History of Mathematics

Size: px
Start display at page:

Download "History of Mathematics"

Transcription

1 History of Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer A: Fermat: Beginning of modern number theory (2)

2 Fermat s little theorem Given a prime p, and any geometric progression 1, a, a 2,..., p must divide some number a n 1 for which n divides p 1. If N is any multiple of the smallest n for which this is so, p divides also a N 1. 1

3 Fermat s little theorem Given a prime p, and any geometric progression 1, a, a 2,..., p must divide some number a n 1 for which n divides p 1. If N is any multiple of the smallest n for which this is so, p divides also a N 1. This can only be true when a is not divisible by p. Consider the mod p residues of 1, a, a 2,..., Each of these residues is a positive integer < p. Therefore, two of them must be the same. If h is the smallest positive integer for which there is a greater integer k satisfying a k and a h have the same residue, then a h (a k h 1) is divisible by p, and a k h 1 is divisible by p. 2

4 Fermat s little theorem Given a prime p, and any geometric progression 1, a, a 2,..., p must divide some number a n 1 for which n divides p 1. If N is any multiple of the smallest n for which this is so, p divides also a N 1. 3

5 Fermat s little theorem Given a prime p, and any geometric progression 1, a, a 2,..., p must divide some number a n 1 for which n divides p 1. If N is any multiple of the smallest n for which this is so, p divides also a N 1. This can only be true when a is not divisible by p. Consider the mod p residues of 1, a, a 2,..., Each of these residues is a positive integer < p. Therefore, two of them must be the same. If h is the smallest positive integer for which there is a greater integer k satisfying a k and a h have the same residue, then a h (a k h 1) is divisible by p, and a k h 1 is divisible by p. Next, we show that a p 1 1 is divisible by p. We offer two proofs. 4

6 Fermat s little theorem (modern proof) If p is a prime, then for every integer a not divisible by p, a p 1 1 mod p. Proof. If p is prime, the nonzero residues 1, 2,..., p 1 form a group under multiplication. Therefore, if a is an integer not divisible by p, the residues a 1, a 2,..., a(p 1) form a permutation of 1, 2,..., p 1. Therefore, (a 1)(a 2) (a(p 1)) 1 2 (p 1) mod p, Since each of 1, 2,..., p 1 is prime to p, canceling these common factors, we have a p 1 1 mod p. 5

7 Fermat s little theorem (Inductive proof) Given a prime p, and any geometric progression 1, a, a 2,..., p must divide some number a n 1 for which n divides p 1. If N is any multiple of the smallest n for which this is so, p divides also a N 1. This is true for a = 2: 2 p = (1 + 1) p = 1 + ( ) p + 1 ( ) ( ) p p p 1 Each of the binomial coefficients ( ) p p(p 1) (p k + 1) = k 1 2 k is an integer divisible by p. Therefore, 2 p 2 is divisible by p, so is 2 p

8 Fermat s little theorem (inductive proof) For every integer a, (a + 1) p = a p + ( ) p a p Therefore, (a + 1) p a p 1 is divisible by p, or ((a + 1) p (a + 1)) (a p a) is divisible by p. ( ) ( ) p p a p a p 1 Since 2 p 2 is divisible by p, it follows that a p a is divisible by p for every positive integer a 2, (certainly including a = 1 as well). 7

9 Fermat s little theorem (inductive proof) For every integer a, (a + 1) p = a p + ( ) p a p Therefore, (a + 1) p a p 1 is divisible by p, or ((a + 1) p (a + 1)) (a p a) is divisible by p. ( ) ( ) p p a p a p 1 Since 2 p 2 is divisible by p, it follows that a p a is divisible by p for every positive integer a 2, (certainly including a = 1 as well). Therefore, if a is not divisible by p, then a p 1 1 mod p. 8

10 Fermat s little theorem Given a prime p, and any geometric progression 1, a, a 2,..., p must divide some number a n 1 for which n divides p 1. If N is any multiple of the smallest n for which this is so, p divides also a N 1. Now, if n is the smallest number for which a n 1 is divisible by p, and if a N 1 is also divisible by p, then N must be divisible by n. 9

11 Fermat s little theorem Given a prime p, and any geometric progression 1, a, a 2,..., p must divide some number a n 1 for which n divides p 1. If N is any multiple of the smallest n for which this is so, p divides also a N 1. Now, if n is the smallest number for which a n 1 is divisible by p, and if a N 1 is also divisible by p, then N must be divisible by n. Suppose N is not divisible by n. Write N = nb + r for 0 < r < n. a N 1 = a nb+r 1 = (a n ) b a r 1 a r 1 mod p. Since a N 1 is divisible by p, so is a r 1 for 0 < r < n. This contradicts the minimality of n. 10

12 Application to primality test Let k be an odd prime. Every prime factor of M k := 2 k 1 is of the form 2kr

13 Application to primality test Let k be an odd prime. Every prime factor of M k := 2 k 1 is of the form 2kr + 1. Proof. Let p be a prime factor of 2 k 1. Since k is prime, it is the smallest n for which 2 n 1 is divisible by p. Now, 2 p 1 1 is also divisible by p. Therefore, p 1 is divisible by k, and indeed by 2k since p 1 is even. Therefore, there is an integer r for which p 1 = 2kr, and p = 2kr

