Permanent and Determinant

Size: px
Start display at page:

Download "Permanent and Determinant"

Transcription

1 Permanent and Determinant non-identical twins Avi Wigderson IAS, Princeton

2 Meet the twins F field, char(f) 2. X M n (F) matrix of variables X ij Det n (X) = σ Sn sgn(σ) i [n] X iσ(i) Per n (X) = σ Sn i [n] X iσ(i) Homogeneous, multi-linear, degree n polynomials on n 2 variables, with 0,±1 coefficients.

3 Meet the twins Det n (X) Per n (X) σ Sn sgn(σ) i [n] X iσ(i) σ Sn i [n] X iσ(i) Physics: Fermions Bosons Knots: Alexander polynomial Jones polynomial Linear Algebra Enumeration /Counting Uses: Geometry / Volume Statistical Mechanics Everywhere Comput. Complexity Counting: Spanning trees Matchings Planar matchings Everything Complexity: Easy Hard (?) Boolean: NC-complete #P-complete Arithmetic: VP-complete VNP-complete

4 Complexity classes Permanent Hard Easy Determinant NP P Efficient proof/verification Efficient computation

5 Completeness [Valiant] Arithmetic VNP VP Permenent [Toda] Hard Easy Determinant Boolean EXP PSPACE Exponential time Polynomial space #P[Feynman] Counting BQP efficient quantum computation Bounded alternation PH NP P NC L Efficient proof/verification Efficient computation Fast parallel computation Logarithmic space

6 Arithmetic Computation Computing formal polynomials

7 Arithmetic complexity basics + + f c X 5 + F field + f n variables, deg f <n c + + X i X j Xi c Formula L(f) formula size X i X j X i c Circuit S(f) Circuit size Thm[VSBR]: S(f) L(f) S(f) logn

8 Complexity of Det Thm[Strassen]: S(Det n ) n 3 Thm[Csansky]: L(Det n ) n logn (no division!) (OPEN: poly?) Thm[Valiant]: If L(f)=s, then there is a 2s 2s matrix M f of vars and constants, f=det M f Proof: Induction 1 1 f=g+h M g M h M f f=g h M g M h M f = M g + M h M f = M g M h Determinantal representations of polynomials M f x M X

9 VNP completeness of Per Def[Valiant]: An integer polynomial f Z[X 1, X n ] is in VNP if each coefficient is efficiently computable. Intuitively, VNP captures all explicit polynomials! Thm[Valiant]: If f VNP, then there is a poly size matrix M f with f = Per M f Proof much more sophisticated

10 Algebraic analog of P NP Affine map L: M n (F) M k (F) is good if Per n = Det k L k(n): the smallest k for which there is a good map? a b c d [Polya] k(2) =2 Per 2 = Det 2 a b -c d [Valiant] k(n) < exp(n) [Mignon-Ressayre] k(n) > n 2 [Valiant] k(n) poly(n) VP VNP [Mulmuley-Sohoni] Geometric Complexity Theory (GCT): Per & Det are defined by their symmetries. Find, for k small, representation theoretic obstacles for good maps.

11 Arithmetic lower bounds for Det n & Per n Thm[Nisan] Both require non-commutative size 2 n arithmetic formulae. Open: l.b. for Circuits? Thm[Raz] Both require multi-linear arithmetic formulae of size n logn. Open: Exponential l.b.? Thm[Gupta-Kamath-Kayal-Saptharishi]: size 4 (Det n ) > n n size 4 (Per n ) > n n Tight!! Improvement VP VNP

12 Nice properties of Per & Complexity theoretic consequences

13 Nice properties of Per (and Det) (1) Downwards self-reducible Permanent of n n matrices efficiently computed from (several) permanents of smaller matrices. Row expansion Per n (X) = i [n] X 1i Per n-1 (X 1i )

14 Nice properties of Per (and Det) (2) Random self-reducible/correctible [Beaver-Feigenbaum, Lipton] The permanent of nxn matrices can be computed from the permanent of several random matrices. Assume C(Z)=Per n (Z) on 1/(8n) of Z M n (F) Interpolate Per n (X) on a random line: Y random, let g(t)=c(x+ty) a poly of degree n in t. M n (F) Eval on t=1,2,,n+1. C errs WHP g(t)=per(x+ty), x+y x so g(0)=per(x) x+3y x+2y

15 Hardness amplification If the Permanent can be efficiently computed for most inputs, then it can for all inputs! If the Permanent is hard in the worst-case, then it is also hard on average Worst-case Average case reduction Works for any low degree polynomial. Arithmetization: Boolean functions polynomials Lower bounds, derandomization, prob. proofs

