ECE606: Solid State Devices Lecture 22 MOScap Frequency Response MOSFET I-V Characteristics

Size: px
Start display at page:

Download "ECE606: Solid State Devices Lecture 22 MOScap Frequency Response MOSFET I-V Characteristics"

Transcription

1 EE66: olid tate evices Lecture 22 MOcap Frequency Response MOFET I- haracteristics erhard Klimeck Background 2. mall signal capacitances 3. Large signal capacitance 4. Intermediate ummary 5. ub-threshold (depletion) current 6. uper-threshold, inversion current 7. onclusion Outline Ref: ec. 6.4 of F 2

2 Topic Map Equilibrium mall signal Large ignal ircuits iode chottky BJT/HBT MOAP 3 mall ignal Equivalent ircuit ate p semiconductor is small (only tunelling current) J J / o Low khz frequency High frequency For insulated devices, consider only majority carrier junction capacitance J 4

3 mall ignal Equivalent ircuit ate p semiconductor is small (only tunelling current) J J / o Low khz frequency High frequency For insulated devices, consider only majority carrier junction capacitance J 5 rey: gate Red: oxide Blue: inversion reen: depletion Junction apacitance + ~ - + υ sinωt dq d p-i Q = ψ = d ( Q ) d O d dψ d Q d Q ( ) ( ) = + O = + O 6

4 Junction apacitance O = + O which we already understand! d ( Q ) dψ ( ) Q ψ s is not fixed Remember the Qs vs phi_s figure we mentioned in the previous lecture 7 efinition of m for later use ( ) m = + O body effect coefficient ( ) m = + κ x κ W O T W T depends on the voltage in practice:. m.4 ψ ψ O O O = + m 8

5 Outline. Background 2. mall signal capacitances 3. Large signal capacitance 4. Intermediate ummary 5. ub-threshold (depletion) current 6. uper-threshold, inversion current 7. onclusion Ref: ec. 6.4 of F 9 J u n c t i o n a p a c i t a n c e in accumulation κ ε ox j, acc x κ sε = W o s, acc j, acc s, acc o + s, acc acc + Q -Q + Q W acc / o Low frequency Arrows is the charge induced by small signal Two blue arrow Two red arrow s These two capacitors are in series

6 Junction apacitance in depletion j, dep = = + + = s o s + s κ ε x κ ε W s = o + δ + Q -Q 2 qn AW qn AW = x + κoε 2κ sε First term is the drops on oxide econd term is band bending / o Low frequency κo W = + κ x s δ Junction capacitance in inversion + Q > T Exposed Acceptor s -Q Electron s κ ε s j, inv x j, inv κ ε = W o inv s inv o + inv inv / o Time to generate inversion charge. ms to µs Low frequency 2

7 Equivalent Oxide Thickness Q i = ( ) T = = < o inv j, inv o inv + o / ox Low frequency o κoε o = x κ ε i nv κ sε o W inv κ ε = + Winv > x ox O = ox O EOTelec xo EOT e le c κ sεo Equivalent oxide thickness - electrical O 3 High frequency curve at inversion κ ε s j, inv x High Frequency W T T / o Low frequency High frequency - TH The red region contribute to the, as if it is still in depletion What about high frequency part of the curve? 4

8 Response Time > T ielectric Relaxation σ τ = κ ε s RH Recombination-eneration 2 np ni ni R = τ ( p + p ) + τ ( n + n ) τ + τ n p n p Ref. Lecture no. 5 5 High frequency response in MO- Low Frequency High Frequency W T W T - / o Low frequency - High frequency 6

9 Ideal vs. Real - haracteristics Blue dot: Flat band voltage / o / o Red dot: Threshold voltage 7 Outline. Background 2. mall signal capacitances 3. Large signal capacitance 4. Intermediate ummary 5. ub-threshold (depletion) current 6. uper-threshold, inversion current 7. onclusion Ref: ec. 6.4 of F 8