14 Testing Mersenne primes Let k be an odd prime. Every prime factor of M k := 2 k 1 is of the form 2kr + 1. Example 1: M 11 = = The only prime divisors are of the form 22r + 1. We need only test prime divisors < It is enough to check p = 23 (with r = 1). Now, indeed, M 11 = 2047 = Note that the other prime factor is 89 =

15 Testing Mersenne primes Let k be an odd prime. Every prime factor of M k := 2 k 1 is of the form 2kr + 1. Example 1: M 11 = = The only prime divisors are of the form 22r + 1. We need only test prime divisors < It is enough to check p = 23 (with r = 1). Now, indeed, M 11 = 2047 = Note that the other prime factor is 89 = Example 2: M 17 = = We need only check prime divisor < < 363 which are of the form 34r + 1. There are only 4 such primes: 103, 137, 239, and 307. None of these divides , which is therefore a prime. 14

16 Infinite descent: area of Pythagorean triangle There is no right angled triangle in numbers whose area is a square. Infinite descent: If there is a triangle whose area is a square, then from such a triangle, it is possible to construct a smaller triangle whose area is also a square, and so on, which is impossible. 15

17 Antecedent of Fermat s theorem There is no right angled triangle in numbers whose area is a square. Bachet s edition of Diophantus Arithmetica contains a supplement to Book VI, in which Bachet gives a necessary and sufficient condition for a rational number A to be the area of a right triangle: (2A) 2 + K 4 = square for some integer K. Bachet asks whether it is possible for a right triangle to have an area equal to a square. In the margin at the end of his copy of Arithmetica, Fermat gave his proof. 16

18 Fermat s proof by infinite descent There is no right angled triangle in numbers whose area is a square. Proof. Suppose there is one such integer right triangle. We may assume it primitive, i.e., its sidelengths are a = m 2 n 2, n = 2mn, c = m 2 + n 2 for relatively prime integers m, n of different parity. Its area A = mn(m 2 n 2 ) is a square. 17

19 Fermat s proof by infinite descent There is no right angled triangle in numbers whose area is a square. Proof. Suppose there is one such integer right triangle. We may assume it primitive, i.e., its sidelengths are a = m 2 n 2, n = 2mn, c = m 2 + n 2 for relatively prime integers m, n of different parity. Its area A = mn(m 2 n 2 ) is a square. Now, no two of m, n, m 2 n 2 share common divisors. Therefore, each of these is a square. Write m = p 2 and n = q 2. Then m 2 n 2 = p 4 q 4 is also a square. 18

20 Fermat s proof by infinite descent There is no right angled triangle in numbers whose area is a square. Proof. Suppose there is one such integer right triangle. We may assume it primitive, i.e., its sidelengths are a = m 2 n 2, n = 2mn, c = m 2 + n 2 for relatively prime integers m, n of different parity. Its area A = mn(m 2 n 2 ) is a square. Now, no two of m, n, m 2 n 2 share common divisors. Therefore, each of these is a square. Write m = p 2 and n = q 2. Then m 2 n 2 = p 4 q 4 is also a square. Note that p 4 q 4 = (p 2 + q 2 )(p 2 q 2 ) and that p 2 + q 2 and p 2 q 2 do not have common divisors, we must have p 2 + q 2 = r 2 and p 2 q 2 = s 2 for some integers r and s. 19

21 Fermat s proof by infinite descent There is no right angled triangle in numbers whose area is a square. Proof. Suppose there is one such integer right triangle. We may assume it primitive, i.e., its sidelengths are a = m 2 n 2, n = 2mn, c = m 2 + n 2 for relatively prime integers m, n of different parity. Its area A = mn(m 2 n 2 ) is a square. Now, no two of m, n, m 2 n 2 share common divisors. Therefore, each of these is a square. Write m = p 2 and n = q 2. Then m 2 n 2 = p 4 q 4 is also a square. Note that p 4 q 4 = (p 2 + q 2 )(p 2 q 2 ) and that p 2 + q 2 and p 2 q 2 do not have common divisors, we must have p 2 + q 2 = r 2 and p 2 q 2 = s 2 for some integers r and s. From these, 2p 2 = r 2 + s 2 and (2p) 2 = 2(r 2 + s 2 ) = (r + s) 2 + (r s) 2. In other words, (r s, r + s, 2p) is an integer right triangle, and its area is 1 2 (r + s)(r s) = 1 2 (r2 s 2 ) = q 2. This is a smaller triangle since q 2 = n < mn(m 2 n 2 ) = A. 20

22 Fermat s Last Theorem If n 3, the equation x n + y n = z n has no solution in nonzero integers x, y, z. Origin: Fermat s remark on Diophantus II.8. To divide a given square number into two squares. On the other hand it is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or generally any power except a square into two powers of the same exponent. I have discovered a truly marvelous proof of this, which, however, the margin is not large enough to contain. 21

