The Capacity Region of the Gaussian MIMO Broadcast Channel

Size: px
Start display at page:

Download "The Capacity Region of the Gaussian MIMO Broadcast Channel"

Transcription

1 0-0 The Capacity Region of the Gaussian MIMO Broadcast Channel Hanan Weingarten, Yossef Steinberg and Shlomo Shamai (Shitz)

2 Outline Problem statement Background and preliminaries Capacity region of the degraded Gaussian vector broadcast channel Capacity region of the non-degraded Gaussian vector broadcast channel (without use of the DSM bound)

3 Problem Statement 2 y k = H k x + n k, k =,...,m x : Transmitted vector (t ). y k : Received vector by k th user (r k ). H k : Gain matrix between channel input and user k (r k t - fixed and known to both transmitter and receivers). n k N(0, N k ): Additive noise vector (r k ). Power constraint, P. C MIMO (P, N...m, H...m ) =?

4 Known Results - Degraded BC placemen Y 3 X P Y X P Y2 Y Y 2 In general, C depends only on P Y X and P Y2 X Stochastically degraded: If there exist Y and Y2 such that X Y Y2 form a Markov chain and such that P Y X = P Y X and P Y 2 X = P Y2 X C Deg = where U is an auxiliary r.v. P U,X,Y,Y 2 = P U,X P Y2,Y X { } R I(X; Y U), (R, R 2 ) R 2 I(U; Y 2 )

5 Known Results for Degraded BC Capacity Region - Scalar Gaussian BC 4 y = x + n, y 2 = x + n 2 n N(0, N ), n 2 N(0, N 2 ) (N 2 N ) C sclr = 0 α R ( (R, R 2 ) 2 log + αp ), N R 2 ( ) 2 log ( α)p + N 2 + αp Superposition coding and successive decoding

6 Known Results for Degraded BC Capacity Region - Scalar Gaussian BC 5 Scalar Gaussian BC is always stochastically degraded, yet the converse is not trivial Bergmans, IEEE IT, 974: Converse requires Entropy Power Inequality (EPI) Bergman s proof Can not be directly extended to vector Gaussian BCs

7 Downside 6 MIMO BC is not degraded in general. Capacity of a degraded Gaussian vector BC - Unknown.

8 Recent Results 7 Sum Capacity: Caire and Shamai, IEEE IT, 2003 Yu and Cioffi,ISIT 2002 Viswanath and Tse, IEEE IT, 2003 Vishwanath, Jindal and Goldsmith, IEEE IT, 2003 Degraded Same Marginal (DSM) Bound: Vishwanath, Kramer, Shamai, Jafar and Goldsmith, DIMACS 2003 Tse and Viswanath, DIMACS 2003

9 The Broadcast channel and DSM channel with π j = j j 8 y DSM n y DSM 2 H y n 2 H 2 y 2 x y DSM m n m H m y m

10 DSM Bound Results 9 Conclusion [Vishwanath et al 2003, Tse et al 2003]: If Gaussian coding is optimal for the degraded MIMO BC, then C BC (P, H...m ) = R DPC (P, H...m ). Conjecture [Vishwanath et al 2003, Tse et al 2003]: Gaussian inputs are optimal for the DSM channel (and hence also for the general).

11 Subclasses of the Gaussian MIMO BC - AMBC and ADBC 0 Aligned BC - AMBC: t = r = = r m and H = = H m = I y k = x + n k, k =,...,m Aligned and Degraded BC - ADBC: if N N 2 N m, then y = x + n, y k = y k + ñ k, Ñ k = E[ñ k ñ T k ] = N k N k k = 2, 3,...,m The capacity region of a general Gaussian MIMO BC can be obtained by a limit process on the capacity region of an AMBC as some of the eigenvalues of some of the noise covariances go to infinity.

12 Total Power Constraint Vs. Covariance Matrix Const (P S) Proposition. where C(P, N...m ) = S 0 tr{s} P C(S, N...m ) C(P, N...m ) - capacity region of an AMBC under a total power constraint, tr { E[x x T ] } P. C(S, N...m ) - capacity region of an AMBC under a covariance matrix constraint, E[x x T ] S. Note: Capacity results can be extended to per-antenna power constraints.

13 Capacity Region of the ADBC (Degraded, N N 2 N m ) 2 Gaussian superposition coding and successive decoding: R k Rk G (B...m, N...m ) = 2 log k i= B i + N k k, k =,...,m i= B i + N k B,...,B m : User power allocation. m matrices of size (t t) Gaussian rate region: R G (S, N...m ) = B i 0 i s.t. m i= B i S ( ) R G (B...m, N...m ),...,Rm(B G...m, N...m ) Theorem. Let C(S, N...m ) denote the capacity region of the ADBC, then C(S, N...m ) = R G (S, N...m ).

14 Proof Technique 3 Entropy Power Inequality (EPI). Use Bergmans (IEEE IT, 974) style proof on enhanced channel instead of the original channel. Note: Without an enhanced channel, extending Bergmans proof to the vector case is not trivial.