10 Topic Map Equilibrium mall signal Large ignal ircuits iode chottky BJT/HBT MO 9 Large ignal eep epletion W dm ρ(x) W dm j, dep s = = + κ s ox W + κ s x o = + δ (even beyond threshold) / o - For large signal, the green do not have time to response; continue to deplete. mall signal Klimeck there EE66 is Fall green 22 notes because adopted from of Alam the bias builds it. N A x - Low frequency High frequency 2 N A

11 Relaxation from eep epletion / ox Low frequency epending on the measurement frequency, it will either merge with low-freq. or high-freq. curve. High frequency eep depletion low frequency ρ(x) High frequency ρ(x) ρ(x) W dm W dm W dm N A x - - x - N A 2 Ideal vs. Real - haracteristics Flat band voltage / o / o Real case ideal Threshold voltage If the signal rise slower, it will be closer to ideal case 22

12 Low or High frequency? n + -i n + -i typically observe hifrequency p-i = n i 2τ p-i typically observe low-frequency No deep-depletion as well What happens if I shine light on a MO capacitor? 23 Intermediate ummary ) ince current flow through the oxide is small, we are primarily interested in the junction capacitance of the MO-capacitor. 2) High frequency of MO- is very different than lowfrequency -. 3) In MOFET, we only see low frequency response. 4) eep depletion is an important consideration for MO-capacitor that does not happen in MOFETs. 24

13 Topic Map Equilibrium mall signal Large ignal ircuits iode chottky BJT/HBT MOAP MOFET 25 Outline. Background 2. mall signal capacitances 3. Large signal capacitance 4. Intermediate ummary 5. ub-threshold (depletion) current 6. uper-threshold, inversion current 7. onclusion Ref: ec. 6.4 of F 26

14 ubthreshold Region ( < th ) E E n+ n+ p n y No voltages What happens with a gate bias? Remember this is a 2 device! Back-gate grounded => fixed potential Looks like 2 pn junctions In 2 not MOcap as discussed before with surface psi_s 27 ubthreshold Region ( < th ) n W inv Q Q 2 W I = q log I n qww Q Q L 2 inv ch n = q W Win v Lch N n L N ch 2 i A 2 i A qψ sβ ( e ) q / ( β m e ) High injection E E y ubthreshold lope =>6m/dec Ψ s or /m m = body coefficient typically.~.4 28

15 ubthreshold Region ( < th ) n Q Q 2 E E 29 Recall the definition of body coefficient (m) ( ) m = + O Body Effect oefficient ( ) m = + κ x κ W O T ψ O in practice:. m.4 m O ψ = O + 3

16 Outline. Background 2. mall signal capacitances 3. Large signal capacitance 4. Intermediate ummary 5. ub-threshold (depletion) current 6. uper-threshold, inversion current 7. onclusion Ref: ec. 6.4 of F 3 Post-Threshold MO urrent ( > th ) I W = eff L µ ch Q i ( ) d Formula overview derivation to follow ) quare Law 2) Bulk harge 3) implified Bulk harge [ ] Q ( ) = ) i T 4) Exact (Pao-ah or Pierret-hields) i T ( φ + ) 2qε 2 in A B Q ( ) 2 i = FB ψ B O Q ( ) = ) [ m ] 32

17 Effect of ate Bias W W M n+ n+ P B y BI > T 2ψ B No source-drain bias ated doped or p-mo with adjacent n + region a) gate biased at flat-band b) gate biased in inversion A. rove, Physics of emiconductor evices, The Effect of rain Bias 2 band diagram for an n-mofet a) device b) equilibrium (flat band) c) equilibrium (ψ > ) d) non-equilibrium with and > applied epletion very different in source and drain side Alam ate voltage EE-66 must ensure 9channel formation=> LARE 34 M. ze, Physics of emiconductor evices, 98 and Pao and ah. F N

18 Effect of a Reverse Bias at rain W W M R R R > T ( R ) BI + R ψ = 2ψ B + R ated doped or p-mo with adjacent, reverse-biased n + region a) gate biased at flat-band b) gate biased in depletion c) gate biased in inversion A. rove, Physics of emiconductor evices, Inversion harge in the hannel Q = ( ) n+ n+ P B i ox th + qn ( W ( ) W ( = ) ) A T T = = = > B > > B 36