23 FLT for n = 4 There is no solution of x 4 + y 4 = z 4 in nonzero integers. Suppose, to the contrary, that there are positive integers x, y, z satisfying x 4 + y 4 = z 4. Then z 4 y 4 = x 4. Consider the right triangle with sides z 4 y 4, 2z 2 y 2 and z 4 + y 4. This has area z 2 y 2 (z 4 y 4 ) = x 4 y 2 z 2 = (x 2 yz) 2, contradicting the fact that the area of a right triangle cannot be a square. 22

24 Brief history of the Fermat Last Theorem Fermat s proof for n = 4. n = 3: Euler gave two proofs in 1760 and n = 5: P. G. Lejeune Dirichlet ( ) and A. M. Legendre ( ) in By 1985, known to be true for n 125, 000. G. Faltings (1954 ) proved in 1983 that for each exponent n 3, the equation x n + y n = z n has at most a finite number of solution in x, y, z in which x, y, z have no common divisors. 23

25 Brief history of the Fermat Last Theorem Fermat s proof for n = 4. n = 3: Euler gave two proofs in 1760 and n = 5: P. G. Lejeune Dirichlet ( ) and A. M. Legendre ( ) in By 1985, known to be true for n 125, 000. G. Faltings (1954 ) proved in 1983 that for each exponent n 3, the equation x n + y n = z n has at most a finite number of solution in x, y, z in which x, y, z have no common divisors. In June 1993, Andrew Wiles (1953 ) of Princeton University announced a proof of Fermat s Last Theorem. But a gap was discovered later in the proof. With the help of Richard Taylor, Wiles proof of the Fermat Last Theorem was finally completed in September 1994, and published in the Annals of Mathematics,

26 Further contributions and challenges Fermat s two-square theorem (proved by Euler): Every prime number of the form 4k + 1 can be written uniquely as a sum of two squares. For examples, 5 = , 13 = , 17 = , 29 = Every prime number of the form 3k + 1 can be written as x 2 + 3y 2. Every prime number of the form 8k + 1 or 8k + 3 can be written as x 2 + 2y 2. Find a cube which, added to its proper divisors, gives a square. For example: = 400 = Find a square which, added to its proper divisors, gives a cube: σ(x 2 ) x 2 = y 3. Example given by Frenicle ( ): x = , y =

Introduction to Number Theory

Introduction to Number Theory Introduction to Number Theory Paul Yiu Department of Mathematics Florida Atlantic University Spring 017 March 7, 017 Contents 10 Pythagorean and Heron triangles 57 10.1 Construction of Pythagorean triangles....................

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

Fermat s Last Theorem for Regular Primes

Fermat s Last Theorem for Regular Primes Fermat s Last Theorem for Regular Primes S. M.-C. 22 September 2015 Abstract Fermat famously claimed in the margin of a book that a certain family of Diophantine equations have no solutions in integers.

More information

On the Cardinality of Mersenne Primes

On the Cardinality of Mersenne Primes On the Cardinality of Mersenne Primes Garimella Rama Murthy, Associate Professor, International Institute of Information Technology (IIIT), Gachibowli, Hyderabad-32,AP,INDIA ABSTRACT In this research paper,

More information

ENTRY NUMBER THEORY. [ENTRY NUMBER THEORY] Authors: Oliver Knill: 2003 Literature: Hua, introduction to number theory.

ENTRY NUMBER THEORY. [ENTRY NUMBER THEORY] Authors: Oliver Knill: 2003 Literature: Hua, introduction to number theory. ENTRY NUMBER THEORY [ENTRY NUMBER THEORY] Authors: Oliver Knill: 2003 Literature: Hua, introduction to number theory ABC conjecture [ABC conjecture] If a,b,c are positive integers, let N(a,b,c) be the

More information

Introduction to Number Theory

Introduction to Number Theory INTRODUCTION Definition: Natural Numbers, Integers Natural numbers: N={0,1,, }. Integers: Z={0,±1,±, }. Definition: Divisor If a Z can be writeen as a=bc where b, c Z, then we say a is divisible by b or,

More information

EXAMPLES OF MORDELL S EQUATION

EXAMPLES OF MORDELL S EQUATION EXAMPLES OF MORDELL S EQUATION KEITH CONRAD 1. Introduction The equation y 2 = x 3 +k, for k Z, is called Mordell s equation 1 on account of Mordell s long interest in it throughout his life. A natural

More information

Heron triangles which cannot be decomposed into two integer right triangles

Heron triangles which cannot be decomposed into two integer right triangles Heron triangles which cannot be decomposed into two integer right triangles Paul Yiu Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, Florida 33431 yiu@fau.edu 41st Meeting

More information

EXAMPLES OF MORDELL S EQUATION

EXAMPLES OF MORDELL S EQUATION EXAMPLES OF MORDELL S EQUATION KEITH CONRAD 1. Introduction The equation y 2 = x 3 +k, for k Z, is called Mordell s equation 1 on account of Mordell s long interest in it throughout his life. A natural

