17: Questions C, D From Last Time Essay topic and paragraph due Friday, Mar. 24 Light waves are particles and matter

More information

Hydrogen atom energies. Friday Honors lecture. Quantum Particle in a box. Classical vs Quantum. Quantum version

Hydrogen atom energies. Friday Honors lecture. Quantum Particle in a box. Classical vs Quantum. Quantum version Friday onors lecture Prof. Clint Sprott takes us on a tour of fractals. ydrogen atom energies Quantized energy levels: Each corresponds to different Orbit radius Velocity Particle wavefunction Energy Each

More information

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question Hour Exam 3 Review Hour Exam 3: Wednesday, Apr. 19 In-class (2241 Chamberlin Hall) Twenty multiple-choice questions Will cover: Basic Quantum Mechanics Uses of Quantum Mechanics Addl. Lecture Material

More information

atoms and light. Chapter Goal: To understand the structure and properties of atoms.

atoms and light. Chapter Goal: To understand the structure and properties of atoms. Quantum mechanics provides us with an understanding of atomic structure and atomic properties. Lasers are one of the most important applications of the quantummechanical properties of atoms and light.

More information

From Last Time. Summary of Photoelectric effect. Photon properties of light

From Last Time. Summary of Photoelectric effect. Photon properties of light Exam 3 is Tuesday Nov. 25 5:30-7 pm, 203 Ch (here) Students w / scheduled academic conflict please stay after class Tues. Nov. 8 (TODAY) to arrange alternate time. From Last Time Photoelectric effect and

More information

ATOMIC PHYSICS. history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS

ATOMIC PHYSICS.   history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS ATOMIC PHYSICS http://www.aip.org/ history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS What We Will Study Basics of electromagnetic radiation - The AC generator, again

More information

The wavefunction and quantum jumps

The wavefunction and quantum jumps ydrogen atom in 3D Today From ast Time Electron has a particle and wave nature and is spread out over space Wave nature must interfere constructively to exist Satisfies 3 conditions for constructive interference

More information

Particle in a box. From Last Time. Classical vs quantum. Wavefunction of pendulum. Wavefunctions in two dimensions. Probability density of oscillator

Particle in a box. From Last Time. Classical vs quantum. Wavefunction of pendulum. Wavefunctions in two dimensions. Probability density of oscillator No office hours Tuesday Guest lecturer Wed: Entanglement & Quantum Computing From ast Time Particle can exist in different quantum states, having Different energy Different momentum Different wavelength

More information

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons.

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. Q1.(a) A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. In which part of the electromagnetic spectrum are these photons? What is

More information

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics.

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics. Chapter 7 In chapter 6 we learned about a set of rules for quantum mechanics. Now we want to apply them to various cases and see what they predict for the behavior of quanta under different conditions.

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra Atom and Quantum Atomic Nucleus Ernest Rutherford 1871-1937 Rutherford s Gold Foil Experiment Deflection of alpha particles showed the atom to be mostly empty space with a concentration of mass at its

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. The Bohr Atom Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the energy of the emitted photon when an electron drops from the third

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus Conceptual Physics 11 th Edition Chapter 32: THE ATOM AND THE QUANTUM Discovery of the Atomic Nucleus These alpha particles must have hit something relatively massive but what? Rutherford reasoned that

More information

SCH4U: History of the Quantum Theory

SCH4U: History of the Quantum Theory SCH4U: History of the Quantum Theory Black Body Radiation When an object is heated, it initially glows red hot and at higher temperatures becomes white hot. This white light must consist of all of the

More information

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure This experiment has four parts: 1. Spectroscope Setup - Your lab

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

Physics 43 Exam 2 Spring 2018

Physics 43 Exam 2 Spring 2018 Physics 43 Exam 2 Spring 2018 Print Name: Conceptual Circle the best answer. (2 points each) 1. Quantum physics agrees with the classical physics limit when a. the total angular momentum is a small multiple

More information

UNIT : QUANTUM THEORY AND THE ATOM

UNIT : QUANTUM THEORY AND THE ATOM Name St.No. Date(YY/MM/DD) / / Section UNIT 102-10: QUANTUM THEORY AND THE ATOM OBJECTIVES Atomic Spectra for Hydrogen, Mercury and Neon. 1. To observe various atomic spectra with a diffraction grating