16 Avalanche of consequences to probabilistic proof systems Using both RSR and DSR of Permanent! [Nisan] [Lund-Fortnow-Karloff-Nisan] [Shamir] Per 2IP Per IP IP = PSPACE [Babai-Fortnow-Lund] 2IP = NEXP [Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy] PCP = NP

17 Efficient Verification (skeptical, efficient) verifier vs. (untrusted, all powerful) Prover NP theorems with short written proofs sound & complete IP theorems with fast interactive proofs sound & complete WHP

18 Per IP [LFKN] How to check a theorem that has no short proof? Z i M i (F) a i F Verifier (untrusted) Prover Q n : what is Per(Z n )? A n : Per(Z n )= a n Q n-1 : what is Per(Z n-1 )? Q n-2 : what is Per(Z n-2 )? A n-1 : Per(Z n-1 )=a n-1 A n-2 : Per(Z n-2 )=a n-2 Q 2 : what is Per(Z 2 )? A 2 : Per(Z 2 )=a 2 Q 1 : what is Per(Z 1 )? A 1 : Per(Z 1 )=a 1 Claim: If A i is correct, than A i+1 is correct whp! Verifier can check Per(Z 1 )=a 1 without help.

19 A twist on Random-self-reducibility saw: compute one from many random inputs now: verify many from one random input Claims: Per(X 1 )=a 1,,Per(X k )=a k, X 1,,X k M n (F) Pick random X k+1, ask for g(t)=per(x t ), the unique deg k curve through X 1,,X k+1. Check for [1,k] Pick random r F, verify claim Per(X r )=g(r) M n (F) X 1 X 2 X i X k X k+1 X r

20 Boolean Computation Evaluating functions

21 The class #P (and P #P ) All natural counting problems. - # of sat assignments of a Boolean formula -# of cliques in a graph -# Hamilton cycles in a graph -# perfect matchings in a graph (Per) -# of linear extensions of a poset -# of spanning trees of a graph [Valiant] Decision Problem NP-complete in P ( Det [Kirchoff] ) #P # of accepting paths of an NP-machine. Knot Graph Statistical #P-complete problems Theory Theory Physics Evaluating Tutte, Jones, Chromatic, polynomials - # perfect matchings in planar gphs ( Det [Kasteleyn])

22 Quantum Computation BPP: Efficient probabilistic computation BQP: Efficient quantum computation Thm[Feynman, Bernstein-Vazirani] BQP P # P Thm[Shor] Factoring BQP (assumed not in BPP) -Can quantum computers be built? What can they do? Particles: Fermions (matter) Bosons (light, force) Wave function: Determinant Permanent [Valiant, Terhal-DiVincenzo, Knill] Fermionic computers = holographic algs Determinant [Aaronson-Arkhipov] Bosonic computers can sample the Permanent

23 Approximating Permanents of non-negative matrices

24 Approximating Per n [Valiant] Permanent of 0/1 matrices is #P-hard [Jerrum-Sinclair-Vigoda] Efficient probabilistic algorithm for (1+ε)-approximation for the permanent of any non-negative real matrix. Monte-Carlo Markov Chain (Glauber Dynamics, Metropolis algs, ) Such algs exist now for many #P-hard problems. Important interaction area for CS, Math, Physics

25 Approx Per n deterministically A: n n non-negative real matrix. [Linial-Samorodnitsky-Wigderson] Deterministic, efficient e n -factor approximation. Two ingredients: (1) [Falikman,Egorichev] If B Doubly Stochastic then e -n n!/n n Per(B) 1 (the lower bound solved van der Vaerden s conj) (2) Strongly polynomial algorithm for the following reduction to DS matrices: Matrix scaling: Find diagonal X,Y s.t. XAY is DS [Gurvits-Samorodnitsky 14] 2 n -factor approx. OPEN: Find a deterministic subexp approx.

26 Thanks!

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

COMPUTATIONAL COMPLEXITY

COMPUTATIONAL COMPLEXITY COMPUTATIONAL COMPLEXITY A Modern Approach SANJEEV ARORA Princeton University BOAZ BARAK Princeton University {Щ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents About this book Acknowledgments Introduction page

More information

The GCT chasm I. Ketan D. Mulmuley. The University of Chicago. The GCT chasm I p. 1

The GCT chasm I. Ketan D. Mulmuley. The University of Chicago. The GCT chasm I p. 1 The GCT chasm I p. 1 The GCT chasm I Ketan D. Mulmuley The University of Chicago The GCT chasm I p. 2 The main reference GCT5 [M.]: Geometric Complexity Theory V: Equivalence between black-box derandomization