More information

Exploring Number Theory via Diophantine Equations

Exploring Number Theory via Diophantine Equations Exploring Number Theory via Diophantine Equations Department of Mathematics Colorado College Fall, 2009 Outline Some History Linear Pythagorean Triples Introduction to Continued Fractions Elementary Problems

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

Shi Feng Sheng Danny Wong

Shi Feng Sheng Danny Wong Exhibit C A Proof of the Fermat s Last Theorem Shi Feng Sheng Danny Wong Abstract: Prior to the Diophantine geometry, number theory (or arithmetic) was to study the patterns of the numbers and elementary

More information

Math Topics in Algebra Course Notes: A Proof of Fermat s Last Theorem. Spring 2013

Math Topics in Algebra Course Notes: A Proof of Fermat s Last Theorem. Spring 2013 Math 847 - Topics in Algebra Course Notes: A Proof of Fermat s Last Theorem Spring 013 January 6, 013 Chapter 1 Background and History 1.1 Pythagorean triples Consider Pythagorean triples (x, y, z) so

More information

MAS 6217 (Fall 2017) Number Theory and Cryptography (Yiu) Class Notes, October 10. Construction of Pythagorean triangles By a Pythagorean triangle we

MAS 6217 (Fall 2017) Number Theory and Cryptography (Yiu) Class Notes, October 10. Construction of Pythagorean triangles By a Pythagorean triangle we MAS 617 (Fall 017) Number Theory and Cryptography (Yiu) Class Notes, October 10. Construction of Pythagorean triangles By a Pythagorean triangle we mean a right triangle whose side lengths are integers.

More information

Discrete Logarithms. Let s begin by recalling the definitions and a theorem. Let m be a given modulus. Then the finite set

Discrete Logarithms. Let s begin by recalling the definitions and a theorem. Let m be a given modulus. Then the finite set Discrete Logarithms Let s begin by recalling the definitions and a theorem. Let m be a given modulus. Then the finite set Z/mZ = {[0], [1],..., [m 1]} = {0, 1,..., m 1} of residue classes modulo m is called

More information

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION Predrag Terzic Podgorica, Montenegro pedja.terzic@hotmail.com Abstract. We present deterministic primality test for Fermat numbers, F

More information

Fermat s Marvelous Proofs for Fermat s Last Theorem. Abstract

Fermat s Marvelous Proofs for Fermat s Last Theorem. Abstract Fermat s Marvelous Proofs for Fermat s Last Theorem Chun-Xuan, Jiang Institute for Basic Research Palm Harbor, FL468-577, USA and P. O. Box 94, Beijing 00854, China jiangchunxuan@sohu.com Abstract Using

More information

An Elementary Proof Of Fermat s Last Theorem

An Elementary Proof Of Fermat s Last Theorem An Elementary Proof Of Fermat s Last Theorem Bezaliel Anotida Joshua July 22, 2015 ABSTRACT. In 1995, Princeton professor, Sir Andrew John Wiles, quenched the quest for a proof of Fermat s Last Theorem

More information

Elliptic Curves & Number Theory. R. Sujatha School of Mathematics TIFR

Elliptic Curves & Number Theory. R. Sujatha School of Mathematics TIFR Elliptic Curves & Number Theory R. Sujatha School of Mathematics TIFR Aim: To explain the connection between a simple ancient problem in number theory and a deep sophisticated conjecture about Elliptic

More information

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have Exercise 23. (a) Solve the following congruences: (i) x 101 7 (mod 12) Answer. We have φ(12) = #{1, 5, 7, 11}. Since gcd(7, 12) = 1, we must have gcd(x, 12) = 1. So 1 12 x φ(12) = x 4. Therefore 7 12 x

More information

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively 6 Prime Numbers Part VI of PJE 6.1 Fundamental Results Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively D (p) = { p 1 1 p}. Otherwise

More information

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II CS 5319 Advanced Discrete Structure Lecture 9: Introduction to Number Theory II Divisibility Outline Greatest Common Divisor Fundamental Theorem of Arithmetic Modular Arithmetic Euler Phi Function RSA

More information

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a "

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a Math 4161 Dr. Franz Rothe December 9, 2013 13FALL\4161_fall13f.tex Name: Use the back pages for extra space Final 70 70 Problem 1. The following assertions may be true or false, depending on the choice

More information

Chapter 8. Introduction to Number Theory

Chapter 8. Introduction to Number Theory Chapter 8 Introduction to Number Theory CRYPTOGRAPHY AND NETWORK SECURITY 1 Index 1. Prime Numbers 2. Fermat`s and Euler`s Theorems 3. Testing for Primality 4. Discrete Logarithms 2 Prime Numbers 3 Prime

More information

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1 MATH 4400 SOLUTIONS TO SOME EXERCISES 1.1.3. If a b and b c show that a c. 1. Chapter 1 Solution: a b means that b = na and b c that c = mb. Substituting b = na gives c = (mn)a, that is, a c. 1.2.1. Find

