Properties of the Determinant Function

Size: px
Start display at page:

Download "Properties of the Determinant Function"

Transcription

1 Properties of the Determinant Function MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015

2 Overview Today s discussion will illuminate some of the properties of the determinant: relationship with scalar products multi-linearity relationship with matrix products relationship with invertible matrices

3 Basic Properties Theorem If A is an n n matrix and k is a scalar, then det(ka) = k n det(a).

4 Basic Properties Theorem If A is an n n matrix and k is a scalar, then det(ka) = k n det(a). Proof. ka 11 ka 12 ka 1n ka 21 ka 22 ka 2n = k n... ka n1 ka n2 ka nn... a n1 a n2 a nn a 11 a 12 a 1n a 21 a 22 a 2n

5 A Non-property We can show by example that det(a + B) det(a) + det(b). Example[ ] 1 0 Let A = and B = 0 1 [ ], then det(a + B) = = ( 2) = det(a) + det(b).

6 However... If matrix A and B differ in just a single row... Theorem Let A, B, and C be n n matrices that differ only in a single row, say the r th row, and suppose the r th of C is the sum of the r th rows of A and B. Then det(c) = det(a) + det(b).

7 However... If matrix A and B differ in just a single row... Theorem Let A, B, and C be n n matrices that differ only in a single row, say the r th row, and suppose the r th of C is the sum of the r th rows of A and B. Then det(c) = det(a) + det(b). Remark: the same result holds for columns.

8 However... If matrix A and B differ in just a single row... Theorem Let A, B, and C be n n matrices that differ only in a single row, say the r th row, and suppose the r th of C is the sum of the r th rows of A and B. Then det(c) = det(a) + det(b). Remark: the same result holds for columns. Example[ ] [ a11 a Let A = 12 a11 a and B = 12 a 21 a 22 b 21 b [ 22 a C = 11 a 12 a 21 + b 21 a 22 + b 22 det(c). ], and ], compare det(a) + det(b) to

9 Determinant of Matrix Product Theorem If A and B are n n matrices then det(ab) = det(a) det(b).

10 Determinant of Matrix Product Theorem If A and B are n n matrices then det(ab) = det(a) det(b). Remark: we will first prove this for the case where A is an elementary matrix.

11 Determinant of Matrix Product Theorem If A and B are n n matrices then det(ab) = det(a) det(b). Remark: we will first prove this for the case where A is an elementary matrix. Lemma Suppose E is an elementary n n matrix and B is an n n matrix, then det(eb) = det(e) det(b).

12 Determinant of Matrix Product Theorem If A and B are n n matrices then det(ab) = det(a) det(b). Remark: we will first prove this for the case where A is an elementary matrix. Lemma Suppose E is an elementary n n matrix and B is an n n matrix, then det(eb) = det(e) det(b).

13 Determinant of Matrix Product Theorem If A and B are n n matrices then det(ab) = det(a) det(b). Remark: we will first prove this for the case where A is an elementary matrix. Lemma Suppose E is an elementary n n matrix and B is an n n matrix, then det(eb) = det(e) det(b). If B is an n n matrix and E 1, E 2,..., E r are elementary matrices then det(e 1 E 2 E m B) = det(e 1 ) det(e 2 ) det(e m ) det(b)

14 Proof (for first elementary row operation) Suppose E results from multiplying the jth row of I n by scalar k. det(e) = k

15 Proof (for first elementary row operation) Suppose E results from multiplying the jth row of I n by scalar k. det(e) = k Matrix product EB multiplies the jth row of B by k. det(eb) = k det(b)

16 Proof (for first elementary row operation) Suppose E results from multiplying the jth row of I n by scalar k. det(e) = k Matrix product EB multiplies the jth row of B by k. det(eb) = k det(b) = det(e) det(b)

17 Invertibility Theorem A square matrix A is invertible if and only if det(a) 0.

18 Invertibility Theorem A square matrix A is invertible if and only if det(a) 0. Remark: this is one of the most important results of linear algebra.