15 Entropy Power Inequality (EPI) 4 Shannon, Bell Sys. Tech. J., 948 Blachman, IEEE IT, 965 Let Z and Y be two independent random vectors, then e 2 n H(Y +Z) e 2 n H(Y ) + e 2 n H(Z) with equality iff Y N(K) and Z N(α K). Bergmans extension to EPI: where P Y,Z W = P Y W P Z. H(Y + Z W) n 2 log ( e 2 n H(Y W) + e 2 n H(Z))

16 Bergman s converse proof - Scalar case 5 Assume (R, R 2 ) / C sclr (R > 0 and R 2 > 0) be achievable, then R ( ) αp + 2 log N, N R 2 > ( ) P + 2 log N2 N 2 + αp for some 0 α. By Fano s Inequality: n I(W ; Y W 2 ) R 2 log n I(W 2; Y 2 ) R 2 > 2 log ( ) αp + N N ( P + N2 N 2 + αp ) () (2) Thus (from ()) n H(Y W 2 ) 2 log (2πe(αP + N )) (3)

17 Bergman s converse proof - Scalar case 6 Note: Y 2 = Y + Z where Z has IID elements N(0, N 2 N ) By EPI: H(Y + Z W 2 ) n 2 log ( e 2 n H(Y W 2 ) + e 2 n H(Z)) (by (3)) n H(Y 2 W 2 ) 2 log (2πe(αP + N 2)) (4) Thus, by Fano s inequality (by (2)): n H(Y 2) > log (2πe(P + N 2 )) In contradiction with upper bound on differential entropy!

18 Bergman s converse proof - Degraded vector channel (pitfalls) y = x + n y 2 = x + n 2 where n N(0, N ), n 2 N(0, N 2 ), (N 2 N 0) In Bergmans development: Scalar channel Vector Channel P S αp B( S) 2 log( ) 2 log det( ) 7 By EPI: n H(Y 2 W 2 ) t ( 2 log e 2 n H(Y W 2 ) {}}{ 2πe(B + N ) t + e 2 n H(Z) {}}{ 2πe(N 2 N ) t )

19 Bergman s converse proof - Degraded vector channel (pitfalls) 8 However, due to Minkowski inequality, t ( ) 2 log 2πe(B + N ) t + 2πe(N2 N ) t t ( ) 2 log 2πe(B + N 2 ) t Minkowski inequality: Let K 0, K 2 0 with equality iff K K 2. K + K 2 t K t + K2 t i.e. proof will hold if (B + N ) (N 2 N )

20 Preliminaries - Enhanced Channel 9 Definition (Enhanced Channel). An AMBC, N,...,N m, is an enhanced version of another AMBC, N,...,N m, if N k N k k =,...,m Clearly, R G (S, N...m ) R G (S, N...m) and C(S, N...m ) C(S, N...m)

21 ADBC - Enhanced Channel Existence Theorem Theorem 2. Consider an ADBC with noise covariances N,...,N m. If the power allocation B O,...,Bm O achieves a boundary point of R G (S, N...m ) under a covariance constraint, S 0, then there exists an enhanced ADBC with noise covariances N k such that k. (Enhanced Channel) 20 0 N k N k and N k N k+ 2. (Proportionality) for some α k 0. α k k Bj O + N k = N k+ N k j= 3. (Rate preservation and Optimality preservation) R G k (B O...m, N...m ) = R G k (B O...m, N...m)

22 Example Gaussian rate region of a two user 2 2 ADBC R G (S, N...m), tangential to R G (S, N...m ) at R = 0. R R G (S, N...m), departs from R G (S, N...m ) at R = R G (S, N...m ) R

23 Application of the Enhanced Channel Theorem 22 Assume (R, R 2 ) / R G (S, N...m ), then by Fano Inequality + Theorem 2 (Rate Preservation) + Information processing inequality: n I(W ; Ȳ W 2 ) n I(W ; Ȳ W 2 ) 2 log B O + N N = B O 2 log + N (5) N n I(W 2; Ȳ 2) n I(W 2; Ȳ 2 ) > 2 log S + N 2 B O + N 2 = 2 log S + N 2 B O + N 2 (6)

24 Capacity of the AMBC 23 DPC precoding in a given order π: R k R DPC π (k) (π, B...m, N...m ), k =,...,m where Rk DPC (π, B...m, N...m ) = 2 log k i= B π(i) + N π(k) k i= B π(i) + N π(k) where π: A given ordering of the users (a permutation of the set {,...,m}) B,...,B m : User power allocation. A set of positive semi-definite matrices (t t)

25 Capacity of the AMBC 24 DPC rate region: R DPC (S, N...m ) = co π Π B,...,B m s.t. B i 0, i m i= B i S ( R DPC π () (π, B...m, N...m ),..., R DPC π (m) (π, B...m, N...m ) ) Theorem 3. Let C(S, N...m ) denote the capacity region of the AMBC, then C(S, N...m ) = R DPC (S, N...m ).