More information

= 5 2 and = 13 2 and = (1) = 10 2 and = 15 2 and = 25 2

= 5 2 and = 13 2 and = (1) = 10 2 and = 15 2 and = 25 2 BEGINNING ALGEBRAIC NUMBER THEORY Fermat s Last Theorem is one of the most famous problems in mathematics. Its origin can be traced back to the work of the Greek mathematician Diophantus (third century

More information

THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES

THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES Abstract. This article reports the occurrence of binary quadratic forms in primitive Pythagorean triangles

More information

FERMAT S LAST THEOREM

FERMAT S LAST THEOREM FERMAT S LAST THEOREM REVISITED AGAIN Colin Newton 8/0/08 0 FERMAT S LAST THEOREM When Fermat wrote a note in the margin of his coy of Bachet s Arithmetica to the effect that he had a marvellous roof that

More information

7. Prime Numbers Part VI of PJE

7. Prime Numbers Part VI of PJE 7. Prime Numbers Part VI of PJE 7.1 Definition (p.277) A positive integer n is prime when n > 1 and the only divisors are ±1 and +n. That is D (n) = { n 1 1 n}. Otherwise n > 1 is said to be composite.

More information

Chapter 1. Number of special form. 1.1 Introduction(Marin Mersenne) 1.2 The perfect number. See the book.

Chapter 1. Number of special form. 1.1 Introduction(Marin Mersenne) 1.2 The perfect number. See the book. Chapter 1 Number of special form 1.1 Introduction(Marin Mersenne) See the book. 1.2 The perfect number Definition 1.2.1. A positive integer n is said to be perfect if n is equal to the sum of all its positive

More information

Proofs of the infinitude of primes

Proofs of the infinitude of primes Proofs of the infinitude of primes Tomohiro Yamada Abstract In this document, I would like to give several proofs that there exist infinitely many primes. 0 Introduction It is well known that the number

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

On Fermat s marginal note: a suggestion

On Fermat s marginal note: a suggestion On Fermat s marginal note: a suggestion Nico F. Benschop - Amspade Research - The Netherlands Annual Dutch Mathematics Congress N M C33 (U-Twente, Apr.1998) Abstract A suggestion is put forward regarding

More information

Primes. Rational, Gaussian, Industrial Strength, etc. Robert Campbell 11/29/2010 1

Primes. Rational, Gaussian, Industrial Strength, etc. Robert Campbell 11/29/2010 1 Primes Rational, Gaussian, Industrial Strength, etc Robert Campbell 11/29/2010 1 Primes and Theory Number Theory to Abstract Algebra History Euclid to Wiles Computation pencil to supercomputer Practical

More information

Perspectives of Mathematics

Perspectives of Mathematics Perspectives of Mathematics Module on Diophantine Equations and Geometry Fall 2004 Michael Stoll What is a diophantine equation? 1. Introduction and Examples Being diophantine is not so much a property

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z:

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z: NUMBER SYSTEMS Number theory is the study of the integers. We denote the set of integers by Z: Z = {..., 3, 2, 1, 0, 1, 2, 3,... }. The integers have two operations defined on them, addition and multiplication,

More information

Indtroduction to Diophantine Equations

Indtroduction to Diophantine Equations Indtroduction to Diophantine Equations Qingyun Wang November 13, 2011 (In the very beginning, divide the class into 4 groups, we will constantly do some competions, and the winners will earn a certain

More information

4 PRIMITIVE ROOTS Order and Primitive Roots The Index Existence of primitive roots for prime modulus...

4 PRIMITIVE ROOTS Order and Primitive Roots The Index Existence of primitive roots for prime modulus... PREFACE These notes have been prepared by Dr Mike Canfell (with minor changes and extensions by Dr Gerd Schmalz) for use by the external students in the unit PMTH 338 Number Theory. This booklet covers

More information

CHAPTER V Fermat s last theorem

CHAPTER V Fermat s last theorem 5.1 Introduction. CHAPTER V Fermat s last theorem We discuss elementary methods approaches to Fermat s last theorem, in which the game is we do not use complex numbers. In this chapter we use methods available

More information

2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer.

2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer. CHAPTER 2 INTRODUCTION TO NUMBER THEORY ANSWERS TO QUESTIONS 2.1 A nonzero b is a divisor of a if a = mb for some m, where a, b, and m are integers. That is, b is a divisor of a if there is no remainder

More information

Numbers and their divisors

Numbers and their divisors Chapter 1 Numbers and their divisors 1.1 Some number theoretic functions Theorem 1.1 (Fundamental Theorem of Arithmetic). Every positive integer > 1 is uniquely the product of distinct prime powers: n

More information

ASSIGNMENT Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9.