19 Proof Let E 1, E 2,..., E r be the elementary matrices which place A in reduced row echelon form, R. R = E r E 2 E 1 A det(r) = det(e r ) det(e 2 ) det(e 1 ) det(a)

20 Proof Let E 1, E 2,..., E r be the elementary matrices which place A in reduced row echelon form, R. R = E r E 2 E 1 A det(r) = det(e r ) det(e 2 ) det(e 1 ) det(a) Since the determinant of an elementary matrix is nonzero then det(a) and det(r) are either both zero or both nonzero.

21 Proof Let E 1, E 2,..., E r be the elementary matrices which place A in reduced row echelon form, R. R = E r E 2 E 1 A det(r) = det(e r ) det(e 2 ) det(e 1 ) det(a) Since the determinant of an elementary matrix is nonzero then det(a) and det(r) are either both zero or both nonzero. If A is invertible, the reduced row echelon form of A is I. In this case det(r) = det(i) = 1 which implies det(a) 0.

22 Proof Let E 1, E 2,..., E r be the elementary matrices which place A in reduced row echelon form, R. R = E r E 2 E 1 A det(r) = det(e r ) det(e 2 ) det(e 1 ) det(a) Since the determinant of an elementary matrix is nonzero then det(a) and det(r) are either both zero or both nonzero. If A is invertible, the reduced row echelon form of A is I. In this case det(r) = det(i) = 1 which implies det(a) 0. If det(a) 0, then det(r) 0 which implies R cannot have a row of all zeros. This implies R = I and thus A is invertible.

23 Example Determine if the matrix below is invertible

24 Return to Previous Theorem We can now prove the general case of the theorem: Theorem If A and B are n n matrices then det(ab) = det(a) det(b).

25 Return to Previous Theorem We can now prove the general case of the theorem: Theorem If A and B are n n matrices then det(ab) = det(a) det(b). Proof. Case: A is singular. AB is not invertible. By last theorem det(ab) = 0 = (0) det(b) = det(a) det(b).

26 Proof (continued) Case: A is invertible. A can be expressed as a product of elementary matrices. A = E 1 E 2 E r

27 Proof (continued) Case: A is invertible. A can be expressed as a product of elementary matrices. A = E 1 E 2 E r AB = E 1 E 2 E r B

28 Proof (continued) Case: A is invertible. A can be expressed as a product of elementary matrices. A = E 1 E 2 E r AB = E 1 E 2 E r B Applying the last theorem yields det(ab) = det(e 1 ) det(e 2 ) det(e r ) det(b) = det(e 1 E 2 E r ) det(b) = det(a) det(b).

29 Example Consider the matrices A = B = AB = [ ] [ ] [ ] and verify that det(ab) = det(a) det(b).

30 A Corollary Corollary If A is invertible, then det(a 1 ) = 1 det(a) = (det(a)) 1.

31 A Corollary Corollary If A is invertible, then det(a 1 ) = 1 det(a) = (det(a)) 1. Proof. A 1 A = I and det(a 1 A) = det(i) = 1. Since det(a 1 A) = det(a 1 ) det(a) = 1 and det(a) 0, then det(a 1 ) = 1 det(a).

32 Adjoint of a Matrix (1 of 2) Observations: If we multiply the entries of a row or column of a square matrix by their corresponding cofactors and add the results, we obtain the determinant of the matrix.

33 Adjoint of a Matrix (1 of 2) Observations: If we multiply the entries of a row or column of a square matrix by their corresponding cofactors and add the results, we obtain the determinant of the matrix. If we multiply the entries in a row (column) of a matrix by the corresponding cofactors from a different row (column), the sum of these products will be 0. Example Let A = and find the following sum. a 11 C 21 + a 12 C 22 + a 13 C 23

34 Adjoint of a Matrix (2 of 2) Definition If A is an n n matrix and C ij is the cofactor of a ij, then the matrix C 11 C 12 C 1n C 21 C 22 C 2n... C n1 C n2 C nn is called the matrix of cofactors from A. The transpose of this matrix is called the adjoint of A and is denoted adj(a).