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

Physics 11b Lecture #24. Quantum Mechanics

Physics 11b Lecture #24. Quantum Mechanics Physics 11b Lecture #4 Quantum Mechanics What We Did Last Time Theory of special relativity is based on two postulates: Laws of physics is the same in all reference frames Speed of light is the same in

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Wave Motion and Sound

Wave Motion and Sound Wave Motion and Sound 1. A back and forth motion that repeats itself is a a. Spring b. Vibration c. Wave d. Pulse 2. The number of vibrations that occur in 1 second is called a. A Period b. Frequency c.

More information

From Last Time. Mon. Nov 8 Phy107 Lecture 26

From Last Time. Mon. Nov 8 Phy107 Lecture 26 From Last Time Particle can exist in different quantum states, having Different energy Different momentum Different wavelength The quantum wavefunction describes wave nature of particle. Square of the

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Photon: a quantum of light or electromagnetic wave. Quantum:

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

QUANTUM MECHANICS Intro to Basic Features

QUANTUM MECHANICS Intro to Basic Features PCES 4.21 QUANTUM MECHANICS Intro to Basic Features 1. QUANTUM INTERFERENCE & QUANTUM PATHS Rather than explain the rules of quantum mechanics as they were devised, we first look at a more modern formulation

More information

PHYSICS 102N Spring Week 12 Quantum Mechanics and Atoms

PHYSICS 102N Spring Week 12 Quantum Mechanics and Atoms PHYSICS 102N Spring 2009 Week 12 Quantum Mechanics and Atoms Quantum Mechanics 1. All objects can be represented by waves describing their propagation through space 2. The wave length is λ=h/p and frequency

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics

Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics 1. More on special relativity Normally, when two objects are moving with velocity v and u with respect to the stationary observer, the

More information

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Section7: The Bohr Atom Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Continuous Spectrum Everyone has seen the spectrum produced when white

More information

Chem 6, 10 Section Spring Exam 2 Solutions

Chem 6, 10 Section Spring Exam 2 Solutions Exam 2 Solutions 1. (4 + 6 + 5 points) Dartmouth s FM radio station, WDCR, broadcasts by emitting from its antenna photons of frequency 99.3 MHz (99.3 10 6 Hz). (a) What is the energy of a single WDCR

More information

Chancellor Phyllis Wise invites you to a birthday party!

Chancellor Phyllis Wise invites you to a birthday party! Chancellor Phyllis Wise invites you to a birthday party! 50 years ago, Illinois alumnus Nick Holonyak Jr. demonstrated the first visible light-emitting diode (LED) while working at GE. Holonyak returned

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

The Hydrogen Atom According to Bohr

The Hydrogen Atom According to Bohr The Hydrogen Atom According to Bohr The atom We ve already talked about how tiny systems behave in strange ways. Now let s s talk about how a more complicated system behaves. The atom! Physics 9 4 Early

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

1/l = R(1/n' 2-1/n 2 ) n > n', both integers R = nm -1

1/l = R(1/n' 2-1/n 2 ) n > n', both integers R = nm -1 Worksheet 14 Bohr Model of the Hydrogen Atom In the late 1800's, Johannes Rydberg, building on the work of Johann Balmer, had come up with a mathematical formula that could be used to find the wavelengths

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Modern Physics Part 3: Bohr Model & Matter Waves

Modern Physics Part 3: Bohr Model & Matter Waves Modern Physics Part 3: Bohr Model & Matter Waves Last modified: 28/08/2018 Links Atomic Spectra Introduction Atomic Emission Spectra Atomic Absorption Spectra Bohr Model of the Hydrogen Atom Emission Spectrum

More information

20th Century Atomic Theory- Hydrogen Atom

20th Century Atomic Theory- Hydrogen Atom Background for (mostly) Chapter 12 of EDR 20th Century Atomic Theory- Hydrogen Atom EDR Section 12.7 Rutherford's scattering experiments (Raff 11.2.3) in 1910 lead to a "planetary" model of the atom where