More information

Lecture 22: Derandomization Implies Circuit Lower Bounds

Lecture 22: Derandomization Implies Circuit Lower Bounds Advanced Complexity Theory Spring 2016 Lecture 22: Derandomization Implies Circuit Lower Bounds Prof. Dana Moshkovitz 1 Overview In the last lecture we saw a proof presented by Madhu Sudan that E SIZE(2

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 28: A Computational Lens on Proofs December 6th, 2016 Evolution of proof First there was GORM GORM = Good Old Regular Mathematics Pythagoras s

More information

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study Plan of the talk Computational complexity -- efficient algorithms, hard and easy problems, P

More information

Computational Complexity: A Modern Approach

Computational Complexity: A Modern Approach 1 Computational Complexity: A Modern Approach Draft of a book in preparation: Dated December 2004 Comments welcome! Sanjeev Arora Not to be reproduced or distributed without the author s permission I am

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

Lecture 5: Lowerbound on the Permanent and Application to TSP

Lecture 5: Lowerbound on the Permanent and Application to TSP Math 270: Geometry of Polynomials Fall 2015 Lecture 5: Lowerbound on the Permanent and Application to TSP Lecturer: Zsolt Bartha, Satyai Muheree Scribe: Yumeng Zhang Disclaimer: These notes have not been

More information

Introduction to Interactive Proofs & The Sumcheck Protocol

Introduction to Interactive Proofs & The Sumcheck Protocol CS294: Probabilistically Checkable and Interactive Proofs January 19, 2017 Introduction to Interactive Proofs & The Sumcheck Protocol Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Pratyush Mishra

More information

A Short History of Computational Complexity

A Short History of Computational Complexity A Short History of Computational Complexity Lance Fortnow, Steve Homer Georgia Kaouri NTUAthens Overview 1936: Turing machine early 60 s: birth of computational complexity early 70 s: NP-completeness,

More information

Determinant Versus Permanent

Determinant Versus Permanent Determinant Versus Permanent Manindra Agrawal Abstract. We study the problem of expressing permanent of matrices as determinant of (possibly larger) matrices. This problem has close connections with complexity

More information

CS151 Complexity Theory. Lecture 13 May 15, 2017

CS151 Complexity Theory. Lecture 13 May 15, 2017 CS151 Complexity Theory Lecture 13 May 15, 2017 Relationship to other classes To compare to classes of decision problems, usually consider P #P which is a decision class easy: NP, conp P #P easy: P #P

More information

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Computational Complexity: A Modern Approach Draft of a book: Dated February 2006 Comments welcome! Sanjeev Arora Princeton University arora@cs.princeton.edu Not to be reproduced or distributed without

More information

Lecture 2: January 18

Lecture 2: January 18 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 2: January 18 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

Lecture 22: Counting

Lecture 22: Counting CS 710: Complexity Theory 4/8/2010 Lecture 22: Counting Instructor: Dieter van Melkebeek Scribe: Phil Rydzewski & Chi Man Liu Last time we introduced extractors and discussed two methods to construct them.

More information

Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation

Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation Strong ETH Breaks With Merlin and Arthur Or: Short Non-Interactive Proofs of Batch Evaluation Ryan Williams Stanford Two Stories Story #1: The ircuit and the Adversarial loud. Given: a 1,, a K F n Want:

More information

Lecture 21: Counting and Sampling Problems

Lecture 21: Counting and Sampling Problems princeton univ. F 14 cos 521: Advanced Algorithm Design Lecture 21: Counting and Sampling Problems Lecturer: Sanjeev Arora Scribe: Today s topic of counting and sampling problems is motivated by computational

More information

Polynomial-time classical simulation of quantum ferromagnets

Polynomial-time classical simulation of quantum ferromagnets Polynomial-time classical simulation of quantum ferromagnets Sergey Bravyi David Gosset IBM PRL 119, 100503 (2017) arxiv:1612.05602 Quantum Monte Carlo: a powerful suite of probabilistic classical simulation

More information

Complexity Classes IV

Complexity Classes IV Complexity Classes IV NP Optimization Problems and Probabilistically Checkable Proofs Eric Rachlin 1 Decision vs. Optimization Most complexity classes are defined in terms of Yes/No questions. In the case

More information

ON TESTING HAMILTONICITY OF GRAPHS. Alexander Barvinok. July 15, 2014

ON TESTING HAMILTONICITY OF GRAPHS. Alexander Barvinok. July 15, 2014 ON TESTING HAMILTONICITY OF GRAPHS Alexander Barvinok July 5, 204 Abstract. Let us fix a function f(n) = o(nlnn) and reals 0 α < β. We present a polynomial time algorithm which, given a directed graph

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

report: RMT and boson computers

report: RMT and boson computers 18.338 report: RMT and boson computers John Napp May 11, 2016 Abstract In 2011, Aaronson and Arkhipov [1] proposed a simple model of quantum computation based on the statistics of noninteracting bosons.

