Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2


 Marcus Mitchell
 4 years ago
 Views:
Transcription
1 Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of the mass and velocty: p mv The terms momentum and lnear momentum wll be used nterchangeably n the text Lnear omentum, cont Lnear momentum s a vector quantty Its drecton s the same as the drecton of the velocty The dmensons of momentum are L/T The SI unts of momentum are kg m / s omentum can be expressed n component form: Newton Law and omentum Newton s Second Law can be used to relate the momentum of a partcle to the resultant force actng on t dv dmv dp Fma m dt dt dt wth constant mass p x = m v x p y = m v y p z = m v z Conservaton of Lnear omentum Whenever two or more partcles n an solated system nteract, the total momentum of the system remans constant The momentum of the system s conserved, not necessarly the momentum of an ndvdual partcle Ths also tells us that the total momentum of an solated system equals ts ntal momentum Conservaton of omentum, 2 Conservaton of momentum can be expressed mathematcally n varous ways p total = p 1 + p 2 = constant p 1 + p 2= p 1f + p2f In component form, the total momenta n each drecton are ndependently conserved p x = p fx p y = p fy p z = p fz Conservaton of momentum can be appled to systems wth any number of partcles Ths law s the mathematcal representaton of the momentum verson of the solated system model 1
2 Conservaton of omentum, Archer Example The archer s standng on a frctonless surface (ce) Approaches: Newton s Second Law no, no nformaton about F or a Energy approach no, no nformaton about work or energy omentum yes Archer Example, 2 Conceptualze The arrow s fred one way and the archer recols n the opposte drecton Categorze omentum Let the system be the archer wth bow (partcle 1) and the arrow (partcle 2) There are no external forces n the xdrecton, so t s solated n terms of momentum n the xdrecton Analyze Total momentum before releasng the arrow s 0 Archer Example, 3 Analyze, cont. The total momentum after releasng the arrow s p1 f p2f 0 Fnalze The fnal velocty of the archer s negatve Indcates he moves n a drecton opposte the arrow Archer has much hgher mass than arrow, so velocty s much lower Impulse and omentum d From Newton s Second Law, F p dt Solvng for dp gves dp F dt Integratng to fnd the change n momentum over some tme nterval t f p p p Fdt I f t The ntegral s called the mpulse,, of the I force actng on an object over t Impulseomentum Theorem Ths equaton expresses the mpulsemomentum theorem: The mpulse of the force actng on a partcle equals the change n the momentum of the partcle p I Ths s equvalent to Newton s Second Law ore About Impulse Impulse s a vector quantty The magntude of the mpulse s equal to the area under the forcetme curve The force may vary wth tme Dmensons of mpulse are L / T Impulse s not a property of the partcle, but a measure of the change n momentum of the partcle 2
3 Impulse, Fnal The mpulse can also be found by usng the tme averaged force I Ft Ths would gve the same mpulse as the tmevaryng force does Impulseomentum: Crash Test Example Categorze Assume force exerted by wall s large compared wth other forces Gravtatonal and normal forces are perpendcular and so do not effect the horzontal momentum Can apply mpulse approxmaton Collsons Example 1 Collsons may be the result of drect contact The mpulsve forces may vary n tme n complcated ways Ths force s nternal to the system Observe the varatons n the actve fgure omentum s conserved Collsons Example 2 The collson need not nclude physcal contact between the objects There are stll forces between the partcles Ths type of collson can be analyzed n the same way as those that nclude physcal contact Types of Collsons In an elastc collson, momentum and knetc energy are conserved Perfectly elastc collsons occur on a mcroscopc level In macroscopc collsons, only approxmately elastc collsons actually occur Generally some energy s lost to deformaton, sound, etc. In an nelastc collson, knetc energy s not conserved, although momentum s stll conserved If the objects stck together after the collson, t s a perfectly nelastc collson Collsons, cont In an nelastc collson, some knetc energy s lost, but the objects do not stck together Elastc and perfectly nelastc collsons are lmtng cases, most actual collsons fall n between these two types omentum s conserved n all collsons 3
4 Perfectly Inelastc Collsons Snce the objects stck together, they share the same velocty after the collson mv m v m m v f Clcker Queston In a perfectly nelastc onedmensonal collson between two movng objects, what condton alone s necessary so that the fnal knetc energy of the system s zero after the collson? A. It s not possble B. The objects must have momenta wth the same magntude but opposte drectons. C. The objects must have the same mass. D. The objects must have the same velocty. E. The objects must have the same speed, wth velocty vectors n opposte drectons. Elastc Collsons Both momentum and knetc energy are conserved m1v1 m2v2 m1v1 f m2v2f m1v1 m2v m1v1 f m2v2f 2 2 Elastc Collsons, cont Typcally, there are two unknowns to solve for and so you need two equatons The knetc energy equaton