26 AMBC - Enhanced Channel Existence Theorem 25 Theorem 4. Let { (R,...,R m ) R m m i= γ ir i = b } (γ i > 0, b > 0) be a supporting hyperplane of R DPC (S, N...m ). Then, there exists an enhanced ADBC, (Ñ,...,Ñ m) such that R G (S, N...m) is supported by the same hyperplane. 2.5 DPC rate region of a two user 4 4 AMBC 2 Supporting Hyperplane.5 R G (S, N...m) R2 R DPC (S, N...m ) R

27 Converse for AMBC 26 3 DPC rate region of a two user 4 4 AMBC R2.5 R DPC (S, N...m ) External point R

28 Converse for AMBC 27 3 DPC rate region of a two user 4 4 AMBC 2.5 Supporting Hyperplane 2 R2.5 R DPC (S, N...m ) External point R

29 Converse for AMBC 28 3 DPC rate region of a two user 4 4 AMBC 2.5 Supporting Hyperplane 2 R G (S, N...m) R2.5 R DPC (S, N...m ) External point R

30 Converse for AMBC 29 3 DPC rate region of a two user 4 4 AMBC 2.5 Supporting Hyperplane 2 R G (S, N...m) = C(S, N...m) C(S, N...m ) R2.5 R DPC (S, N...m ) External point R

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels Mehdi Mohseni Department of Electrical Engineering Stanford University Stanford, CA 94305, USA Email: mmohseni@stanford.edu

More information

Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel

Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel Jun Chen Dept. of Electrical and Computer Engr. McMaster University Hamilton, Ontario, Canada Chao Tian AT&T Labs-Research 80 Park

More information

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels Giuseppe Caire University of Southern California Los Angeles, CA, USA Email: caire@usc.edu Nihar

More information

On Gaussian MIMO Broadcast Channels with Common and Private Messages

On Gaussian MIMO Broadcast Channels with Common and Private Messages On Gaussian MIMO Broadcast Channels with Common and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 20742 ersen@umd.edu

More information

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels TO APPEAR IEEE INTERNATIONAL CONFERENCE ON COUNICATIONS, JUNE 004 1 Dirty Paper Coding vs. TDA for IO Broadcast Channels Nihar Jindal & Andrea Goldsmith Dept. of Electrical Engineering, Stanford University

More information

USING multiple antennas has been shown to increase the

USING multiple antennas has been shown to increase the IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 1, JANUARY 2007 11 A Comparison of Time-Sharing, DPC, and Beamforming for MIMO Broadcast Channels With Many Users Masoud Sharif, Member, IEEE, and Babak

More information

An Alternative Proof for the Capacity Region of the Degraded Gaussian MIMO Broadcast Channel

An Alternative Proof for the Capacity Region of the Degraded Gaussian MIMO Broadcast Channel IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 4, APRIL 2012 2427 An Alternative Proof for the Capacity Region of the Degraded Gaussian MIMO Broadcast Channel Ersen Ekrem, Student Member, IEEE,

More information

Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels

Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels 2658 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO 10, OCTOBER 2003 Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels Sriram Vishwanath, Student Member, IEEE, Nihar

More information

Outage-Efficient Downlink Transmission Without Transmit Channel State Information

Outage-Efficient Downlink Transmission Without Transmit Channel State Information 1 Outage-Efficient Downlink Transmission Without Transmit Channel State Information Wenyi Zhang, Member, IEEE, Shivaprasad Kotagiri, Student Member, IEEE, and J. Nicholas Laneman, Senior Member, IEEE arxiv:0711.1573v1

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information

On the Capacity of the Multiple Antenna Broadcast Channel

On the Capacity of the Multiple Antenna Broadcast Channel DIMACS Series in Discrete Mathematics and Theoretical Computer Science On the Capacity of the Multiple Antenna Broadcast Channel David Tse and Pramod Viswanath Abstract. The capacity region of the multiple

More information

On the Capacity of Interference Channels with Degraded Message sets

On the Capacity of Interference Channels with Degraded Message sets On the Capacity of Interference Channels with Degraded Message sets Wei Wu, Sriram Vishwanath and Ari Arapostathis arxiv:cs/060507v [cs.it] 7 May 006 Abstract This paper is motivated by a sensor network

More information

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages Degrees of Freedom Region of the Gaussian MIMO Broadcast hannel with ommon and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and omputer Engineering University of Maryland, ollege

More information

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR 1 Stefano Rini, Daniela Tuninetti and Natasha Devroye srini2, danielat, devroye @ece.uic.edu University of Illinois at Chicago Abstract

More information

Capacity of a Class of Cognitive Radio Channels: Interference Channels with Degraded Message Sets

Capacity of a Class of Cognitive Radio Channels: Interference Channels with Degraded Message Sets Capacity of a Class of Cognitive Radio Channels: Interference Channels with Degraded Message Sets Wei Wu, Sriram Vishwanath and Ari Arapostathis Abstract This paper is motivated by two different scenarios.