More information

Definition 1. NP is a class of language L such that there exists a poly time verifier V with

Definition 1. NP is a class of language L such that there exists a poly time verifier V with Lecture 9: MIP=NEXP Topics in Pseudorandomness and Complexity Theory (Spring 2017) Rutgers University Swastik Kopparty Scribe: Jinyoung Park 1 Introduction Definition 1. NP is a class of language L such

More information

Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/poly

Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/poly Electronic Colloquium on Computational Complexity, Report No. 23 (2011) Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/poly Oded Goldreich and Or Meir Department of Computer Science

More information

Exponential time vs probabilistic polynomial time

Exponential time vs probabilistic polynomial time Exponential time vs probabilistic polynomial time Sylvain Perifel (LIAFA, Paris) Dagstuhl January 10, 2012 Introduction Probabilistic algorithms: can toss a coin polynomial time (worst case) probability

More information

Determinant versus permanent

Determinant versus permanent Determinant versus permanent Manindra Agrawal Abstract. We study the problem of expressing permanents of matrices as determinants of (possibly larger) matrices. This problem has close connections to the

More information

6.896 Quantum Complexity Theory 30 October Lecture 17

6.896 Quantum Complexity Theory 30 October Lecture 17 6.896 Quantum Complexity Theory 30 October 2008 Lecturer: Scott Aaronson Lecture 17 Last time, on America s Most Wanted Complexity Classes: 1. QMA vs. QCMA; QMA(2). 2. IP: Class of languages L {0, 1} for

More information

Almost transparent short proofs for NP R

Almost transparent short proofs for NP R Brandenburgische Technische Universität, Cottbus, Germany From Dynamics to Complexity: A conference celebrating the work of Mike Shub Toronto, May 10, 2012 Supported by DFG under GZ:ME 1424/7-1 Outline

More information

Algebrization: A New Barrier in Complexity Theory

Algebrization: A New Barrier in Complexity Theory Algebrization: A New Barrier in Complexity Theory Scott Aaronson MIT Avi Wigderson Institute for Advanced Study Abstract Any proof of P NP will have to overcome two barriers: relativization and natural

More information

Polynomial Identity Testing

Polynomial Identity Testing Polynomial Identity Testing Amir Shpilka Technion and MSR NE Based on joint works with: Zeev Dvir, Zohar Karnin, Partha Mukhopadhyay, Ran Raz, Ilya Volkovich and Amir Yehudayoff 1 PIT Survey Oberwolfach

More information

Lecture 5 Polynomial Identity Testing

Lecture 5 Polynomial Identity Testing Lecture 5 Polynomial Identity Testing Michael P. Kim 18 April 2017 1 Outline and Motivation In this lecture we will cover a fundamental problem in complexity theory polynomial identity testing (PIT). We

More information

Lecture 26. Daniel Apon

Lecture 26. Daniel Apon Lecture 26 Daniel Apon 1 From IPPSPACE to NPPCP(log, 1): NEXP has multi-prover interactive protocols If you ve read the notes on the history of the PCP theorem referenced in Lecture 19 [3], you will already

More information

On the Power of Multi-Prover Interactive Protocols. Lance Fortnow. John Rompel y. Michael Sipser z. Massachusetts Institute of Technology

On the Power of Multi-Prover Interactive Protocols. Lance Fortnow. John Rompel y. Michael Sipser z. Massachusetts Institute of Technology On the Power of Multi-Prover Interactive Protocols Lance Fortnow John Rompel y Michael Sipser z { Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 1 Introduction

More information

Identifying an Honest EXP NP Oracle Among Many

Identifying an Honest EXP NP Oracle Among Many Identifying an Honest EXP NP Oracle Among Many Shuichi Hirahara The University of Tokyo CCC 18/6/2015 Overview Dishonest oracle Honest oracle Queries Which is honest? Our Contributions Selector 1. We formulate

More information

November 17, Recent Results on. Amir Shpilka Technion. PIT Survey Oberwolfach

November 17, Recent Results on. Amir Shpilka Technion. PIT Survey Oberwolfach 1 Recent Results on Polynomial Identity Testing Amir Shpilka Technion Goal of talk Survey known results Explain proof techniques Give an interesting set of `accessible open questions 2 Talk outline Definition

More information

B(w, z, v 1, v 2, v 3, A(v 1 ), A(v 2 ), A(v 3 )).