19 Inversion harge at one point in hannel B th qn AWT ( = ) = 2φF ox * th qn AWT ( ) = ( 2φF + ) ox ( W ) W = ) * qn A T ( T ( ) th = th + ox Q * i = ox( th ) 37 Approximations for Inversion harge ( ) Q = ( ) + qn W ( ) W ( = ) i O th A T T ( 2φ + ) κ ε ( φ ) = ( ) O th + 2qκ ε on A 2q on 2 B A B Approximations: Q ( ) i ox th Q ( m ) i ox th quare law approximation implified bulk charge approximation 38

20 The MOFET = > n+ n+ P F n = F p = E F B F n = F p q F n increasingly negative from source to drain (reverse bias increases from source to drain) 39 Elements of quare-law Theory > y A : E y << E x [ ] Q ( y) = m ( y) i ox th 4

21 Another view of hannel Potential ource rain N+ N+ P-doped x F P F P F N F N F P F N E E F E x 4 d J = Q µ E = Q µ dy d J2 = Q2 µ E2 = Q2 µ dy d J3 = Q3 µ E3 = Q3 µ dy d J4 = Q4 µ E4 = Q4 µ dy Jidy = µ i =, N i =, N J µ dy = ( m ) d i =, N Q d i ox th 2 ox = ( th ) Lch µ J m Q quare Law Theory > Q Q 2 Q 3 Q 4 42

22 quare Law or implified Bulk harge Theory 2 µ ox I = W ( th ) m Lch 2 di * = = ( th ) m, sat = ( th ) m d I AT = ( T )/ m W µ o I = 2mL ( ) 2 T ch 2 µ ox J = ( th ) m Lch 2 W I = µ ( ) L o T 43 Why does the curve roll over? I W µ o I = 2mL ( ) 2 T ch AT = ( T )/ m Q ( m ) i ox th > Q loss of inversion Expression Klimeck is EE66 only Fall 22 valid notes for adopted voltages from Alam up to pinch-off 44

23 Linear Region (Low ) I W I = µ ( ) o T Lch = R H lope gives mobility small Actual Mobility degradation at high ubthreshold onduction T Intercept gives T an get T also from - 45 ummary ) MOFET differs from MOAP in that the field from the / contacts now causes a current to flow. 2) Two regimes, diffusion-dominated ubthreshold and drift-dominated super-threshold characteristics, define the I - - characteristics of a MOFET. 3) The simple bulk charge theory allows calculation of drain currents and provide many insights, but there are important limitations of the theory as well. 46

ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities

ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities ECE66: Solid State evices Lecture 3 MOSFET I- Characteristics MOSFET non-idealities Gerhard Klimeck gekco@purdue.edu Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified

More information

ECE606: Solid State Devices Lecture 24 MOSFET non-idealities

ECE606: Solid State Devices Lecture 24 MOSFET non-idealities EE66: Solid State Devices Lecture 24 MOSFET non-idealities Gerhard Klimeck gekco@purdue.edu Outline ) Flat band voltage - What is it and how to measure it? 2) Threshold voltage shift due to trapped charges

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

ECE 340 Lecture 39 : MOS Capacitor II

ECE 340 Lecture 39 : MOS Capacitor II ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS Capacitance-Voltage Analysis Things you should know when you leave Key Questions What are the effects

More information

Lecture 22 Field-Effect Devices: The MOS Capacitor

Lecture 22 Field-Effect Devices: The MOS Capacitor Lecture 22 Field-Effect Devices: The MOS Capacitor F. Cerrina Electrical and Computer Engineering University of Wisconsin Madison Click here for link to F.C. homepage Spring 1999 0 Madison, 1999-II Topics

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Outline 1. Overview of MOS electrostatics under bias 2. Depletion regime 3. Flatband 4. Accumulation regime

More information

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn ) The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max = - φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:

More information

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions.  Resistive.  Saturation.  Subthreshold (next class) ESE370: ircuitlevel Modeling, Design, and Optimization for Digital Systems Lec 7: September 20, 2017 MOS Transistor Operating Regions Part 1 Today! PN Junction! MOS Transistor Topology! Threshold! Operating

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5 Semiconductor Devices C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5 Global leader in environmental and industrial measurement Wednesday 3.2. afternoon Tour around facilities & lecture

More information

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1 Lecture 010 4430 Review I (12/29/01) Page 0101 LTUR 010 4430 RVIW I (RAIN: HLM hap. 1) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught in 4430 2.) Insure

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM. INEL 6055 - Solid State Electronics ECE Dept. UPRM 20th March 2006 Definitions MOS Capacitor Isolated Metal, SiO 2, Si Threshold Voltage qφ m metal d vacuum level SiO qχ 2 E g /2 qφ F E C E i E F E v qφ

More information

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with

More information

Long-channel MOSFET IV Corrections

Long-channel MOSFET IV Corrections Long-channel MOSFET IV orrections Three MITs of the Day The body ect and its influence on long-channel V th. Long-channel subthreshold conduction and control (subthreshold slope S) Scattering components

More information

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section Announcements EE0 - Fall 00 Microelectronic evices and Circuits ecture 7 Homework, due today Homework due net week ab this week Reading: Chapter MO Transistor ecture Material ast lecture iode currents

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Transistors - a primer

Transistors - a primer ransistors - a primer What is a transistor? Solid-state triode - three-terminal device, with voltage (or current) at third terminal used to control current between other two terminals. wo types: bipolar

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Barbow (Chapter 8), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and, therefore, its current-carrying

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

ECE321 Electronics I

ECE321 Electronics I EE31 Electronics I Lecture 8: MOSET Threshold Voltage and Parasitic apacitances Payman Zarkesh-Ha Office: EE Bldg. 3B Office hours: Tuesday :-3:PM or by appointment E-mail: payman@ece.unm.edu Slide: 1

More information

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005 6.12 Microelectronic Devices and Circuits Fall 25 Lecture 8 1 Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oide Semiconductor Structure (cont.) Contents: October 4, 25 1. Overview

More information

The Three terminal MOS structure. Semiconductor Devices: Operation and Modeling 115

The Three terminal MOS structure. Semiconductor Devices: Operation and Modeling 115 The Three terminal MOS structure 115 Introduction MOS transistor two terminal MOS with another two opposite terminal (back to back of inversion layer). Theses two new terminal make the current flow if

More information

Lecture 2 Thin Film Transistors

Lecture 2 Thin Film Transistors Lecture 2 Thin Film Transistors 1/60 Announcements Homework 1/4: Will be online after the Lecture on Tuesday October 2 nd. Total of 25 marks. Each homework contributes an equal weight. All homework contributes

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Lecture 17 Field-Effect Transistors 2

Lecture 17 Field-Effect Transistors 2 Lecture 17 Field-Effect Transistors chroder: Chapters, 4, 6 1/57 Announcements Homework 4/6: Is online now. ue Monday May 1st at 10:00am. I will return it the following Monday (8 th May). Homework 5/6:

More information

MOS Capacitors ECE 2204

MOS Capacitors ECE 2204 MOS apacitors EE 2204 Some lasses of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. Metal-Semiconductor Field

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

BJT - Mode of Operations

BJT - Mode of Operations JT - Mode of Operations JTs can be modeled by two back-to-back diodes. N+ P N- N+ JTs are operated in four modes. HO #6: LN 251 - JT M Models Page 1 1) Forward active / normal junction forward biased junction

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th MOSFET Id-Vd curve Saturation region I DS Transfer curve Vd=1V V Th V G 1 0 < V GS < V T V GS > V T V Gs >V T & Small V D > 0 I DS WQ inv WC v WC i V V VDS V V G i T G n T L n I D g V D (g conductance

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

Extensive reading materials on reserve, including

Extensive reading materials on reserve, including Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material EE-Fall 7 igital Integrated Circuits MO Transistor Lecture MO Transistor Model Announcements Review: hat is a Transistor? Lab this week! Lab next week Homework # is due Thurs. Homework # due next Thurs.