More information

Competition and Cooperation in Multiuser Communication Environments

Competition and Cooperation in Multiuser Communication Environments Competition and Cooperation in Multiuser Communication Environments Wei Yu Electrical Engineering Department Stanford University April, 2002 Wei Yu, Stanford University Introduction A multiuser communication

More information

Input Optimization for Multi-Antenna Broadcast Channels with Per-Antenna Power Constraints

Input Optimization for Multi-Antenna Broadcast Channels with Per-Antenna Power Constraints Input Optimization for Multi-Antenna Broadcast Channels with Per-Antenna Power Constraints Tian Lan and Wei Yu Electrical and Computer Engineering Department University of Toronto, Toronto, Ontario M5S

More information

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Vincent Y. F. Tan (Joint work with Silas L. Fong) National University of Singapore (NUS) 2016 International Zurich Seminar on

More information

The Gallager Converse

The Gallager Converse The Gallager Converse Abbas El Gamal Director, Information Systems Laboratory Department of Electrical Engineering Stanford University Gallager s 75th Birthday 1 Information Theoretic Limits Establishing

More information

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels Saeed Kaviani and Witold A. Krzymień University of Alberta / TRLabs, Edmonton, Alberta, Canada T6G 2V4 E-mail: {saeed,wa}@ece.ualberta.ca

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University luca.sanguinetti@iet.unipi.it April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 /

More information

On the Capacity of Fading MIMO Broadcast Channels with Imperfect Transmitter Side-Information

On the Capacity of Fading MIMO Broadcast Channels with Imperfect Transmitter Side-Information To be presented at the 43rd Annual Allerton Conference on Communication, Control, and Computing, September 8 30, 005. (Invited Paper) DRAFT On the Capacity of Fading MIMO Broadcast Channels with Imperfect

More information

Weighted Sum Rate Optimization for Cognitive Radio MIMO Broadcast Channels

Weighted Sum Rate Optimization for Cognitive Radio MIMO Broadcast Channels IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (SUBMITTED) Weighted Sum Rate Optimization for Cognitive Radio MIMO Broadcast Channels Lan Zhang, Yan Xin, and Ying-Chang Liang Abstract In this paper, we consider

More information

Capacity Bounds for. the Gaussian Interference Channel

Capacity Bounds for. the Gaussian Interference Channel Capacity Bounds for the Gaussian Interference Channel Abolfazl S. Motahari, Student Member, IEEE, and Amir K. Khandani, Member, IEEE Coding & Signal Transmission Laboratory www.cst.uwaterloo.ca {abolfazl,khandani}@cst.uwaterloo.ca

More information

IN this paper, we show that the scalar Gaussian multiple-access

IN this paper, we show that the scalar Gaussian multiple-access 768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004 On the Duality of Gaussian Multiple-Access and Broadcast Channels Nihar Jindal, Student Member, IEEE, Sriram Vishwanath, and Andrea

More information

Capacity Bounds for Diamond Networks

Capacity Bounds for Diamond Networks Technische Universität München Capacity Bounds for Diamond Networks Gerhard Kramer (TUM) joint work with Shirin Saeedi Bidokhti (TUM & Stanford) DIMACS Workshop on Network Coding Rutgers University, NJ

More information

Sum Rate of Multiterminal Gaussian Source Coding

Sum Rate of Multiterminal Gaussian Source Coding DIMACS Series in Discrete Mathematics and Theoretical Computer Science Sum Rate of Multiterminal Gaussian Source Coding Pramod Viswanath Abstract We characterize the sum rate of a class of multiterminal

More information

Vector Channel Capacity with Quantized Feedback

Vector Channel Capacity with Quantized Feedback Vector Channel Capacity with Quantized Feedback Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 9697-65 Email: syed@ece.uci.edu,

More information

Generalized Writing on Dirty Paper

Generalized Writing on Dirty Paper Generalized Writing on Dirty Paper Aaron S. Cohen acohen@mit.edu MIT, 36-689 77 Massachusetts Ave. Cambridge, MA 02139-4307 Amos Lapidoth lapidoth@isi.ee.ethz.ch ETF E107 ETH-Zentrum CH-8092 Zürich, Switzerland

More information

On the Capacity Region of the Gaussian Z-channel

On the Capacity Region of the Gaussian Z-channel On the Capacity Region of the Gaussian Z-channel Nan Liu Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 74 nkancy@eng.umd.edu ulukus@eng.umd.edu

More information

On the Rate-Limited Gelfand-Pinsker Problem

On the Rate-Limited Gelfand-Pinsker Problem On the Rate-Limited Gelfand-Pinsker Problem Ravi Tandon Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 74 ravit@umd.edu ulukus@umd.edu Abstract

More information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information 204 IEEE International Symposium on Information Theory Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information Omur Ozel, Kaya Tutuncuoglu 2, Sennur Ulukus, and Aylin Yener

More information

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Nan Liu and Andrea Goldsmith Department of Electrical Engineering Stanford University, Stanford CA 94305 Email:

More information

On the Duality of Gaussian Multiple-Access and Broadcast Channels

On the Duality of Gaussian Multiple-Access and Broadcast Channels On the Duality of Gaussian ultiple-access and Broadcast Channels Xiaowei Jin I. INTODUCTION Although T. Cover has been pointed out in [] that one would have expected a duality between the broadcast channel(bc)

More information

The Capacity Region of the Cognitive Z-interference Channel with One Noiseless Component