B(w, z, v 1, v 2, v 3, A(v 1 ), A(v 2 ), A(v 3 )). Lecture 13 PCP Continued Last time we began the proof of the theorem that PCP(poly, poly) = NEXP. May 13, 2004 Lecturer: Paul Beame Notes: Tian Sang We showed that IMPLICIT-3SAT is NEXP-complete where

More information

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Tokyo Institute of Technology & Simon Fraser University Understanding Efficiency Better understanding of Efficient Computation Good Algorithms

More information

Lecture 16 November 6th, 2012 (Prasad Raghavendra)

Lecture 16 November 6th, 2012 (Prasad Raghavendra) 6.841: Advanced Complexity Theory Fall 2012 Lecture 16 November 6th, 2012 (Prasad Raghavendra) Prof. Dana Moshkovitz Scribe: Geng Huang 1 Overview In this lecture, we will begin to talk about the PCP Theorem

More information

Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes

Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes 1 Tautology Problem & NP-Hardness & co-np 2 NP-Hardness Another essential

More information

Deterministic identity testing of depth 4 multilinear circuits with bounded top fan-in

Deterministic identity testing of depth 4 multilinear circuits with bounded top fan-in Deterministic identity testing of depth 4 multilinear circuits with bounded top fan-in Zohar S. Karnin Partha Mukhopadhyay Amir Shpilka Ilya Volkovich November 15, 2009 Abstract We give the first sub-exponential

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Fine Grained Counting Complexity I

Fine Grained Counting Complexity I Fine Grained Counting Complexity I Holger Dell Saarland University and Cluster of Excellence (MMCI) & Simons Institute for the Theory of Computing 1 50 Shades of Fine-Grained #W[1] W[1] fixed-parameter

More information

PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS

PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS Luca Trevisan and Salil Vadhan Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the first construction of pseudorandom generators

More information

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction U.C. Berkeley Handout N2 CS294: PCP and Hardness of Approximation January 23, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 2 These notes are based on my survey paper [5]. L.T. Statement

More information

2 Evidence that Graph Isomorphism is not NP-complete

2 Evidence that Graph Isomorphism is not NP-complete Topics in Theoretical Computer Science April 11, 2016 Lecturer: Ola Svensson Lecture 7 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Mathematics, Proofs and Computation

Mathematics, Proofs and Computation Mathematics, Proofs and Computation Madhu Sudan Harvard December 16, 2016 TIMC: Math, Proofs, Computing 1 of 25 Logic, Mathematics, Proofs Reasoning: Start with body of knowledge. Add to body of knowledge

More information

Formalizing Randomized Matching Algorithms

Formalizing Randomized Matching Algorithms Formalizing Randomized Matching Algorithms Stephen Cook Joint work with Dai Tri Man Lê Department of Computer Science University of Toronto Canada The Banff Workshop on Proof Complexity 2011 1 / 15 Feasible

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Complexity Theory Umans Complexity Theory Lectures Lecture 1a: Problems and Languages Classify problems according to the computational resources required running time storage space parallelism randomness

More information

Lecture 26: QIP and QMIP

Lecture 26: QIP and QMIP Quantum Computation (CMU 15-859BB, Fall 2015) Lecture 26: QIP and QMIP December 9, 2015 Lecturer: John Wright Scribe: Kumail Jaffer 1 Introduction Recall QMA and QMA(2), the quantum analogues of MA and

More information

Self-Testing Polynomial Functions Efficiently and over Rational Domains

Self-Testing Polynomial Functions Efficiently and over Rational Domains Chapter 1 Self-Testing Polynomial Functions Efficiently and over Rational Domains Ronitt Rubinfeld Madhu Sudan Ý Abstract In this paper we give the first self-testers and checkers for polynomials over

More information

On The Computational Complexity of Linear Optics by Scott Aaronson and Alex Arkhipov

On The Computational Complexity of Linear Optics by Scott Aaronson and Alex Arkhipov On The Computational Complexity of Linear Optics by Scott Aaronson and Alex Arkhipov Maris Ozols April 22, 2011 Contents 1 Introduction 1 1.1 Complexity theory........................ 2 2 Computation with

More information

Separating Monotone VP and VNP

Separating Monotone VP and VNP Electronic Colloquium on Computational Complexity, Report No. 124 (2018) Separating Monotone VP and VNP Amir Yehudayoff Abstract This work is about the monotone versions of the algebraic complexity classes

More information

Quantum Computation, NP-Completeness and physical reality [1] [2] [3]

Quantum Computation, NP-Completeness and physical reality [1] [2] [3] Quantum Computation, NP-Completeness and physical reality [1] [2] [3] Compiled by Saman Zarandioon samanz@rutgers.edu 1 Introduction The NP versus P question is one of the most fundamental questions in

More information

Polynomial Identity Testing and Circuit Lower Bounds

Polynomial Identity Testing and Circuit Lower Bounds Polynomial Identity Testing and Circuit Lower Bounds Robert Špalek, CWI based on papers by Nisan & Wigderson, 1994 Kabanets & Impagliazzo, 2003 1 Randomised algorithms For some problems (polynomial identity

More information

Lecture 6. k+1 n, wherein n =, is defined for a given

Lecture 6. k+1 n, wherein n =, is defined for a given (67611) Advanced Topics in Complexity: PCP Theory November 24, 2004 Lecturer: Irit Dinur Lecture 6 Scribe: Sharon Peri Abstract In this lecture we continue our discussion of locally testable and locally

More information

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit.