ASSIGNMENT Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9. ASSIGNMENT 1 1. Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9. 2. (i) If d a and d b, prove that d (a + b). (ii) More generally,

More information

Elementary Number Theory

Elementary Number Theory Elementary Number Theory 21.8.2013 Overview The course discusses properties of numbers, the most basic mathematical objects. We are going to follow the book: David Burton: Elementary Number Theory What

More information

27 th Annual ARML Scrimmage

27 th Annual ARML Scrimmage 27 th Annual ARML Scrimmage Featuring: Howard County ARML Team (host) Baltimore County ARML Team ARML Team Alumni Citizens By Raymond Cheong May 23, 2012 Reservoir HS Individual Round (10 min. per pair

More information

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology.

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology. MATH 501 Discrete Mathematics Lecture 6: Number theory Prof. Dr. Slim Abdennadher, slim.abdennadher@guc.edu.eg German University Cairo, Department of Media Engineering and Technology 1 Number theory Number

More information

A Few Primality Testing Algorithms

A Few Primality Testing Algorithms A Few Primality Testing Algorithms Donald Brower April 2, 2006 0.1 Introduction These notes will cover a few primality testing algorithms. There are many such, some prove that a number is prime, others

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions 1. Find integers x and y such that 13x + 1y 1 SOLUTION: By the Euclidean algorithm: One can work backwards to obtain 1 1 13 + 2 13 6 2 + 1 1 13 6 2 13 6 (1 1 13) 7 13 6 1 Hence

More information

PRIME NUMBERS YANKI LEKILI

PRIME NUMBERS YANKI LEKILI PRIME NUMBERS YANKI LEKILI We denote by N the set of natural numbers: 1,2,..., These are constructed using Peano axioms. We will not get into the philosophical questions related to this and simply assume

More information

(Primes and) Squares modulo p

(Primes and) Squares modulo p (Primes and) Squares modulo p Paul Pollack MAA Invited Paper Session on Accessible Problems in Modern Number Theory January 13, 2018 1 of 15 Question Consider the infinite arithmetic progression Does it

More information

Number Theory. Henry Liu, 6 July 2007

Number Theory. Henry Liu, 6 July 2007 Number Theory Henry Liu, 6 July 007 1. Introduction In one sentence, number theory is the area of mathematics which studies the properties of integers. Some of the most studied subareas are the theories

More information

Gaussian integers. 1 = a 2 + b 2 = c 2 + d 2.

Gaussian integers. 1 = a 2 + b 2 = c 2 + d 2. Gaussian integers 1 Units in Z[i] An element x = a + bi Z[i], a, b Z is a unit if there exists y = c + di Z[i] such that xy = 1. This implies 1 = x 2 y 2 = (a 2 + b 2 )(c 2 + d 2 ) But a 2, b 2, c 2, d

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Fermat's Little Theorem: Proofs That Fermat Might Have Used Author(s): Bob Burn Source: The Mathematical Gazette, Vol. 86, No. 507 (Nov., 2002), pp. 415-422 Published by: The Mathematical Association Stable

More information

Elliptic Curves and Mordell s Theorem

Elliptic Curves and Mordell s Theorem Elliptic Curves and Mordell s Theorem Aurash Vatan, Andrew Yao MIT PRIMES December 16, 2017 Diophantine Equations Definition (Diophantine Equations) Diophantine Equations are polynomials of two or more

More information

School of Mathematics

School of Mathematics School of Mathematics Programmes in the School of Mathematics Programmes including Mathematics Final Examination Final Examination 06 22498 MSM3P05 Level H Number Theory 06 16214 MSM4P05 Level M Number

More information

MATH 152 Problem set 6 solutions

MATH 152 Problem set 6 solutions MATH 52 Problem set 6 solutions. Z[ 2] is a Euclidean domain (i.e. has a division algorithm): the idea is to approximate the quotient by an element in Z[ 2]. More precisely, let a+b 2, c+d 2 Z[ 2] (of

More information

Cryptography. Number Theory with AN INTRODUCTION TO. James S. Kraft. Lawrence C. Washington. CRC Press

Cryptography. Number Theory with AN INTRODUCTION TO. James S. Kraft. Lawrence C. Washington. CRC Press AN INTRODUCTION TO Number Theory with Cryptography James S Kraft Gilman School Baltimore, Maryland, USA Lawrence C Washington University of Maryland College Park, Maryland, USA CRC Press Taylor & Francis

More information

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

Contest Number Theory

Contest Number Theory Contest Number Theory Andre Kessler December 7, 2008 Introduction Number theory is one of the core subject areas of mathematics. It can be somewhat loosely defined as the study of the integers. Unfortunately,

More information

Basic Proof Examples

Basic Proof Examples Basic Proof Examples Lisa Oberbroeckling Loyola University Maryland Fall 2015 Note. In this document, we use the symbol as the negation symbol. Thus p means not p. There are four basic proof techniques

More information

Recreational Mathematics

Recreational Mathematics Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 2003 Chapters 5 8 Version 030630 Chapter 5 Greatest common divisor 1 gcd(a, b) as an integer combination of

More information

Proof of Beal s Conjecture

Proof of Beal s Conjecture Proof of Beal s Conjecture Stephen Marshall 26 Feb 14 Abstract: This paper presents a complete and exhaustive proof of the Beal Conjecture. The approach to this proof uses the Fundamental Theorem of Arithmetic

More information

Table of Contents. 2013, Pearson Education, Inc.