35 Example Let A = adj(a) and find the matrix of cofactors and

36 Example Let A = adj(a) Matrix of cofactors: and find the matrix of cofactors and

37 Example Let A = adj(a) Matrix of cofactors: and find the matrix of cofactors and adj(a) =

38 Inverses and Adjoints Theorem If A is an invertible matrix, then A 1 = 1 det(a) adj(a).

39 Inverses and Adjoints Theorem If A is an invertible matrix, then A 1 = 1 det(a) adj(a). Proof. a 11 a 12 a 1n a 21 a 22 a 2n C 11 C 21 C j1 C n1 A adj(a) =... C 12 C 22 C j2 C n2 a i1 a i2 a in C 1n C 2n C jn C nn a n1 a n2 a nn

40 Proof (continued) The ijth entry of A adj(a) is Thus a i1 C j1 + a i2 C j2 + + a in C jn = { det(a) if i = j 0 if i j. A adj(a) = det(a)i 1 det(a) A adj(a) = I [ ] 1 A det(a) adj(a) = I [ ] A 1 1 A det(a) adj(a) = A 1 I 1 adj(a) = A 1 det(a)

41 Example Let A = A and use the formula 1 adj(a) to find det(a)

42 Example Let A = A and use the formula 1 adj(a) to find det(a) det(a) = adj(a) = A 1 = = 2/13 1/13 3/13 31/39 3/13 1/39 10/13 5/13 2/13

43 Cramer s Rule Cramer s Rule is a theoretical method for determining the solution to a linear system. It is computationally inefficient.

44 Cramer s Rule Cramer s Rule is a theoretical method for determining the solution to a linear system. It is computationally inefficient. Theorem If Ax = b is a system of n linear equations in n unknowns such that det(a) 0, then the system has a unique solution: x 1 = det(a 1) det(a), x 2 = det(a 2) det(a),..., x n = det(a n) det(a). where A j is the matrix obtained when the entries in the j th column of A are replaced by b.

45 Proof (1 of 2) If det(a) 0 then A is invertible and the solution is x = A 1 b. C 11 C 21 C n1 C 12 C 22 C n2 x = = 1 det(a) adj(a)b = 1 det(a) 1 det(a) The jth entry of x is b 1 C 11 + b 2 C b n C n1 b 1 C 12 + b 2 C b n C n2... C 1n C 2n C nn. b 1 C 1n + b 2 C 2n + + b n C nn x j = b 1C 1j + b 2 C 2j + + b n C nj det(a) b 1 b 2. b n

46 Proof (2 of 2) Let A j be matrix A with its jth column replaced with b. A j = a 11 a 12 a 1j 1 b 1 a 1j+1 a 1n a 21 a 22 a 2j 1 b 2 a 2j+1 a 2n..... a n1 a n2 a nj 1 b n a nj+1 a nn. Find the det(a j ) by cofactor expansion along the jth column. det(a j ) = b 1 C 1j + b 2 C 2j + + b n C nj Consequently x j = det(a j) det(a).

47 Example Use Cramer s Rule to solve the following linear system. 3x 1 + 3x 2 + x 3 = 1 x 1 4x 3 = 1 x 1 3x 2 + 5x 3 = 1

48 Efficiency Remark: for linear systems with more than 3 equations and 3 unknowns, Gaussian elimination is more efficient for finding the solution than Cramer s Rule.

49 Equivalent Statements Theorem If A is an n n matrix, then the following statements are equivalent: 1. A is invertible. 2. Ax = 0 has only the trivial solution. 3. The reduced row echelon form of A is I n. 4. A is expressible as the product of elementary matrices. 5. Ax = b is consistent for every n 1 matrix b. 6. Ax = b has exactly one solution for every n 1 matrix b. 7. det(a) 0.

50 Homework Read Section 2.3 Exercises: 1, 3, 5, 7, 13, 17, 19, 25, 33

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

Determinants by Cofactor Expansion (III)

Determinants by Cofactor Expansion (III) Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...