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit. Questions Pool Amnon Ta-Shma and Dean Doron January 2, 2017 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to solve. Do not submit.

More information

Complexity Classes V. More PCPs. Eric Rachlin

Complexity Classes V. More PCPs. Eric Rachlin Complexity Classes V More PCPs Eric Rachlin 1 Recall from last time Nondeterminism is equivalent to having access to a certificate. If a valid certificate exists, the machine accepts. We see that problems

More information

Derandomizing from Random Strings

Derandomizing from Random Strings Derandomizing from Random Strings Harry Buhrman CWI and University of Amsterdam buhrman@cwi.nl Lance Fortnow Northwestern University fortnow@northwestern.edu Michal Koucký Institute of Mathematics, AS

More information

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the Lecture 11 IP, PH, and PSPACE May 4, 2004 Lecturer: Paul Beame Notes: Daniel Lowd 11.1 IP and PH Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the predicate

More information

An asymptotic approximation for the permanent of a doubly stochastic matrix

An asymptotic approximation for the permanent of a doubly stochastic matrix An asymptotic approximation for the permanent of a doubly stochastic matrix Peter McCullagh University of Chicago August 2, 2012 Abstract A determinantal approximation is obtained for the permanent of

More information

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM)

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM) IP = PSPACE Shamir s Theorem Johannes Mittmann Technische Universität München (TUM) 4 th Joint Advanced Student School (JASS) St. Petersburg, April 2 12, 2006 Course 1: Proofs and Computers Johannes Mittmann

More information

[PCP Theorem is] the most important result in complexity theory since Cook s Theorem. Ingo Wegener, 2005

[PCP Theorem is] the most important result in complexity theory since Cook s Theorem. Ingo Wegener, 2005 PCP Theorem [PCP Theorem is] the most important result in complexity theory since Cook s Theorem. Ingo Wegener, 2005 Computational Complexity, by Fu Yuxi PCP Theorem 1 / 88 S. Arora, C. Lund, R. Motwani,

More information

Polynomial Identity Testing. Amir Shpilka Technion

Polynomial Identity Testing. Amir Shpilka Technion Polynomial Identity Testing Amir Shpilka Technion 1 Goal of talk Model: Arithmetic circuits Problem: Polynomial Identity Testing Example: Depth-3 circuits Some open problems 2 Holy grail: P vs. NP Boolean

More information

INAPPROX APPROX PTAS. FPTAS Knapsack P

INAPPROX APPROX PTAS. FPTAS Knapsack P CMPSCI 61: Recall From Last Time Lecture 22 Clique TSP INAPPROX exists P approx alg for no ε < 1 VertexCover MAX SAT APPROX TSP some but not all ε< 1 PTAS all ε < 1 ETSP FPTAS Knapsack P poly in n, 1/ε

More information

CS151 Complexity Theory. Lecture 1 April 3, 2017

CS151 Complexity Theory. Lecture 1 April 3, 2017 CS151 Complexity Theory Lecture 1 April 3, 2017 Complexity Theory Classify problems according to the computational resources required running time storage space parallelism randomness rounds of interaction,

More information

How hard is it to approximate the Jones polynomial?

How hard is it to approximate the Jones polynomial? How hard is it to approximate the Jones polynomial? Greg Kuperberg UC Davis June 17, 2009 The Jones polynomial and quantum computation Recall the Jones polynomial ( = Kauffman bracket): = q 1/2 q 1/2 =

More information

An Axiomatic Approach to Algebrization

An Axiomatic Approach to Algebrization An Axiomatic Approach to Algebrization Russell Impagliazzo Valentine Kabanets Antonina Kolokolova January 21, 2009 Abstract Non-relativization of complexity issues can be interpreted as giving some evidence

More information

CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010

CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010 CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010 So far our notion of realistic computation has been completely deterministic: The Turing Machine

More information

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Notes on the Matrix-Tree theorem and Cayley s tree enumerator Notes on the Matrix-Tree theorem and Cayley s tree enumerator 1 Cayley s tree enumerator Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanating from it We will

More information

RMT and boson computers

RMT and boson computers RMT and boson computers [Aaronson-Arkhipov 2011] John Napp May 11, 2016 Introduction Simple type of quantum computer proposed in 2011 by Aaronson and Arkhipov based on the statistics of noninteracting