Table of Contents. 2013, Pearson Education, Inc. Table of Contents Chapter 1 What is Number Theory? 1 Chapter Pythagorean Triples 5 Chapter 3 Pythagorean Triples and the Unit Circle 11 Chapter 4 Sums of Higher Powers and Fermat s Last Theorem 16 Chapter

More information

Corollary 4.2 (Pepin s Test, 1877). Let F k = 2 2k + 1, the kth Fermat number, where k 1. Then F k is prime iff 3 F k 1

Corollary 4.2 (Pepin s Test, 1877). Let F k = 2 2k + 1, the kth Fermat number, where k 1. Then F k is prime iff 3 F k 1 4. Primality testing 4.1. Introduction. Factorisation is concerned with the problem of developing efficient algorithms to express a given positive integer n > 1 as a product of powers of distinct primes.

More information

5.2. Perfect Numbers Divisors of a natural number were covered in Section 5.1.

5.2. Perfect Numbers Divisors of a natural number were covered in Section 5.1. 5.2 Smith Numbers The mathematician Albert Wilansky, when phoning his brother-in-law, Mr. Smith, noticed an interesting property concerning Smith s phone number (493-7775). The number 4,937,775 is composite,

More information

Wilson s Theorem and Fermat s Little Theorem

Wilson s Theorem and Fermat s Little Theorem Wilson s Theorem and Fermat s Little Theorem Wilson stheorem THEOREM 1 (Wilson s Theorem): (p 1)! 1 (mod p) if and only if p is prime. EXAMPLE: We have (2 1)!+1 = 2 (3 1)!+1 = 3 (4 1)!+1 = 7 (5 1)!+1 =

More information

UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY

UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY ISAAC M. DAVIS Abstract. By associating a subfield of R to a set of points P 0 R 2, geometric properties of ruler and compass constructions

More information

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them.

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them. Fermat s Little Theorem Fermat s little theorem is a statement about primes that nearly characterizes them. Theorem: Let p be prime and a be an integer that is not a multiple of p. Then a p 1 1 (mod p).

More information

History of Mathematics Workbook

History of Mathematics Workbook History of Mathematics Workbook Paul Yiu Department of Mathematics Florida Atlantic University Last Update: April 7, 2014 Student: Spring 2014 Problem A1. Given a square ABCD, equilateral triangles ABX

More information

EULER S THEOREM KEITH CONRAD

EULER S THEOREM KEITH CONRAD EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If

More information

Pythagorean Triangles with Repeated Digits Different Bases

Pythagorean Triangles with Repeated Digits Different Bases arxiv:0908.3866v1 [math.gm] 6 Aug 009 Pythagorean Triangles with Repeated Digits Different Bases Habib Muzaffar Department of Mathematics International Islamic University Islamabad P.O. Box 144, Islamabad,

More information

Logic and Mathematics. 1. Lecture

Logic and Mathematics. 1. Lecture l211 Logic and Mathematics 1. Lecture Norbert PREINING preining@jaist.ac.jp www.preining.info/l211/index-en.html 2014-10-7 Self-introduction Logic and Mathematics Aims of the course Ideas and concepts

More information

Integer-sided equable shapes

Integer-sided equable shapes Integer-sided equable shapes Shapes with integer side lengths and with equal area and perimeter. Rectangles ab = (a + b) 1 = 1 a + 1 b Trapezia 6 8 14 1 4 3 0 Triangles 6 10 8 P = = 4 13 1 P = = 30 8 10

More information

12.2 Existence proofs: examples

12.2 Existence proofs: examples TOPIC 1: IMPOSSIBILITY AND EXISTENCE PROOFS Ref Sc american /gardner, 1.1 Mathematics is perhaps unique in that one may prove that certain situations are impossible. For example, it is not possible, using

More information

How to prove it (or not) Gerry Leversha MA Conference, Royal Holloway April 2017

How to prove it (or not) Gerry Leversha MA Conference, Royal Holloway April 2017 How to prove it (or not) Gerry Leversha MA Conference, Royal Holloway April 2017 My favourite maxim It is better to solve one problem in five different ways than to solve five problems using the same method

More information

Solutions to Practice Final

Solutions to Practice Final s to Practice Final 1. (a) What is φ(0 100 ) where φ is Euler s φ-function? (b) Find an integer x such that 140x 1 (mod 01). Hint: gcd(140, 01) = 7. (a) φ(0 100 ) = φ(4 100 5 100 ) = φ( 00 5 100 ) = (

More information

REGULAR TETRAHEDRA WHOSE VERTICES HAVE INTEGER COORDINATES. 1. Introduction

REGULAR TETRAHEDRA WHOSE VERTICES HAVE INTEGER COORDINATES. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXX, 2 (2011), pp. 161 170 161 REGULAR TETRAHEDRA WHOSE VERTICES HAVE INTEGER COORDINATES E. J. IONASCU Abstract. In this paper we introduce theoretical arguments for

More information

Summary Slides for MATH 342 June 25, 2018

Summary Slides for MATH 342 June 25, 2018 Summary Slides for MATH 342 June 25, 2018 Summary slides based on Elementary Number Theory and its applications by Kenneth Rosen and The Theory of Numbers by Ivan Niven, Herbert Zuckerman, and Hugh Montgomery.