The Capacity Region of the Cognitive Z-interference Channel with One Noiseless Component 1 The Capacity Region of the Cognitive Z-interference Channel with One Noiseless Component Nan Liu, Ivana Marić, Andrea J. Goldsmith, Shlomo Shamai (Shitz) arxiv:0812.0617v1 [cs.it] 2 Dec 2008 Dept. of

More information

Bounds and Capacity Results for the Cognitive Z-interference Channel

Bounds and Capacity Results for the Cognitive Z-interference Channel Bounds and Capacity Results for the Cognitive Z-interference Channel Nan Liu nanliu@stanford.edu Ivana Marić ivanam@wsl.stanford.edu Andrea J. Goldsmith andrea@wsl.stanford.edu Shlomo Shamai (Shitz) Technion

More information

An Uplink-Downlink Duality for Cloud Radio Access Network

An Uplink-Downlink Duality for Cloud Radio Access Network An Uplin-Downlin Duality for Cloud Radio Access Networ Liang Liu, Prati Patil, and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, ON, 5S 3G4, Canada Emails: lianguotliu@utorontoca,

More information

Sum-Power Iterative Watefilling Algorithm

Sum-Power Iterative Watefilling Algorithm Sum-Power Iterative Watefilling Algorithm Daniel P. Palomar Hong Kong University of Science and Technolgy (HKUST) ELEC547 - Convex Optimization Fall 2009-10, HKUST, Hong Kong November 11, 2009 Outline

More information

On the Capacity of MIMO Rician Broadcast Channels

On the Capacity of MIMO Rician Broadcast Channels On the Capacity of IO Rician Broadcast Channels Alireza Bayesteh Email: alireza@shannon2.uwaterloo.ca Kamyar oshksar Email: kmoshksa@shannon2.uwaterloo.ca Amir K. Khani Email: khani@shannon2.uwaterloo.ca

More information

Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets

Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets Shivaprasad Kotagiri and J. Nicholas Laneman Department of Electrical Engineering University of Notre Dame Notre Dame,

More information

Information Theory for Wireless Communications. Lecture 10 Discrete Memoryless Multiple Access Channel (DM-MAC): The Converse Theorem

Information Theory for Wireless Communications. Lecture 10 Discrete Memoryless Multiple Access Channel (DM-MAC): The Converse Theorem Information Theory for Wireless Communications. Lecture 0 Discrete Memoryless Multiple Access Channel (DM-MAC: The Converse Theorem Instructor: Dr. Saif Khan Mohammed Scribe: Antonios Pitarokoilis I. THE

More information

The Role of Directed Information in Network Capacity

The Role of Directed Information in Network Capacity The Role of Directed Information in Network Capacity Sudeep Kamath 1 and Young-Han Kim 2 1 Department of Electrical Engineering Princeton University 2 Department of Electrical and Computer Engineering

More information

Capacity bounds for multiple access-cognitive interference channel

Capacity bounds for multiple access-cognitive interference channel Mirmohseni et al. EURASIP Journal on Wireless Communications and Networking, :5 http://jwcn.eurasipjournals.com/content///5 RESEARCH Open Access Capacity bounds for multiple access-cognitive interference

More information

On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel

On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel Invited Paper Chenwei Wang, Tiangao Gou, Syed A. Jafar Electrical Engineering and Computer Science University of California,

More information

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Ather Gattami Ericsson Research Stockholm, Sweden Email: athergattami@ericssoncom arxiv:50502997v [csit] 2 May 205 Abstract

More information

Fairness in Multiuser Systems with Polymatroid Capacity Region

Fairness in Multiuser Systems with Polymatroid Capacity Region 1 arxiv:cs/0606099v1 [cs.it] 22 Jun 2006 Fairness in Multiuser Systems with Polymatroid Capacity Region Mohammad A. Maddah-Ali, Amin Mobasher, and Amir K. Khandani Coding & Signal Transmission Laboratory

More information

Sum Capacity of Gaussian Vector Broadcast Channels

Sum Capacity of Gaussian Vector Broadcast Channels Sum Capacity of Gaussian Vector Broadcast Channels Wei Yu, Member IEEE and John M. Cioffi, Fellow IEEE Abstract This paper characterizes the sum capacity of a class of potentially non-degraded Gaussian

More information

Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users

Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users Krishna Jagannathan, Sem Borst, Phil Whiting and Eytan Modiano Abstract We consider a two transmit antenna broadcast system with heterogeneous

More information

Fundamentals of Multi-User MIMO Communications

Fundamentals of Multi-User MIMO Communications Chapter 7 Fundamentals of Multi-User MIMO Communications Luca Sanguinetti and H. Vincent Poor 7.1 Introduction In recent years, the remarkable promise of multiple-antenna techniques has motivated an intense

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

to be almost surely min{n 0, 3

to be almost surely min{n 0, 3 1 The DoF Region of the Three-Receiver MIMO Broadcast Channel with Side Information and Its Relation to Index Coding Capacity Behzad Asadi, Lawrence Ong, and Sarah J Johnson arxiv:160803377v1 [csit] 11

More information

Ahmed S. Mansour, Rafael F. Schaefer and Holger Boche. June 9, 2015

Ahmed S. Mansour, Rafael F. Schaefer and Holger Boche. June 9, 2015 The Individual Secrecy Capacity of Degraded Multi-Receiver Wiretap Broadcast Channels Ahmed S. Mansour, Rafael F. Schaefer and Holger Boche Lehrstuhl für Technische Universität München, Germany Department