can be dffcult to use Wth some algebrac manpulaton, a dfferent equaton can be used v 1 v 2 = v 1f + v 2f Ths equaton, along wth conservaton of momentum, can be used to solve for the two unknowns It can only be used wth a onedmensonal, elastc collson between two objects Elastc Collsons, fnal Example of some specal cases m 1 = m 2 the partcles exchange veloctes When a very heavy partcle colldes headon wth a very lght one ntally at rest, the heavy partcle contnues n moton unaltered and the lght partcle rebounds wth a speed of about twce the ntal speed of the heavy partcle When a very lght partcle colldes headon wth a very heavy partcle ntally at rest, the lght partcle has ts velocty reversed and the heavy partcle remans approxmately at rest Collson Example Ballstc Pendulum Conceptualze Observe dagram Categorze Isolated system of projectle and block Perfectly nelastc collson the bullet s embedded n the block of wood omentum equaton wll have two unknowns Use conservaton of energy from the pendulum to fnd the velocty just after the collson Then you can fnd the speed of the bullet 4
5 TwoDmensonal Collsons The momentum s conserved n all drectons Use subscrpts for Identfyng the object Indcatng ntal or fnal values The velocty components If the collson s elastc, use conservaton of knetc energy as a second equaton Remember, the smpler equaton can only be used for onedmensonal stuatons TwoDmensonal Collson, example Partcle 1 s movng at velocty v 1 and partcle 2 s at rest In the xdrecton, the ntal momentum s m 1 v 1 In the ydrecton, the ntal momentum s 0 Clcker Queston What s the drecton of moton of v 1 m 2 after the collson? A. upleft B. uprght C. downleft D. downrght E. Rght only TwoDmensonal Collson, example cont After the collson, the momentum n the xdrecton s m 1 v 1f cos m 2 v 2f cos After the collson, the momentum n the ydrecton s m 1 v 1f sn m 2 v 2f sn If the collson s elastc, apply the knetc energy equaton Ths s an example of a glancng collson TwoDmensonal Collson Example Conceptualze See pcture Choose East to be the postve xdrecton and North to be the postve y drecton Categorze Ignore frcton odel the cars as partcles The collson s perfectly nelastc The cars stck together The Center of ass There s a specal pont n a system or object, called the center of mass, that moves as f all of the mass of the system s concentrated at that pont The system wll move as f an external force were appled to a sngle partcle of mass located at the center of mass s the total mass of the system 5
6 Center of ass, Coordnates The coordnates of the center of mass are mx xc my y C mz zc s the total mass of the system Use the actve fgure to observe effect of dfferent masses and postons Center of ass, Extended Object Smlar analyss can be done for an extended object Consder the extended object as a system contanng a large number of partcles Snce partcle separaton s very small, t can be consdered to have a constant mass dstrbuton Center of ass, poston The center of mass n three dmensons can be located by ts poston vector, r C For a system of partcles, 1 rc mr r s the poston of the th partcle, defned by r x ˆ y ˆjzkˆ For an extended object, 1 rc dm r Fndng Center of ass, Irregularly Shaped Object Suspend the object from one pont The suspend from another pont The ntersecton of the resultng lnes s the center of mass Center of Gravty Each small mass element of an extended object s acted upon by the gravtatonal force The net effect of all these forces s equvalent to the effect of a sngle force g actng through a pont called the center of gravty If g s constant over the mass dstrbuton, the center of gravty concdes wth the center of mass Center of ass, Rod Conceptualze Fnd the center of mass of a rod of mass and length L The locaton s on the x axs (or y C = z C = 0) Categorze Analyss problem Analyze Use equaton for x cm x C = L / 2 6
7 Velocty and omentum of a System of Partcles The velocty of the center of mass of a system of partcles s drc 1 C m dt v v The momentum can be expressed as v C m v p p tot The total lnear momentum of the system equals the total mass multpled by the velocty of the center of mass Acceleraton of the Center of ass The acceleraton of the center of mass can be found by dfferentatng the velocty wth respect to tme dvc 1 ac m dt a Forces In a System of Partcles The acceleraton can be related to a force ac F If we sum over all the nternal forces, they cancel n pars and the net force on the system s caused only by the external forces Newton s Second Law for a System of Partcles Snce the only forces are external, the net external force equals the total mass of the system multpled by the acceleraton of the center of mass: Fext ac The center of mass of a system of partcles of combned mass moves lke an equvalent partcle of mass would move under the nfluence of the net external force on the system Impulse and omentum of a System of Partcles The mpulse mparted to the system by external forces s I F dt d v p ext C tot The total lnear momentum of a system of partcles s conserved f no net external force s actng on the system v p constant when F 0 C tot ext oton of the Center of ass, Example A projectle s fred nto the ar and suddenly explodes Wth no exploson, the projectle would follow the dotted lne After the exploson, the center of mass of the fragments stll follows the dotted lne, the same parabolc path the projectle would have followed wth no exploson Use the actve fgure to observe a varety of explosons 7