More information

det(ka) = k n det A.

det(ka) = k n det A. Properties of determinants Theorem. If A is n n, then for any k, det(ka) = k n det A. Multiplying one row of A by k multiplies the determinant by k. But ka has every row multiplied by k, so the determinant

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Linear Algebra: Lecture notes from Kolman and Hill 9th edition. Linear Algebra: Lecture notes from Kolman and Hill 9th edition Taylan Şengül March 20, 2019 Please let me know of any mistakes in these notes Contents Week 1 1 11 Systems of Linear Equations 1 12 Matrices

More information

Determinants. 2.1 Determinants by Cofactor Expansion. Recall from Theorem that the 2 2 matrix

Determinants. 2.1 Determinants by Cofactor Expansion. Recall from Theorem that the 2 2 matrix CHAPTER 2 Determinants CHAPTER CONTENTS 21 Determinants by Cofactor Expansion 105 22 Evaluating Determinants by Row Reduction 113 23 Properties of Determinants; Cramer s Rule 118 INTRODUCTION In this chapter

More information

Lecture 10: Determinants and Cramer s Rule

Lecture 10: Determinants and Cramer s Rule Lecture 0: Determinants and Cramer s Rule The determinant and its applications. Definition The determinant of a square matrix A, denoted by det(a) or A, is a real number, which is defined as follows. -by-

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 2030: EIGENVALUES AND EIGENVECTORS Determinants Although we are introducing determinants in the context of matrices, the theory of determinants predates matrices by at least two hundred years Their

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 10 Row expansion of the determinant Our next goal is

More information

Determinants. Samy Tindel. Purdue University. Differential equations and linear algebra - MA 262

Determinants. Samy Tindel. Purdue University. Differential equations and linear algebra - MA 262 Determinants Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. Determinants Differential equations

More information

NOTES FOR LINEAR ALGEBRA 133

NOTES FOR LINEAR ALGEBRA 133 NOTES FOR LINEAR ALGEBRA 33 William J Anderson McGill University These are not official notes for Math 33 identical to the notes projected in class They are intended for Anderson s section 4, and are 2

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

Chapter 4. Determinants

Chapter 4. Determinants 4.2 The Determinant of a Square Matrix 1 Chapter 4. Determinants 4.2 The Determinant of a Square Matrix Note. In this section we define the determinant of an n n matrix. We will do so recursively by defining

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS i i EXAM Exam #1 Math 2360, Second Summer Session, 2002 April 24, 2001 ANSWERS i 50 pts. Problem 1. In each part you are given the augmented matrix of a system of linear equations, with the coefficent

More information

LECTURE 4: DETERMINANT (CHAPTER 2 IN THE BOOK)

LECTURE 4: DETERMINANT (CHAPTER 2 IN THE BOOK) LECTURE 4: DETERMINANT (CHAPTER 2 IN THE BOOK) Everything with is not required by the course syllabus. Idea Idea: for each n n matrix A we will assign a real number called det(a). Properties: det(a) 0

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

II. Determinant Functions

II. Determinant Functions Supplemental Materials for EE203001 Students II Determinant Functions Chung-Chin Lu Department of Electrical Engineering National Tsing Hua University May 22, 2003 1 Three Axioms for a Determinant Function

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

MATH 1210 Assignment 4 Solutions 16R-T1

MATH 1210 Assignment 4 Solutions 16R-T1 MATH 1210 Assignment 4 Solutions 16R-T1 Attempt all questions and show all your work. Due November 13, 2015. 1. Prove using mathematical induction that for any n 2, and collection of n m m matrices A 1,

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and Elementary Matrices In this special handout of material not contained in the text, we introduce the concept of elementary matrix. Elementary matrices are useful in several ways that will be shown in this

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

Chapter 2. Square matrices

Chapter 2. Square matrices Chapter 2. Square matrices Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/18 Invertible matrices Definition 2.1 Invertible matrices An n n matrix A is said to be invertible, if there is a

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Determinants and Scalar Multiplication

Determinants and Scalar Multiplication Properties of Determinants In the last section, we saw how determinants interact with the elementary row operations. There are other operations on matrices, though, such as scalar multiplication, matrix

More information

Determinants. Recall that the 2 2 matrix a b c d. is invertible if

Determinants. Recall that the 2 2 matrix a b c d. is invertible if Determinants Recall that the 2 2 matrix a b c d is invertible if and only if the quantity ad bc is nonzero. Since this quantity helps to determine the invertibility of the matrix, we call it the determinant.