More information

The Tutte polynomial: sign and approximability

The Tutte polynomial: sign and approximability : sign and approximability Mark Jerrum School of Mathematical Sciences Queen Mary, University of London Joint work with Leslie Goldberg, Department of Computer Science, University of Oxford Durham 23rd

More information

Pseudorandomness and Average-case Complexity via Uniform Reductions

Pseudorandomness and Average-case Complexity via Uniform Reductions Pseudorandomness and Average-case Complexity via Uniform Reductions Luca Trevisan Salil Vadhan January 19, 2006 Abstract Impagliazzo and Wigderson [IW2] gave the first construction of pseudorandom generators

More information

Computational Complexity Theory. The World of P and NP. Jin-Yi Cai Computer Sciences Dept University of Wisconsin, Madison

Computational Complexity Theory. The World of P and NP. Jin-Yi Cai Computer Sciences Dept University of Wisconsin, Madison Computational Complexity Theory The World of P and NP Jin-Yi Cai Computer Sciences Dept University of Wisconsin, Madison Sept 11, 2012 Supported by NSF CCF-0914969. 1 2 Entscheidungsproblem The rigorous

More information

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

Ben Lee Volk. Joint with. Michael A. Forbes Amir Shpilka

Ben Lee Volk. Joint with. Michael A. Forbes Amir Shpilka Ben Lee Volk Joint with Michael A. Forbes Amir Shpilka Ben Lee Volk Joint with Michael A. Forbes Amir Shpilka (One) Answer: natural proofs barrier [Razborov-Rudich]: (One) Answer: natural proofs barrier

More information

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions My T. Thai 1 1 Hardness of Approximation Consider a maximization problem Π such as MAX-E3SAT. To show that it is NP-hard to approximation

More information

Probabilistically Checkable Proofs. 1 Introduction to Probabilistically Checkable Proofs

Probabilistically Checkable Proofs. 1 Introduction to Probabilistically Checkable Proofs Course Proofs and Computers, JASS 06 Probabilistically Checkable Proofs Lukas Bulwahn May 21, 2006 1 Introduction to Probabilistically Checkable Proofs 1.1 History of Inapproximability Results Before introducing

More information

Polylogarithmic Round Arthur-Merlin Games and Random-Self-Reducibility

Polylogarithmic Round Arthur-Merlin Games and Random-Self-Reducibility Electronic Colloquium on Computational Complexity, Report No. 53 (2004) Polylogarithmic Round Arthur-Merlin Games and Random-Self-Reducibility A. Pavan N. V. Vinodchandran June 10, 2004 Abstract We consider

More information

Some Results on Derandomization

Some Results on Derandomization Some Results on Derandomization Harry Buhrman CWI and University of Amsterdam Lance Fortnow University of Chicago A. Pavan Iowa State University Abstract We show several results about derandomization including

More information

Towards NEXP versus BPP?

Towards NEXP versus BPP? Towards NEXP versus BPP? Ryan Williams Stanford University Abstract. We outline two plausible approaches to improving the miserable state of affairs regarding lower bounds against probabilistic polynomial

More information

Algebraic dependence is not hard

Algebraic dependence is not hard Algebraic dependence is not hard and filling the GCT Chasm Nitin Saxena (CSE@IIT Kanpur, India) (Joint work with Zeyu Guo & Amit Sinhababu, CCC'18) 2018, Dagstuhl Overture Consider map f : F n F m. Problem

More information

1 The Low-Degree Testing Assumption

1 The Low-Degree Testing Assumption Advanced Complexity Theory Spring 2016 Lecture 17: PCP with Polylogarithmic Queries and Sum Check Prof. Dana Moshkovitz Scribes: Dana Moshkovitz & Michael Forbes Scribe Date: Fall 2010 In this lecture

More information

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms.

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 20 April 12, 2010 Scribe: Jonathan Pines 1 Agenda. PCPs. Approximation Algorithms. PCPs = Inapproximability. 2 History. First, some history

More information

Tsuyoshi Ito (McGill U) Hirotada Kobayashi (NII & JST) Keiji Matsumoto (NII & JST)

Tsuyoshi Ito (McGill U) Hirotada Kobayashi (NII & JST) Keiji Matsumoto (NII & JST) Tsuyoshi Ito (McGill U) Hirotada Kobayashi (NII & JST) Keiji Matsumoto (NII & JST) arxiv:0810.0693 QIP 2009, January 12 16, 2009 Interactive proof [Babai 1985] [Goldwasser, Micali, Rackoff 1989] erifier:

More information

Notes on Complexity Theory Last updated: November, Lecture 10

Notes on Complexity Theory Last updated: November, Lecture 10 Notes on Complexity Theory Last updated: November, 2015 Lecture 10 Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Randomized Time Complexity 1.1 How Large is BPP? We know that P ZPP = RP corp

More information

arxiv:quant-ph/ v1 11 Oct 2002

arxiv:quant-ph/ v1 11 Oct 2002 Quantum NP - A Survey Dorit Aharonov and Tomer Naveh arxiv:quant-ph/00077 v Oct 00 Abstract We describe Kitaev s result from 999, in which he defines the complexity class QMA, the quantum analog of the

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Finding hay in haystacks: the power and limits of Randomness. Avi Wigderson IAS, Princeton

Finding hay in haystacks: the power and limits of Randomness. Avi Wigderson IAS, Princeton Finding hay in haystacks: the power and limits of Randomness Avi Wigderson IAS, Princeton Plan of the talk Perfect Randomness Prob[T]=Prob[H]=½, Independent HHTHTTTHHHTHTTHTTTHHHHTHTTTTTHHTHH Uniform distribution

More information

Quantum Complexity Theory. Wim van Dam HP Labs MSRI UC Berkeley SQUINT 3 June 16, 2003

Quantum Complexity Theory. Wim van Dam HP Labs MSRI UC Berkeley SQUINT 3 June 16, 2003 Quantum Complexity Theory Wim van Dam HP Labs MSRI UC Berkeley SQUINT 3 June 16, 2003 Complexity Theory Complexity theory investigates what resources (time, space, randomness, etc.) are required to solve

More information

Not all counting problems are efficiently approximable. We open with a simple example.

Not all counting problems are efficiently approximable. We open with a simple example. Chapter 7 Inapproximability Not all counting problems are efficiently approximable. We open with a simple example. Fact 7.1. Unless RP = NP there can be no FPRAS for the number of Hamilton cycles in a

More information

Approximate Verification

Approximate Verification Approximate Verification Michel de Rougemont Université de Paris-II Ekaterinenburg-April 2014 i ii Contents 1 Probabilistic Classes 3 1.1 Probabilistic decision classes...................................

More information

Lecture 23: Introduction to Quantum Complexity Theory 1 REVIEW: CLASSICAL COMPLEXITY THEORY

Lecture 23: Introduction to Quantum Complexity Theory 1 REVIEW: CLASSICAL COMPLEXITY THEORY Quantum Computation (CMU 18-859BB, Fall 2015) Lecture 23: Introduction to Quantum Complexity Theory November 31, 2015 Lecturer: Ryan O Donnell Scribe: Will Griffin 1 REVIEW: CLASSICAL COMPLEXITY THEORY

More information

Quantum Computing Lecture 8. Quantum Automata and Complexity

Quantum Computing Lecture 8. Quantum Automata and Complexity Quantum Computing Lecture 8 Quantum Automata and Complexity Maris Ozols Computational models and complexity Shor s algorithm solves, in polynomial time, a problem for which no classical polynomial time

More information

Does randomness solve problems? Russell Impagliazzo UCSD

Does randomness solve problems? Russell Impagliazzo UCSD Does randomness solve problems? Russell Impagliazzo UCSD Well, what s the answer? YES, randomness solves problems BUT the randomness (probably) doesn t have to be random to solve problems. Algorithm: A

More information

CSC 2429 Approaches to the P versus NP Question. Lecture #12: April 2, 2014

CSC 2429 Approaches to the P versus NP Question. Lecture #12: April 2, 2014 CSC 2429 Approaches to the P versus NP Question Lecture #12: April 2, 2014 Lecturer: David Liu (Guest) Scribe Notes by: David Liu 1 Introduction The primary goal of complexity theory is to study the power

More information

Multi-Linear Formulas for Permanent and Determinant are of Super-Polynomial Size

Multi-Linear Formulas for Permanent and Determinant are of Super-Polynomial Size Multi-Linear Formulas for Permanent and Determinant are of Super-Polynomial Size Ran Raz Weizmann Institute ranraz@wisdom.weizmann.ac.il Abstract An arithmetic formula is multi-linear if the polynomial

More information

An Axiomatic Approach to Algebrization

An Axiomatic Approach to Algebrization An Axiomatic Approach to Algebrization Russell Impagliazzo UC San Diego, La Jolla, CA & Institute for Advanced Study Princeton, NJ, USA russell@cs.ucsd.edu Valentine Kabanets Simon Fraser University Burnaby,

More information

compare to comparison and pointer based sorting, binary trees

compare to comparison and pointer based sorting, binary trees Admin Hashing Dictionaries Model Operations. makeset, insert, delete, find keys are integers in M = {1,..., m} (so assume machine word size, or unit time, is log m) can store in array of size M using power:

More information