More information

On Fermat s Last Theorem An Elementary Approach

On Fermat s Last Theorem An Elementary Approach On Fermat s Last Theorem An Elementary Approach Gang Li, 1,2,3 1 School of Geophysics and Information Technology China University of Geosciences (Beijing), Beijing 100083, China 2 Hansen Experimental Physics

More information

SIX PROOFS OF THE INFINITUDE OF PRIMES

SIX PROOFS OF THE INFINITUDE OF PRIMES SIX PROOFS OF THE INFINITUDE OF PRIMES ALDEN MATHIEU 1. Introduction The question of how many primes exist dates back to at least ancient Greece, when Euclid proved the infinitude of primes (circa 300

More information

Number Theory. Final Exam from Spring Solutions

Number Theory. Final Exam from Spring Solutions Number Theory. Final Exam from Spring 2013. Solutions 1. (a) (5 pts) Let d be a positive integer which is not a perfect square. Prove that Pell s equation x 2 dy 2 = 1 has a solution (x, y) with x > 0,

More information

Discrete Structures Lecture Primes and Greatest Common Divisor

Discrete Structures Lecture Primes and Greatest Common Divisor DEFINITION 1 EXAMPLE 1.1 EXAMPLE 1.2 An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

More information

Primes and Factorization

Primes and Factorization Primes and Factorization 1 A prime number is an integer greater than 1 with no proper divisors. The list begins 2, 3, 5, 7, 11, 13, 19,... See http://primes.utm.edu/ for a wealth of information about primes.

More information

. In particular if a b then N(

. In particular if a b then N( Gaussian Integers II Let us summarise what we now about Gaussian integers so far: If a, b Z[ i], then N( ab) N( a) N( b). In particular if a b then N( a ) N( b). Let z Z[i]. If N( z ) is an integer prime,

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is LARGE PRIME NUMBERS 1. Fermat Pseudoprimes Fermat s Little Theorem states that for any positive integer n, if n is prime then b n % n = b for b = 1,..., n 1. In the other direction, all we can say is that

More information

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS Math 40 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS WARNING: Remember, it s best to rely as little as possible on my solutions. Therefore, I urge you to try the problems on your

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

The Surprising Proofs

The Surprising Proofs The Surprising Proofs By Leszek W. Guła Lublin-POLAND lwgula@wp.pl May 30, June 12 13 and July 02 03, 2017 Abstract. The proof of the Fermat s Last Theorem. The proof of the theorem - For all and for all

More information

Twin primes are pairs of natural numbers (p, p + 2) such that both p and p + 2 are primes.

Twin primes are pairs of natural numbers (p, p + 2) such that both p and p + 2 are primes. SOLUTIONS TO QUIZ - MATH 170 - SUMMER SESSION I (2012) Name: INSTRUCTIONS: 1. The duration of this quiz is 1 hour - from 4:05 p.m. till 5:05 p.m. 2. No calculators, electronic watches, cellphones etc.

More information

God may not play dice with the universe, but something strange is going on with the prime numbers.

God may not play dice with the universe, but something strange is going on with the prime numbers. Primes: Definitions God may not play dice with the universe, but something strange is going on with the prime numbers. P. Erdös (attributed by Carl Pomerance) Def: A prime integer is a number whose only

More information

On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations

On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract We conjecture that there is at least one composite term in

More information

Number Theory. Jason Filippou UMCP. ason Filippou UMCP)Number Theory History & Definitions / 1

Number Theory. Jason Filippou UMCP. ason Filippou UMCP)Number Theory History & Definitions / 1 Number Theory Jason Filippou CMSC250 @ UMCP 06-08-2016 ason Filippou (CMSC250 @ UMCP)Number Theory History & Definitions 06-08-2016 1 / 1 Outline ason Filippou (CMSC250 @ UMCP)Number Theory History & Definitions

More information

Algebraic Number Theory and Representation Theory

Algebraic Number Theory and Representation Theory Algebraic Number Theory and Representation Theory MIT PRIMES Reading Group Jeremy Chen and Tom Zhang (mentor Robin Elliott) December 2017 Jeremy Chen and Tom Zhang (mentor Robin Algebraic Elliott) Number

More information

Number Theory Solutions Packet

Number Theory Solutions Packet Number Theory Solutions Pacet 1 There exist two distinct positive integers, both of which are divisors of 10 10, with sum equal to 157 What are they? Solution Suppose 157 = x + y for x and y divisors of

More information

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0).

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0). LARGE PRIME NUMBERS 1. Fast Modular Exponentiation Given positive integers a, e, and n, the following algorithm quickly computes the reduced power a e % n. (Here x % n denotes the element of {0,, n 1}

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations

Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9.1 Chapter 9 Objectives

More information