More information

EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of MOSFET. MOS Capacitor. Metal-Oxide-Semiconductor (MOS) Capacitor

EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of MOSFET. MOS Capacitor. Metal-Oxide-Semiconductor (MOS) Capacitor EE105 - Spring 007 Microelectronic Device and ircuit Metal-Oide-Semiconductor (MOS) apacitor Lecture 4 MOS apacitor The MOS tructure can be thought of a a parallel-plate capacitor, with the top plate being

More information

MOSFETs - An Introduction

MOSFETs - An Introduction Chapter 17. MOSFETs An Introduction Sung June Kim kimsj@snu.ac.kr http://helios.snu.ac.kr CONTENTS Qualitative Theory of Operation Quantitative I Relationships Subthreshold Swing ac Response Qualitative

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

MOS Devices and Circuits

MOS Devices and Circuits hapter 3 Microelectronics and emiconductor Materials MO Devices and ircuits Prepared by Dr. Lim oo King 0 Jan 011 hapter 3 MO Devices and ircuits... 97 3.0 Introduction... 97 3.1 MO apacitor... 97 3.1.1

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

an introduction to Semiconductor Devices

an introduction to Semiconductor Devices an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor -

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Lecture 16 The pn Junction Diode (III)

Lecture 16 The pn Junction Diode (III) Lecture 16 The pn Junction iode (III) Outline I V Characteristics (Review) Small signal equivalent circuit model Carrier charge storage iffusion capacitance Reading Assignment: Howe and Sodini; Chapter

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 4: Physics of Semiconductor iodes Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: pzarkesh.unm.edu Slide: 1 Review of Last

More information

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka

More information

MENA9510 characterization course: Capacitance-voltage (CV) measurements

MENA9510 characterization course: Capacitance-voltage (CV) measurements MENA9510 characterization course: Capacitance-voltage (CV) measurements 30.10.2017 Halvard Haug Outline Overview of interesting sample structures Ohmic and schottky contacts Why C-V for solar cells? The

More information

Choice of V t and Gate Doping Type

Choice of V t and Gate Doping Type Choice of V t and Gate Doping Type To make circuit design easier, it is routine to set V t at a small positive value, e.g., 0.4 V, so that, at V g = 0, the transistor does not have an inversion layer and

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

Lecture #25. Due in class (5 PM) on Thursday May 1 st. 20 pt penalty for late submissions, accepted until 5 PM on 5/8

Lecture #25. Due in class (5 PM) on Thursday May 1 st. 20 pt penalty for late submissions, accepted until 5 PM on 5/8 ecture #5 Design Project: Due in class (5 PM on hursday May 1 st 0 pt penalty for late submissions, accepted until 5 PM on 5/8 Your J design does not need to meet the performance specifications when and

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

Electrical Characteristics of MOS Devices

Electrical Characteristics of MOS Devices Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Threshold-voltage

More information

FIELD EFFECT TRANSISTORS:

FIELD EFFECT TRANSISTORS: Chapter 10 FIEL EFFECT TRANITOR: MOFET The following overview gures describe important issues related to the most important electronic device. NUMBER OF ACTIVE EVICE/CHIP MOORE' LAW Gordon Moore, co-founder

More information

Lecture 8. MOS (Metal Oxide Semiconductor) Structures

Lecture 8. MOS (Metal Oxide Semiconductor) Structures Lecture 8 MOS (Metal Oie Semiconuctor) Structure In thi lecture you will learn: The funamental et of equation governing the behavior of MOS capacitor Accumulation, Flatban, Depletion, an Inverion Regime

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOFET Modeling CMO Process Flow Review from Last Lecture Limitations of Existing Models V V OUT V OUT V?? V IN V OUT V IN V IN V witch-level Models V imple square-law Model Logic ate

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 emiconductor Device Physics Lecture 8 http://zitompul.wordpress.com 2 0 1 3 emiconductor Device Physics 2 M Contacts and chottky Diodes 3 M Contact The metal-semiconductor (M) contact plays a very important