More information

ECON 186 Class Notes: Linear Algebra

ECON 186 Class Notes: Linear Algebra ECON 86 Class Notes: Linear Algebra Jijian Fan Jijian Fan ECON 86 / 27 Singularity and Rank As discussed previously, squareness is a necessary condition for a matrix to be nonsingular (have an inverse).

More information

Undergraduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1 Undergraduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 15, 2014 Outline 1 Courses Description and Requirement 2 Course Outline ematical techniques used in economics courses

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra Primer D.S. Stutts November 8, 995 Introduction This primer was written to provide a brief overview of the main concepts and methods in elementary linear algebra. It was not intended to

More information

Determinants. Beifang Chen

Determinants. Beifang Chen Determinants Beifang Chen 1 Motivation Determinant is a function that each square real matrix A is assigned a real number, denoted det A, satisfying certain properties If A is a 3 3 matrix, writing A [u,

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

Introduction to Determinants

Introduction to Determinants Introduction to Determinants For any square matrix of order 2, we have found a necessary and sufficient condition for invertibility. Indeed, consider the matrix The matrix A is invertible if and only if.

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

Determinants: Uniqueness and more

Determinants: Uniqueness and more Math 5327 Spring 2018 Determinants: Uniqueness and more Uniqueness The main theorem we are after: Theorem 1 The determinant of and n n matrix A is the unique n-linear, alternating function from F n n to

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Linear Algebra Primer

Linear Algebra Primer Introduction Linear Algebra Primer Daniel S. Stutts, Ph.D. Original Edition: 2/99 Current Edition: 4//4 This primer was written to provide a brief overview of the main concepts and methods in elementary

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

Here are some additional properties of the determinant function.

Here are some additional properties of the determinant function. List of properties Here are some additional properties of the determinant function. Prop Throughout let A, B M nn. 1 If A = (a ij ) is upper triangular then det(a) = a 11 a 22... a nn. 2 If a row or column

More information

TOPIC III LINEAR ALGEBRA

TOPIC III LINEAR ALGEBRA [1] Linear Equations TOPIC III LINEAR ALGEBRA (1) Case of Two Endogenous Variables 1) Linear vs. Nonlinear Equations Linear equation: ax + by = c, where a, b and c are constants. 2 Nonlinear equation:

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

MATH2210 Notebook 2 Spring 2018

MATH2210 Notebook 2 Spring 2018 MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

Determinants An Introduction

Determinants An Introduction Determinants An Introduction Professor Je rey Stuart Department of Mathematics Paci c Lutheran University Tacoma, WA 9844 USA je rey.stuart@plu.edu The determinant is a useful function that takes a square

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

MATRICES AND MATRIX OPERATIONS

MATRICES AND MATRIX OPERATIONS SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

Math 60. Rumbos Spring Solutions to Assignment #17

Math 60. Rumbos Spring Solutions to Assignment #17 Math 60. Rumbos Spring 2009 1 Solutions to Assignment #17 a b 1. Prove that if ad bc 0 then the matrix A = is invertible and c d compute A 1. a b Solution: Let A = and assume that ad bc 0. c d First consider

More information

LINEAR ALGEBRA WITH APPLICATIONS

LINEAR ALGEBRA WITH APPLICATIONS SEVENTH EDITION LINEAR ALGEBRA WITH APPLICATIONS Instructor s Solutions Manual Steven J. Leon PREFACE This solutions manual is designed to accompany the seventh edition of Linear Algebra with Applications