More information

LEARNING STATION V: PREDICTING THE HYDROGEN EMISSION LINES WITH A QUANTUM MODEL 45

LEARNING STATION V: PREDICTING THE HYDROGEN EMISSION LINES WITH A QUANTUM MODEL 45 Table of Contents LEARNING STATION V: PREDICTING THE HYDROGEN EMISSION LINES WITH A QUANTUM MODEL 45 1 Predicting the emission spectra of elements? 45 1.a Emission lines of elements: classically not understood

More information

Mystery #3 Emission Spectra of Elements. Tube filled with elemental gas. Voltage can be applied across both ends, this causes the gas to emit light

Mystery #3 Emission Spectra of Elements. Tube filled with elemental gas. Voltage can be applied across both ends, this causes the gas to emit light Mystery #3 Emission Spectra of Elements Tube filled with elemental gas. Voltage can be applied across both ends, this causes the gas to emit light Line Spectra Copyright The McGraw-Hill Companies, Inc.

More information

Modern Physics notes Paul Fendley Lecture 6

Modern Physics notes Paul Fendley Lecture 6 Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 6 Size of the atom A digression on hand-waving arguments Spectral lines Feynman, 2.4-5 Fowler, Spectra, The Bohr atom The size of the atom

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Chapter 1 The Bohr Atom

Chapter 1 The Bohr Atom Chapter 1 The Bohr Atom 1 Introduction Niels Bohr was a Danish physicist who made a fundamental contribution to our understanding of atomic structure and quantum mechanics. He made the first successful

More information

Chapter 37. Lasers, a Model Atom and Zero Point Energy

Chapter 37. Lasers, a Model Atom and Zero Point Energy Chapter 37 Lasers, a Model Atom and Zero Point Energy CHAPTER 37 LASERS, A MOEL ATOM AN ZERO POINT ENERGY Once at the end of a colloquium I heard ebye saying something like: Schrödinger, you are not working

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Bohr s Correspondence Principle

Bohr s Correspondence Principle Bohr s Correspondence Principle In limit that n, quantum mechanics must agree with classical physics E photon = 13.6 ev 1 n f n 1 i = hf photon In this limit, n i n f, and then f photon electron s frequency

More information

Physics 25 Chapter 29 Dr. Alward

Physics 25 Chapter 29 Dr. Alward Physics 25 Chapter 29 Dr. Alward Photons and Matter Waves Planck s Constant: h = 6.63 x 10-34 J-s E = hf E = hc/λ 1 Example A: Red light of wavelength λ = 720 nm consists of a stream of photons of what

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Physics 280 Quantum Mechanics Lecture

Physics 280 Quantum Mechanics Lecture Spring 2015 1 1 Department of Physics Drexel University August 3, 2016 Objectives Review Early Quantum Mechanics Objectives Review Early Quantum Mechanics Schrödinger s Wave Equation Objectives Review

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Vanden Bout/LaBrake/Crawford. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. Important Information

Vanden Bout/LaBrake/Crawford. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. Important Information Unit2Day2-Crawford Page 1 Unit2Day2-Crawford Monday, September 23, 2013 4:15 PM Vanden Bout/LaBrake/Crawford CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 CH302 Vanden

More information

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction Chapter 8 Spectroscopy 8.1 Purpose In the experiment atomic spectra will be investigated. The spectra of three know materials will be observed. The composition of an unknown material will be determined.

More information

The Bohr Atom. PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98. Introduction

The Bohr Atom. PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98. Introduction 1 The Bohr Atom PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98 Introduction In this week's computer simulation, we will examine the behavior of a simplified model of the hydrogen atom. This model, the

More information

Mid Term Exam 1. Feb 13, 2009

Mid Term Exam 1. Feb 13, 2009 Name: ID: Mid Term Exam 1 Phys 48 Feb 13, 009 Print your name and ID number clearly above. To receive full credit you must show all your work. If you only provide your final answer (in the boxes) and do

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

LECTURE # 17 Modern Optics Matter Waves

LECTURE # 17 Modern Optics Matter Waves PHYS 270-SPRING 2011 LECTURE # 17 Modern Optics Matter Waves April 5, 2011 1 Spectroscopy: Unlocking the Structure of Atoms There are two types of spectra, continuous spectra and discrete spectra: Hot,

More information

Atoms and Spectroscopy

Atoms and Spectroscopy Atoms and Spectroscopy Lecture 3 1 ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND 2 FROM ATOMS TO STARS AND GALAXIES HOW DO WE KNOW? Observations The Scientific Method Hypothesis Verifications LAW 3

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

An electron can be liberated from a surface due to particle collisions an electron and a photon.