More information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information SUBMIED O IEEE INERNAIONAL SYMPOSIUM ON INFORMAION HEORY, DE. 23 1 Optimal Power Allocation for Parallel Gaussian Broadcast hannels with Independent and ommon Information Nihar Jindal and Andrea Goldsmith

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Optimal Power Allocation over Parallel Gaussian Broadcast Channels

Optimal Power Allocation over Parallel Gaussian Broadcast Channels Optimal Power Allocation over Parallel Gaussian Broadcast Channels David N.C. Tse Dept. of Electrical Engineering and Computer Sciences University of California at Berkeley email: dtse@eecs.berkeley.edu

More information

On Compound Channels With Side Information at the Transmitter

On Compound Channels With Side Information at the Transmitter IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 52, NO 4, APRIL 2006 1745 On Compound Channels With Side Information at the Transmitter Patrick Mitran, Student Member, IEEE, Natasha Devroye, Student Member,

More information

Bounds on Achievable Rates for General Multi-terminal Networks with Practical Constraints

Bounds on Achievable Rates for General Multi-terminal Networks with Practical Constraints Bounds on Achievable Rates for General Multi-terminal Networs with Practical Constraints Mohammad Ali Khojastepour, Ashutosh Sabharwal, and Behnaam Aazhang Department of Electrical and Computer Engineering

More information

LECTURE 13. Last time: Lecture outline

LECTURE 13. Last time: Lecture outline LECTURE 13 Last time: Strong coding theorem Revisiting channel and codes Bound on probability of error Error exponent Lecture outline Fano s Lemma revisited Fano s inequality for codewords Converse to

More information

Interference Channel aided by an Infrastructure Relay

Interference Channel aided by an Infrastructure Relay Interference Channel aided by an Infrastructure Relay Onur Sahin, Osvaldo Simeone, and Elza Erkip *Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Department

More information

Optimal Encoding Schemes for Several Classes of Discrete Degraded Broadcast Channels

Optimal Encoding Schemes for Several Classes of Discrete Degraded Broadcast Channels Optimal Encoding Schemes for Several Classes of Discrete Degraded Broadcast Channels Bike Xie, Student Member, IEEE and Richard D. Wesel, Senior Member, IEEE Abstract arxiv:0811.4162v4 [cs.it] 8 May 2009

More information

WIRELESS networking constitutes an important component

WIRELESS networking constitutes an important component IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 29 On the Capacity of MIMO Relay Channels Bo Wang, Student Member, IEEE, Junshan Zhang, Member, IEEE, and Anders Høst-Madsen, Senior

More information

Cognitive Radio: An Information-Theoretic Perspective

Cognitive Radio: An Information-Theoretic Perspective Cognitive Radio: An Information-Theoretic Perspective Aleksandar Jovičić and Pramod Viswanath May 8, 2006 Abstract Cognitive radios have been proposed as a means to implement efficient reuse of the licensed

More information

arxiv: v2 [cs.it] 27 Aug 2016

arxiv: v2 [cs.it] 27 Aug 2016 GDoF of the MISO BC: Bridging the Gap between Finite Precision and Perfect CSIT arxiv:1602.02203v2 [cs.it 27 Aug 2016 Arash Gholami Davoodi, Bofeng Yuan and Syed A. Jafar Center for Pervasive Communications

More information

An Outer Bound for the Gaussian. Interference channel with a relay.

An Outer Bound for the Gaussian. Interference channel with a relay. An Outer Bound for the Gaussian Interference Channel with a Relay Ivana Marić Stanford University Stanford, CA ivanam@wsl.stanford.edu Ron Dabora Ben-Gurion University Be er-sheva, Israel ron@ee.bgu.ac.il

More information

Weighted Proportional Fairness Capacity of Gaussian MIMO Broadcast Channels

Weighted Proportional Fairness Capacity of Gaussian MIMO Broadcast Channels Weighted Proportional Fairness Capacity of Gaussian MIMO Broadcast Channels Jia Liu and Y Thomas Hou The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State

More information

A Dual Decomposition Approach to the Sum Power Gaussian Vector Multiple Access Channel Sum Capacity Problem

A Dual Decomposition Approach to the Sum Power Gaussian Vector Multiple Access Channel Sum Capacity Problem 2003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 2 4, 2003 A Dual Decomposition Approach to the Sum Power Gaussian Vector Multiple Access Channel Sum Capacity Problem

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

Upper Bounds on MIMO Channel Capacity with Channel Frobenius Norm Constraints

Upper Bounds on MIMO Channel Capacity with Channel Frobenius Norm Constraints Upper Bounds on IO Channel Capacity with Channel Frobenius Norm Constraints Zukang Shen, Jeffrey G. Andrews, Brian L. Evans Wireless Networking Communications Group Department of Electrical Computer Engineering

More information

On Two-user Fading Gaussian Broadcast Channels. with Perfect Channel State Information at the Receivers. Daniela Tuninetti