More information

MATH 106 LINEAR ALGEBRA LECTURE NOTES

MATH 106 LINEAR ALGEBRA LECTURE NOTES MATH 6 LINEAR ALGEBRA LECTURE NOTES FALL - These Lecture Notes are not in a final form being still subject of improvement Contents Systems of linear equations and matrices 5 Introduction to systems of

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Linear Algebra and Vector Analysis MATH 1120

Linear Algebra and Vector Analysis MATH 1120 Faculty of Engineering Mechanical Engineering Department Linear Algebra and Vector Analysis MATH 1120 : Instructor Dr. O. Philips Agboola Determinants and Cramer s Rule Determinants If a matrix is square

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Final Examination 201-NYC-05 - Linear Algebra I December 8 th, and b = 4. Find the value(s) of a for which the equation Ax = b

Final Examination 201-NYC-05 - Linear Algebra I December 8 th, and b = 4. Find the value(s) of a for which the equation Ax = b Final Examination -NYC-5 - Linear Algebra I December 8 th 7. (4 points) Let A = has: (a) a unique solution. a a (b) infinitely many solutions. (c) no solution. and b = 4. Find the value(s) of a for which

More information

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of . Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,

More information

MTH 102A - Linear Algebra II Semester

MTH 102A - Linear Algebra II Semester MTH 0A - Linear Algebra - 05-6-II Semester Arbind Kumar Lal P Field A field F is a set from which we choose our coefficients and scalars Expected properties are ) a+b and a b should be defined in it )

More information

Determinants - Uniqueness and Properties

Determinants - Uniqueness and Properties Determinants - Uniqueness and Properties 2-2-2008 In order to show that there s only one determinant function on M(n, R), I m going to derive another formula for the determinant It involves permutations

More information

The determinant. Motivation: area of parallelograms, volume of parallepipeds. Two vectors in R 2 : oriented area of a parallelogram

The determinant. Motivation: area of parallelograms, volume of parallepipeds. Two vectors in R 2 : oriented area of a parallelogram The determinant Motivation: area of parallelograms, volume of parallepipeds Two vectors in R 2 : oriented area of a parallelogram Consider two vectors a (1),a (2) R 2 which are linearly independent We

More information

THE ADJOINT OF A MATRIX The transpose of this matrix is called the adjoint of A That is, C C n1 C 22.. adj A. C n C nn.

THE ADJOINT OF A MATRIX The transpose of this matrix is called the adjoint of A That is, C C n1 C 22.. adj A. C n C nn. 8 Chapter Determinants.4 Applications of Determinants Find the adjoint of a matrix use it to find the inverse of the matrix. Use Cramer s Rule to solve a sstem of n linear equations in n variables. Use

More information

5.3 Determinants and Cramer s Rule

5.3 Determinants and Cramer s Rule 304 53 Determinants and Cramer s Rule Unique Solution of a 2 2 System The 2 2 system (1) ax + by = e, cx + dy = f, has a unique solution provided = ad bc is nonzero, in which case the solution is given

More information

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

Introduction. Vectors and Matrices. Vectors [1] Vectors [2] Introduction Vectors and Matrices Dr. TGI Fernando 1 2 Data is frequently arranged in arrays, that is, sets whose elements are indexed by one or more subscripts. Vector - one dimensional array Matrix -

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit. Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.

More information

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic.

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. MATH 300, Second Exam REVIEW SOLUTIONS NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. [ ] [ ] 2 2. Let u = and v =, Let S be the parallelegram

More information

Introduction to Matrices and Linear Systems Ch. 3

Introduction to Matrices and Linear Systems Ch. 3 Introduction to Matrices and Linear Systems Ch. 3 Doreen De Leon Department of Mathematics, California State University, Fresno June, 5 Basic Matrix Concepts and Operations Section 3.4. Basic Matrix Concepts

More information

Calculating determinants for larger matrices

Calculating determinants for larger matrices Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