An electron can be liberated from a surface due to particle collisions an electron and a photon. Quantum Theory and the Atom the Bohr Atom The story so far... 1. Einstein argued that light is a photon (particle) and each photon has a discrete amount of energy associated with it governed by Planck's

More information

CHM320 PRACTICE EXAM #1 (SPRING 2018)

CHM320 PRACTICE EXAM #1 (SPRING 2018) CHM320 PRACTICE EXAM #1 (SPRING 2018) Name: Score: NOTE: You must show your work, with sufficient number of intermediate steps. No credit will be awarded if you simply write down the answers from memory

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 15 20% Modules

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

Chapter 28 Quantum Mechanics of Atoms

Chapter 28 Quantum Mechanics of Atoms Chapter 28 Quantum Mechanics of Atoms 28.1 Quantum Mechanics The Theory Quantum mechanics incorporates wave-particle duality, and successfully explains energy states in complex atoms and molecules, the

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

Quantum theory and models of the atom

Quantum theory and models of the atom Guess now. It has been found experimentally that: (a) light behaves as a wave; (b) light behaves as a particle; (c) electrons behave as particles; (d) electrons behave as waves; (e) all of the above are

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Physical Electronics. First class (1)

Physical Electronics. First class (1) Physical Electronics First class (1) Bohr s Model Why don t the electrons fall into the nucleus? Move like planets around the sun. In circular orbits at different levels. Amounts of energy separate one

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

Back to the particle in a box. From Last Time. Where is the particle? How fast is it moving? Quantum momentum. Uncertainty in Quantum Mechanics

Back to the particle in a box. From Last Time. Where is the particle? How fast is it moving? Quantum momentum. Uncertainty in Quantum Mechanics From ast Time Back to the particle in a box Particle can exist in different quantum states, having Different energy Different momentum Different wavelength Wavefunction Probability = (Wavefunction) 2 The

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

! Finish Ch. 4.! Start Chapter 10: The Sun.! Homework Due: Oct. 10

! Finish Ch. 4.! Start Chapter 10: The Sun.! Homework Due: Oct. 10 ! Finish Ch. 4! Start Chapter 10: The Sun! Homework Due: Oct. 10 A Spectral Mystery Mystery: Why do so many stars have an absorption spectrum (with certain colors missing)? The atoms that make up these

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

Quantum Physics & From Ideas to Implementation. Underlying concepts in the syllabus

Quantum Physics & From Ideas to Implementation. Underlying concepts in the syllabus Quantum Physics & From Ideas to Implementation Underlying concepts in the syllabus 1 1 What is Quantum Physics? Wave-particle duality Tells us that energy comes in packets, particles are wave-like. Systems

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Problem Set 5: Solutions

Problem Set 5: Solutions University of Alabama Department of Physics and Astronomy PH 53 / eclair Spring 1 Problem Set 5: Solutions 1. Solve one of the exam problems that you did not choose.. The Thompson model of the atom. Show

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

PHYS 172: Modern Mechanics Fall 2009

PHYS 172: Modern Mechanics Fall 2009 PHYS 172: Modern Mechanics Fall 2009 Lecture 14 Energy Quantization Read 7.1 7.9 Reading Question: Ch. 7, Secs 1-5 A simple model for the hydrogen atom treats the electron as a particle in circular orbit

More information

r1 (D) r 2 = 2 r 1 (E) r 2 = 4r 1 2

r1 (D) r 2 = 2 r 1 (E) r 2 = 4r 1 2 April 24, 2013; Page 2 PART A FOR EACH OF THE FOLLOWING QUESTIONS IN PART A, ENTER THE MOST APPROPRIATE RESPONSE ON THE OMR SHEET. A1. A thin rod of mass M and length L is initially able to rotate through

More information