On Two-user Fading Gaussian Broadcast Channels. with Perfect Channel State Information at the Receivers. Daniela Tuninetti DIMACS Workshop on Network Information Theory - March 2003 Daniela Tuninetti 1 On Two-user Fading Gaussian Broadcast Channels with Perfect Channel State Information at the Receivers Daniela Tuninetti Mobile

More information

On the Rate Duality of MIMO Interference Channel and its Application to Sum Rate Maximization

On the Rate Duality of MIMO Interference Channel and its Application to Sum Rate Maximization On the Rate Duality of MIMO Interference Channel and its Application to Sum Rate Maximization An Liu 1, Youjian Liu 2, Haige Xiang 1 and Wu Luo 1 1 State Key Laboratory of Advanced Optical Communication

More information

Mathematical methods in communication June 16th, Lecture 12

Mathematical methods in communication June 16th, Lecture 12 2- Mathematical methods in communication June 6th, 20 Lecture 2 Lecturer: Haim Permuter Scribe: Eynan Maydan and Asaf Aharon I. MIMO - MULTIPLE INPUT MULTIPLE OUTPUT MIMO is the use of multiple antennas

More information

Parallel Additive Gaussian Channels

Parallel Additive Gaussian Channels Parallel Additive Gaussian Channels Let us assume that we have N parallel one-dimensional channels disturbed by noise sources with variances σ 2,,σ 2 N. N 0,σ 2 x x N N 0,σ 2 N y y N Energy Constraint:

More information

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes Shannon meets Wiener II: On MMSE estimation in successive decoding schemes G. David Forney, Jr. MIT Cambridge, MA 0239 USA forneyd@comcast.net Abstract We continue to discuss why MMSE estimation arises

More information

Transmit Covariance Matrices for Broadcast Channels under Per-Modem Total Power Constraints and Non-Zero Signal to Noise Ratio Gap

Transmit Covariance Matrices for Broadcast Channels under Per-Modem Total Power Constraints and Non-Zero Signal to Noise Ratio Gap 1 Transmit Covariance Matrices for Broadcast Channels under Per-Modem Total Power Constraints and Non-Zero Signal to Noise Ratio Gap Vincent Le Nir, Marc Moonen, Jochen Maes, Mamoun Guenach Abstract Finding

More information

Interference Channels with Source Cooperation

Interference Channels with Source Cooperation Interference Channels with Source Cooperation arxiv:95.319v1 [cs.it] 19 May 29 Vinod Prabhakaran and Pramod Viswanath Coordinated Science Laboratory University of Illinois, Urbana-Champaign Urbana, IL

More information

Broadcasting over Fading Channelswith Mixed Delay Constraints

Broadcasting over Fading Channelswith Mixed Delay Constraints Broadcasting over Fading Channels with Mixed Delay Constraints Shlomo Shamai (Shitz) Department of Electrical Engineering, Technion - Israel Institute of Technology Joint work with Kfir M. Cohen and Avi

More information

The Capacity of the Semi-Deterministic Cognitive Interference Channel and its Application to Constant Gap Results for the Gaussian Channel

The Capacity of the Semi-Deterministic Cognitive Interference Channel and its Application to Constant Gap Results for the Gaussian Channel The Capacity of the Semi-Deterministic Cognitive Interference Channel and its Application to Constant Gap Results for the Gaussian Channel Stefano Rini, Daniela Tuninetti, and Natasha Devroye Department

More information

The Optimality of Beamforming: A Unified View

The Optimality of Beamforming: A Unified View The Optimality of Beamforming: A Unified View Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 92697-2625 Email: sudhirs@uciedu,

More information

Information Theory for Wireless Communications, Part II:

Information Theory for Wireless Communications, Part II: Information Theory for Wireless Communications, Part II: Lecture 5: Multiuser Gaussian MIMO Multiple-Access Channel Instructor: Dr Saif K Mohammed Scribe: Johannes Lindblom In this lecture, we give the

More information

ACOMMUNICATION situation where a single transmitter

ACOMMUNICATION situation where a single transmitter IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 2004 1875 Sum Capacity of Gaussian Vector Broadcast Channels Wei Yu, Member, IEEE, and John M. Cioffi, Fellow, IEEE Abstract This paper

More information

Sum Capacity of the Vector Gaussian Broadcast Channel and Uplink-Downlink Duality

Sum Capacity of the Vector Gaussian Broadcast Channel and Uplink-Downlink Duality Sum Capacity of the Vector Gaussian Broadcast Channel and Uplink-Downlink Duality Pramod Viswanath and David Tse March 22, 2003 Abstract We characterize the sum capacity of the vector Gaussian broadcast

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12 Lecture 1: The Multiple Access Channel Copyright G. Caire 12 Outline Two-user MAC. The Gaussian case. The K-user case. Polymatroid structure and resource allocation problems. Copyright G. Caire 13 Two-user

More information

Conjugate Gradient Projection Approach for Multi-Antenna Gaussian Broadcast Channels

Conjugate Gradient Projection Approach for Multi-Antenna Gaussian Broadcast Channels Conjugate Gradient Projection Approach for Multi-Antenna Gaussian Broadcast Channels Jia Liu Y. Thomas Hou Hanif D. Sherali The Bradley Department of Electrical and Computer Engineering The Grado Department