More information

ANSWERS. E k E 2 E 1 A = B

ANSWERS. E k E 2 E 1 A = B MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8.1 Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

Math Camp Notes: Linear Algebra I

Math Camp Notes: Linear Algebra I Math Camp Notes: Linear Algebra I Basic Matrix Operations and Properties Consider two n m matrices: a a m A = a n a nm Then the basic matrix operations are as follows: a + b a m + b m A + B = a n + b n

More information

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0 4 Determinants The determinant of a square matrix is a scalar (i.e. an element of the field from which the matrix entries are drawn which can be associated to it, and which contains a surprisingly large

More information

1 procedure for determining the inverse matrix

1 procedure for determining the inverse matrix table of contents 1 procedure for determining the inverse matrix The inverse matrix of a matrix A can be determined only if the determinant of the matrix A is different from zero. The following procedures

More information

a 11 a 12 a 11 a 12 a 13 a 21 a 22 a 23 . a 31 a 32 a 33 a 12 a 21 a 23 a 31 a = = = = 12

a 11 a 12 a 11 a 12 a 13 a 21 a 22 a 23 . a 31 a 32 a 33 a 12 a 21 a 23 a 31 a = = = = 12 24 8 Matrices Determinant of 2 2 matrix Given a 2 2 matrix [ ] a a A = 2 a 2 a 22 the real number a a 22 a 2 a 2 is determinant and denoted by det(a) = a a 2 a 2 a 22 Example 8 Find determinant of 2 2

More information

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02) Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 206, v 202) Contents 2 Matrices and Systems of Linear Equations 2 Systems of Linear Equations 2 Elimination, Matrix Formulation

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

SPRING OF 2008 D. DETERMINANTS

SPRING OF 2008 D. DETERMINANTS 18024 SPRING OF 2008 D DETERMINANTS In many applications of linear algebra to calculus and geometry, the concept of a determinant plays an important role This chapter studies the basic properties of determinants

More information

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignment 8 Fall 2016 [10] 1. Find the determinant by reducing to triangular form for the following matrices. 0 1 2 (a) A = 2 1 4. ANS: We perform the Gaussian Elimination on A by the following

More information

MATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns.

MATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. MATRICES After studying this chapter you will acquire the skills in knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. List of

More information

MATH 211 review notes

MATH 211 review notes MATH 211 review notes Notes written by Mark Przepiora 1 Determinants 1. Let A = 3 1 1 2 1 2 5 2 1 (a) Compute det(a). Solution: To find the determinant, we expand along the first row. det(a) = 2 1 1 2

More information

Matrices. In this chapter: matrices, determinants. inverse matrix

Matrices. In this chapter: matrices, determinants. inverse matrix Matrices In this chapter: matrices, determinants inverse matrix 1 1.1 Matrices A matrix is a retangular array of numbers. Rows: horizontal lines. A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a

More information

1 Matrices and Systems of Linear Equations

1 Matrices and Systems of Linear Equations Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 207, v 260) Contents Matrices and Systems of Linear Equations Systems of Linear Equations Elimination, Matrix Formulation

More information

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants THE ALGEBRA OF DETERMINANTS 1. Determinants We have already defined the determinant of a 2 2 matrix: det = ad bc. We ve also seen that it s handy for determining when a matrix is invertible, and when it

More information

(f + g)(s) = f(s) + g(s) for f, g V, s S (cf)(s) = cf(s) for c F, f V, s S

(f + g)(s) = f(s) + g(s) for f, g V, s S (cf)(s) = cf(s) for c F, f V, s S 1 Vector spaces 1.1 Definition (Vector space) Let V be a set with a binary operation +, F a field, and (c, v) cv be a mapping from F V into V. Then V is called a vector space over F (or a linear space

More information

Inverses and Determinants

Inverses and Determinants Engineering Mathematics 1 Fall 017 Inverses and Determinants I begin finding the inverse of a matrix; namely 1 4 The inverse, if it exists, will be of the form where AA 1 I; which works out to ( 1 4 A

More information