8 Deformable Systems To analyze the moton of a deformable system, use Conservaton of Energy and the Impulseomentum Theorem Esystem T K U 0 I p F dt mv tot ext If the force s constant, the ntegral can be easly evaluated Deformable System (Sprng) Example Conceptualze See fgure Push on left block, t moves to rght, sprng compresses At any gven tme, the blocks are generally movng wth dfferent veloctes The blocks oscllate back and forth wth respect to the center of mass Sprng Example, cont Categorze Non solated system Work s beng done on t by the appled force It s a deformable system The appled force s constant, so the acceleraton of the center of mass s constant odel as a partcle under constant acceleraton Analyze Apply mpulsemomentum Sprng Example, fnal Analyze, cont. Fnd energes Fnalze Answers do not depend on sprng length, sprng constant, or tme nterval Solve for v cm Rocket Propulson The operaton of a rocket depends upon the law of conservaton of lnear momentum as appled to a system of partcles, where the system s the rocket plus ts ejected fuel Rocket Propulson, 2 The ntal mass of the rocket plus all ts fuel s + m at tme t and speed v The ntal momentum of the system s p = ( + m) v 8
9 Rocket Propulson, 3 At some tme t + t, the rocket s mass has been reduced to and an amount of fuel, m has been ejected The rocket s speed has ncreased by v Rocket Propulson, 4 Because the gases are gven some momentum when they are ejected out of the engne, the rocket receves a compensatng momentum n the opposte drecton Therefore, the rocket s accelerated as a result of the push from the exhaust gases In free space, the center of mass of the system (rocket plus expelled gases) moves unformly, ndependent of the propulson process Rocket Propulson, 5 The basc equaton for rocket propulson s vf v veln f The ncrease n rocket speed s proportonal to the speed of the escape gases (v e ) So, the exhaust speed should be very hgh The ncrease n rocket speed s also proportonal to the natural log of the rato / f So, the rato should be as hgh as possble, meanng the mass of the rocket should be as small as possble and t should carry as much fuel as possble Thrust The thrust on the rocket s the force exerted on t by the ejected exhaust gases dv d thrust ve dt dt The thrust ncreases as the exhaust speed ncreases The thrust ncreases as the rate of change of mass ncreases The rate of change of the mass s called the burn rate 9
Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum
Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum
More informationGround Rules. PC1221 Fundamentals of Physics I. Linear Momentum, cont. Linear Momentum. Lectures 17 and 18. Linear Momentum and Collisions
PC Fundamentals of Physcs I Lectures 7 and 8 Lnear omentum and Collsons Dr Tay Seng Chuan Ground Rules Swtch off your handphone and pager Swtch off your laptop computer and keep t No talkng whle lecture
More informationPhysics 207: Lecture 20. Today s Agenda Homework for Monday
Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More informationEMU Physics Department.
Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q D Collsons
More informationPhysics 101 Lecture 9 Linear Momentum and Collisions
Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum D Collsons
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationMomentum. Momentum. Impulse. Momentum and Collisions
Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally
More informationStudy Guide For Exam Two
Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 0106 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force
More informationChapter 9. Linear Momentum and Collisions
Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.
More informationPhysics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1
Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. MultPartcle
More informationLinear Momentum. Center of Mass.
Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html
More informationPhysics 105: Mechanics Lecture 13
Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy
More informationPHYS 1443 Section 002
PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS
More informationCenter of Mass and Linear Momentum
PH 2212A Fall 2014 Center of Mass and Lnear Momentum Lectures 1415 Chapter 9 (Hallday/Resnck/Walker, Fundamentals of Physcs 9 th edton) 1 Chapter 9 Center of Mass and Lnear Momentum In ths chapter we
More informationPhysics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum
Recall that there was ore to oton than just spee A ore coplete escrpton of oton s the concept of lnear oentu: p v (8.) Beng a prouct of a scalar () an a vector (v), oentu s a vector: p v p y v y p z v
More informationPhysics 207 Lecture 13. Lecture 13
Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem
More informationChapter 11 Angular Momentum
Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle
More informationFirst Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.
Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act
More informationChapter 3 and Chapter 4
Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy
More informationWeek 6, Chapter 7 Sect 15
Week 6, Chapter 7 Sect 15 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force
More informationWeek 9 Chapter 10 Section 15
Week 9 Chapter 10 Secton 15 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,
More informationPeriod & Frequency. Work and Energy. Methods of Energy Transfer: Energy. WorkKE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?
Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F
More informationPage 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Nonconstant forces
Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Nonconstant forces Imulsemomentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs
More informationPhysics 181. Particle Systems
Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system
More informationLecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics
Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn
More informationONEDIMENSIONAL COLLISIONS
Purpose Theory ONEDIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n onedmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal
More informationPhysics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.
Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays
More informationSpring 2002 Lecture #13
4450 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallelas Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the mdterm
More informationLinear Momentum. Center of Mass.
Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl
More informationMomentum and Collisions. Rosendo Physics 12B
Moentu and Collsons Rosendo Physcs B Conseraton o Energy Moentu Ipulse Conseraton o Moentu D Collsons D Collsons The Center o Mass Lnear Moentu and Collsons February 7, 08 Conseraton o Energy D E =
More informationChapter 8. Potential Energy and Conservation of Energy
Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and nonconservatve forces Mechancal Energy Conservaton of Mechancal
More informationRotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa
Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.
More informationSo far: simple (planar) geometries
Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector
More informationConservation of Angular Momentum = "Spin"
Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts
More informationPhysics 111: Mechanics Lecture 11
Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 RgdBody Rotaton
More informationAngular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004
Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a
More informationLinear Momentum and Collisions
Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I  [kg m/s] I t t Fdt I = area under curve bounded by t axs ImulseMomentum Theorem
More informationLecture 09 Systems of Particles and Conservation of Linear Momentum
Lecture 09 Systes o Partcles and Conseraton o Lnear oentu 9. Lnear oentu and Its Conseraton 9. Isolated Syste lnear oentu: P F dp dt d( dt d dt a solated syste F ext 0 dp dp F, F dt dt dp dp d F F 0, 0
More informationPhysic 231 Lecture 14
Physc 3 Lecture 4 Man ponts o last lecture: Ipulses: orces that last only a short te Moentu p IpulseMoentu theore F t p ( ) IpulseMoentu theore ptot, p, p, p, p, ptot, Moentu and external orces F p ext
More informationPHYS 705: Classical Mechanics. Newtonian Mechanics
1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]
More informationChapter 8: Potential Energy and The Conservation of Total Energy
Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. Dmenson F x d U( x) dx
More informationA Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph
A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular
More information10/9/2003 PHY Lecture 11 1
Announcements 1. Physc Colloquum today The Physcs and Analyss of Nonnvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular
More informationChapter 11 Torque and Angular Momentum
Chapter Torque and Angular Momentum I. Torque II. Angular momentum  Defnton III. Newton s second law n angular form IV. Angular momentum  System of partcles  Rgd body  Conservaton I. Torque  Vector
More informationElastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.
Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday
More informationPart C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis
Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta
More informationPhysics 207 Lecture 6
Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and noncontact) Frcton (a external force that opposes moton) Free
More informationWork is the change in energy of a system (neglecting heat transfer). To examine what could
Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes
More informationPhysics 2A Chapter 9 HW Solutions
Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng
More informationPhysics 2A Chapter 3 HW Solutions
Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C
More information10/23/2003 PHY Lecture 14R 1
Announcements. Remember  Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 94 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth
More informationPhysics 2A Chapters 6  Work & Energy Fall 2017
Physcs A Chapters 6  Work & Energy Fall 017 These notes are eght pages. A quck summary: The workenergy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on
More informationChapter 3. r r. Position, Velocity, and Acceleration Revisited
Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector
More informationChapter 07: Kinetic Energy and Work
Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.
More informationCHAPTER 10 ROTATIONAL MOTION
CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n xy plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The
More informationFrom Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle.
From Newton s 2 nd Law: F ma d dm ( ) m dt dt F d dt The tme rate of change of the lnear momentum of a artcle s equal to the net force actng on the artcle. Conseraton of Momentum +x The toy rocket n dee
More informationPHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014
PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 WorkKnetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o
More information= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]
Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:
More informationPhysics 240: Worksheet 30 Name:
(1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy
More informationEnergy and Energy Transfer
Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1
More information10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 913, 1516
0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 93, 56. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03  Lecture 7 0/4/03
More informationMoments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.
Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these
More informationPhysics 5153 Classical Mechanics. Principle of Virtual Work1
P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal
More information11. Dynamics in Rotating Frames of Reference
Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons
More informationConservation Laws (Collisions) Phys101 Lab  04
Conservaton Laws (Collsons) Phys101 Lab  04 1.Objectves The objectves o ths experment are to expermentally test the valdty o the laws o conservaton o momentum and knetc energy n elastc collsons. 2. Theory
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne
More informationRigid body simulation
Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum
More informationPY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg
PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays
More informationNEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).
EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles
More informationDynamics of Rotational Motion
Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =
More informationPhysics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4
Physcs 6 ecture 6 Conservaton o Angular Momentum SJ 7 th Ed.: Chap.4 Comparson: dentons o sngle partcle torque and angular momentum Angular momentum o a system o partcles o a rgd body rotatng about a xed
More informationGravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)
Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng
More informationtotal If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.
Lesson 0: Collsons, Rotatonal netc Energy, Torque, Center o Graty (Sectons 7.8 Last te we used ewton s second law to deelop the pulseoentu theore. In words, the theore states that the change n lnear oentu
More informationCHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS
CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton
More informationwhere v means the change in velocity, and t is the
1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more
More informationPhysics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints
Physcs 106a, Caltech 11 October, 2018 Lecture 4: Constrants, Vrtual Work, etc. Many, f not all, dynamcal problems we want to solve are constraned: not all of the possble 3 coordnates for M partcles (or
More informationEMU Physics Department
Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Moton 4.1 Forces and Interactons Fundamental forces. There are four types of fundamental forces: electromagnetc, weak, strong and gravtatonal. The frst two had been successfully
More informationChapter 7. Potential Energy and Conservation of Energy
Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy
More informationChapter 11: Angular Momentum
Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For
More informationSCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ
s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSEDBOOK
More informationPhysics 115. Molecular motion and temperature Phase equilibrium, evaporation
Physcs 115 General Physcs II Sesson 9 Molecular moton and temperature Phase equlbrum, evaporaton R. J. Wlkes Emal: phy115a@u.washngton.edu Home page: http://courses.washngton.edu/phy115a/ 4/14/14 Physcs
More informationPHYS 1441 Section 002 Lecture #16
PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Nonconservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!
More informationPhysics 207: Lecture 27. Announcements
Physcs 07: ecture 7 Announcements akeup labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What
More informationSpring Force and Power
Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems
More informationEN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st
EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to
More informationENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15
NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound
More informationCHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)
CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: mgk F 1 x O
More informationin state i at t i, Initial State E = E i
Physcs 01, Lecture 1 Today s Topcs n More Energy and Work (chapters 7 & 8) n Conservatve Work and Potental Energy n Sprng Force and Sprng (Elastc) Potental Energy n Conservaton of Mechanc Energy n Exercse
More informationPHYSICS 203NYA05 MECHANICS
PHYSICS 03NYA05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN  ST. LAWRENCE 790 NÉRÉETREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/
More informationSTATISTICAL MECHANICS
STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgdbody rotaton and elastc / sound waves Use smplfyng assumptons KE of
More informationHow does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?
Experent 9 Conseraton o Lnear Moentu  Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how
More informationPhysics 111 Final Exam, Fall 2013, Version A
Physcs 111 Fnal Exam, Fall 013, Verson A Name (Prnt): 4 Dgt ID: Secton: Honors Code Pledge: For ethcal and farness reasons all students are pledged to comply wth the provsons of the NJIT Academc Honor
More informationRotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles
Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =
More informationLAGRANGIAN MECHANICS
LAGRANGIAN MECHANICS Generalzed Coordnates State of system of N partcles (Newtonan vew): PE, KE, Momentum, L calculated from m, r, ṙ Subscrpt covers: 1) partcles N 2) dmensons 2, 3, etc. PE U r = U x 1,
More informationPHYSICS 231 Review problems for midterm 2
PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October
More informationˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)
7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to
More informationπ e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m
Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The bruteforce method s to ntegrate by parts but there s a nce trck. The followng ntegrals
More informationPHYS 1443 Section 003 Lecture #17
PHYS 144 Secton 00 ecture #17 Wednesda, Oct. 9, 00 1. Rollng oton of a Rgd od. Torque. oment of Inerta 4. Rotatonal Knetc Energ 5. Torque and Vector Products Remember the nd term eam (ch 6 11), onda, Nov.!
More information