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis. June 26, 2004 oal of this chapter Chapter 2 MO Transistor Theory oonchuay upmonchai Integrated esign Application Research (IAR) Laboratory June 16th, 2004; Revised June 16th, 2005 q Present intuitive understanding

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 Review: implified CMO Inverter Process CPE/EE 7, CPE 7 VLI esign I L: MO Transistor cut line epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic (

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

The Intrinsic Silicon

The Intrinsic Silicon The Intrinsic ilicon Thermally generated electrons and holes Carrier concentration p i =n i ni=1.45x10 10 cm-3 @ room temp Generally: n i = 3.1X10 16 T 3/2 e -1.21/2KT cm -3 T= temperature in K o (egrees

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

Metal-Semiconductor Interfaces. Metal-Semiconductor contact. Schottky Barrier/Diode. Ohmic Contacts MESFET. UMass Lowell Sanjeev Manohar

Metal-Semiconductor Interfaces. Metal-Semiconductor contact. Schottky Barrier/Diode. Ohmic Contacts MESFET. UMass Lowell Sanjeev Manohar Metal-Semiconductor Interface Metal-Semiconductor contact Schottky Barrier/iode Ohmic Contact MESFET UMa Lowell 10.5 - Sanjeev evice Building Block UMa Lowell 10.5 - Sanjeev UMa Lowell 10.5 - Sanjeev Energy

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007

More information

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well. nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well. nmosfet Schematic 0 y L n + source n + drain depletion region polysilicon gate x z

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization EE 483 emiconductor Device and Material haracterization Dr. Alan Doolittle chool of Electrical and omputer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS Name: CARLETON UNIVERSITY SELECTE FINAL EXAMINATION QUESTIONS URATION: 6 HOURS epartment Name & Course Number: ELEC 3908 Course Instructors: S. P. McGarry Authorized Memoranda: Non-programmable calculators

More information

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices C-305: Fall 2017 Metal Oxide Semiconductor Devices Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel lectrical and Computer ngineering Purdue

More information

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band

More information

Lecture 22 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 2, 2007

Lecture 22 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 2, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 22-1 Lecture 22 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 2, 2007 Contents: 1. Ideal MOS structure

More information

MOSFET Models. The basic MOSFET model consist of: We will calculate dc current I D for different applied voltages.

MOSFET Models. The basic MOSFET model consist of: We will calculate dc current I D for different applied voltages. MOSFET Model The baic MOSFET model conit of: junction capacitance CBS and CB between ource (S) to body (B) and drain to B, repectively. overlap capacitance CGO and CGSO due to gate (G) to S and G to overlap,

More information

Lecture 7 MOS Capacitor

Lecture 7 MOS Capacitor EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 7 MOS Capacitor Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

MOS: Metal-Oxide-Semiconductor

MOS: Metal-Oxide-Semiconductor hapter 5 MOS apacitor MOS: Metal-Oxide-Semiconductor metal ate ate SiO 2 N + SiO 2 N + Si body P-body MOS capacitor MOS tranitor Semiconductor Device for Interated ircuit (. Hu) Slide 5-1 hapter 5 MOS

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

The Gradual Channel Approximation for the MOSFET:

The Gradual Channel Approximation for the MOSFET: 6.01 - Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

Semiconductor Integrated Process Design (MS 635)

Semiconductor Integrated Process Design (MS 635) Semiconductor Integrated Process Design (MS 635) Instructor: Prof. Keon Jae Lee - Office: 응용공학동 #4306, Tel: #3343 - Email: keonlee@kaist.ac.kr Lecture: (Tu, Th), 1:00-2:15 #2425 Office hour: Tues & Thur

More information

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching Content MIS Capacitor Accumulation Depletion Inversion MOS CAPACITOR 1 MIS Capacitor Metal Oxide C ox p-si C s Components of a capacitance model for the MIS structure 2 MIS Capacitor- Accumulation ρ( x)

More information

Schottky diodes. JFETs - MESFETs - MODFETs

Schottky diodes. JFETs - MESFETs - MODFETs Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs - MESFETs - MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different

More information