More information

I. Introduction. Index Terms Multiuser MIMO, feedback, precoding, beamforming, codebook, quantization, OFDM, OFDMA.

I. Introduction. Index Terms Multiuser MIMO, feedback, precoding, beamforming, codebook, quantization, OFDM, OFDMA. Zero-Forcing Beamforming Codebook Design for MU- MIMO OFDM Systems Erdem Bala, Member, IEEE, yle Jung-Lin Pan, Member, IEEE, Robert Olesen, Member, IEEE, Donald Grieco, Senior Member, IEEE InterDigital

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong Multi-User Gain Maximum Eigenmode Beamforming, and IDMA Peng Wang and Li Ping City University of Hong Kong 1 Contents Introduction Multi-user gain (MUG) Maximum eigenmode beamforming (MEB) MEB performance

More information

Distributed MIMO Network Optimization Based on Duality and Local Message Passing

Distributed MIMO Network Optimization Based on Duality and Local Message Passing Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Distributed MIMO Network Optimization Based on Duality and Local Message Passing An Liu 1, Ashutosh

More information

On the Optimality of Beamformer Design for Zero-forcing DPC with QR Decomposition

On the Optimality of Beamformer Design for Zero-forcing DPC with QR Decomposition IEEE ICC 2012 - Communications Theory On the Optimality of Beamformer Design for Zero-forcing DPC with QR Decomposition Le-Nam Tran, Maru Juntti, Mats Bengtsson, and Björn Ottersten Centre for Wireless

More information

1424 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 7, SEPTEMBER 2007

1424 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 7, SEPTEMBER 2007 1424 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 7, SEPTEMBER 2007 Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users Krishna Jagannathan, Sem Borst, Phil Whiting

More information

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Gaussian channel Information theory 2013, lecture 6 Jens Sjölund 8 May 2013 Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Outline 1 Definitions 2 The coding theorem for Gaussian channel 3 Bandlimited

More information

Channel Dependent Adaptive Modulation and Coding Without Channel State Information at the Transmitter

Channel Dependent Adaptive Modulation and Coding Without Channel State Information at the Transmitter Channel Dependent Adaptive Modulation and Coding Without Channel State Information at the Transmitter Bradford D. Boyle, John MacLaren Walsh, and Steven Weber Modeling & Analysis of Networks Laboratory

More information

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland Morning Session Capacity-based Power Control Şennur Ulukuş Department of Electrical and Computer Engineering University of Maryland So Far, We Learned... Power control with SIR-based QoS guarantees Suitable

More information

Degrees of Freedom for the MIMO Interference Channel REFERENCES

Degrees of Freedom for the MIMO Interference Channel REFERENCES IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 7, JULY 2007 2637 the interrelations between the infinite linear array and the isolated cluster setups, it can be shown that C IC M C M + 2 M CIC (M+2)

More information

Achievable rates of MIMO downlink beamforming with non-perfect CSI: a comparison between quantized and analog feedback

Achievable rates of MIMO downlink beamforming with non-perfect CSI: a comparison between quantized and analog feedback Achievable rates of MIMO downlink beamforming with non-perfect CSI: a comparison between quantized and ana feedback Giuseppe Caire University of Sourthern California Los Angeles CA, 989 USA Nihar Jindal

More information

Primary Rate-Splitting Achieves Capacity for the Gaussian Cognitive Interference Channel

Primary Rate-Splitting Achieves Capacity for the Gaussian Cognitive Interference Channel Primary Rate-Splitting Achieves Capacity for the Gaussian Cognitive Interference Channel Stefano Rini, Ernest Kurniawan and Andrea Goldsmith Technische Universität München, Munich, Germany, Stanford University,

More information

On Network Interference Management

On Network Interference Management On Network Interference Management Aleksandar Jovičić, Hua Wang and Pramod Viswanath March 3, 2008 Abstract We study two building-block models of interference-limited wireless networks, motivated by the

More information

Physical-Layer MIMO Relaying

Physical-Layer MIMO Relaying Model Gaussian SISO MIMO Gauss.-BC General. Physical-Layer MIMO Relaying Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University August 5, 2011 Model Gaussian

More information

Interference, Cooperation and Connectivity A Degrees of Freedom Perspective

Interference, Cooperation and Connectivity A Degrees of Freedom Perspective Interference, Cooperation and Connectivity A Degrees of Freedom Perspective Chenwei Wang, Syed A. Jafar, Shlomo Shamai (Shitz) and Michele Wigger EECS Dept., University of California Irvine, Irvine, CA,

More information

Precoding for the Multi-Antenna Downlink: Multiuser SNR Gap and Optimal User Ordering

Precoding for the Multi-Antenna Downlink: Multiuser SNR Gap and Optimal User Ordering Precoding for the Multi-Antenna Downlink: Multiuser SNR Gap and Optimal User Ordering Chi-Hang Fred Fung, Student Member, IEEE, Wei Yu, Member, IEEE, and Teng Joon Lim, Senior Member, IEEE Abstract This

More information