Useful Formulae of Trigonometry

Size: px
Start display at page:

Download "Useful Formulae of Trigonometry"

Transcription

1 Ueful Formule of Trigoometry DIFFERENTIATION, INTEGRATION AND FORMULAE USED CHAPTERWISE i q i q co q, co q co q, co q i q Agle i ( q) i q, co ( q) co q i 3 i (9 + q) co q (chge) co 3 i (p q) i q (No chge) t 3 3 HYPERBOLIC FUNCTIONS ih e e, coh d (ih ) coh, d (coh ) ih, i i i e e, co i e + e, coh ih i i e + e ih i i i, i ih i i, ch i co, coh co i Biomil Theorem ( + ) ( ) ( )( ) ! 3! Polr coordite r co q, y r i q, r + y, q y t r i q co f, y r i q i f, z r co q Medi i the lie joiig the verte to the mid poit of the oppoite ide of trigle. Cetroid or C.G. i the poit of iterectio of the medi of trigle. Icetre i the poit of iterectio of the biector of the gle of trigle. Circumcetre i the poit of iterectio of the perpediculr biector of the ide of trigle. Orthocetre i the poit of iterectio of the perpediculr drw from verte to the oppoite ide of trigle. Aymptote i the tget to curve t ifiity. (i)

2 DIFFERENTIAL CALCULUS d (co ) i d (t ) ec d (cot ) coec d d (ec ) ec t (coec ) coec cot d ( ) loge d d d (i ) (co ) (t ) + d d d (cot ) (ec ) (coec ) + d d d (ih ) coh (coh ) ih (th ) ec h d d d (coth ) coech (ech ) ech th (coech ) coech coth INTEGRAL CALCULUS log e i co co i t logec cot logi + log π ec log t + log(ec + t ) ih d coh 4 coec log t log(coec cot ) ec t ec coeccot coec i t + ih + cot + coec coh ih ec h th ech coech coth coech + i coh b b. f ( ) f () t dt. f ( ) ( ) 3. b f ( ) c f ( ) + b f ( ),( (, b)) c b coech coth coh ec ec h th ih f b b b f f b 4. ( ) ( + ) f ( ) f ( ) 6. f ( ) f () t f ( ) f ( ) + f ( ) if f ( ) (), if f ( ) f () (ii)

3 8. f ( ) f ( ), if f i eve fuctio i.e., f ( ) f (). f ( ) if f i odd fuctio i.e., f ( ) f (). CHAPTER (REVIEW OF VECTOR ALGEBRA) If r iˆ+ yj ˆ + zk ˆ the r + y + z AB mb + Poitio vector of B Poitio vector of A, Rtio formul c m+ Sclr Product: b. b coθ, Work doe F dr Vector Product b b i θη. ˆ. b. θ co b Are of prllelogrm b : Momet of force r F; V w r 3.( b c) b b b 3, c c3 ( b c) (. c) b( b. ) c c. d. ( b).( c d) bc. bd. Volume of prllelopiped.( b c), if.( b c) the bc,, re coplr. ( b) ( c d) [ bd] c [ bc] d [ bcd] + [ cd] b CHAPTER (DIFFERENTIATION OF VECTORS) d r Velocity dr dt, Accelertio dt Grdiet φ φ, Tget vector dr, Norml vector φ dt Directiol derivtive φ Divergece f. f, If divergece f, the f i clled oleoidl vector. Curl f f, If curl f, f i clled Irrottiol vector. CHAPTER 3 (INTEGRATION OF VECTORS) ψ φ Gree Theorem: φ +ψ dy dy c y, Stoke Theorem:. curl. ηˆ Gu theorem of Divergece: F. η d div f dy dz v F dr F d c CHAPTER 4 (ORTHOGONAL CURVILINEAR COORDINATES) Orthogol curvilier coordite. Let the rectgulr Crtei coordite of poit P i pce be (, h, z). Now we itroduce oe more ytem of coordite Let X (u, u, u 3 ), y Y (u, u, u 3 ), z Z (u, u, u 3 ) h r, h r, h r 3 u v v ds h du, dh h du, ds 3 h 3 du (iii)

4 CHAPTER 5 (DOUBLE INTEGRALS) Firt Method: b y f (, y) dy f (, y) dy A y Secod Method: d f (, y) dy f (, y) dy A c Chge of Order of Itegrtio O chgig the order of itegrtio, the limit of itegrtio chge. To fid ew limit, we drw the rough ketch of the regio of itegrtio. Some of the problem coected with double itegrl, which eem to be complicted, c be mde ey to hdle by chge i the order of itegrtio. CHAPTER 6 (APPLICATION OF THE DOUBLE INTEGRALS) Are, Volume d Surfce Z Are i Polr Co-ordite: Are r dθ dr S Z P γ N Surfce Are Let z f (, y) be the urfce S. Let it projectio o the -y ple be the regio A. Coider elemet. dy i the regio A. Erect cylider o the elemet. dy hvig it geertor prllel to OZ d meetig the urfce S i elemet of re. O A δ δy X Y. dy d co g, S A Triple Itegrtio It c be clculted CHAPTER 7 (TRIPLE INTEGRATION) z z + + dy y y z f(, y, z) dz dy, Firt we itegrte with repect to z tretig y z, y cott betwee the limit z d z. The reultig epreio (fuctio of, y) i itegrted with repect to y keepig cott betwee the limit y d y. At the ed we itegrte the reultig epreio (fuctio of oly) withi the limit d. Itegrtio by Chge of Crtei Coordite ito Sphericl Coordite Sometime it become ey to itegrte by chgig the crtei coordite ito phericl coordite. The reltio betwee the crtei d phericl polr co-ordite of poit re give by the reltio r i q co f y r i q i f z r co q dy dz J dr dq df r i q dr dq df (iv)

5 CHAPTER 8 (APPLICATION OF TRIPLE INTEGRATION) Volume of the olid Coider elemetry cuboid, whoe volume i dy dz. The the volume of the whole olid i obtied by evlutig the triple itegrl. If the equtio of the urfce of the olid be give i crtei coordite, the V dy dz (dv dy dz) dy rdqdr dydz r i q dr dq df Are Cetre of grvity y ' dy, Volume y y z dydz, dy y z (, y) drd θ (, r θ) ρ dy dz yρ dy dz zρ dy dz, y, z ρ dy dz ρ dy dz ρ dy dz Momet of Ierti bout i Momet of Ierti bout y i Momet of Ierti bout z i ρ + ( y z ) dy dz ρ + ( z ) dy dz ρ + ( y ) dy dz ρ d d y Cetre of preure, y ρ dy A yρ dy A ρ dy A CHAPTER 9 (GAMMA, BETA FUNCTION) +, +, π Gmm Fuctio: Bet Fuctio: b(l,m) Dirichlet Itegrl e Liouville Eteio of Dirichlet theorem m+ + ( ) m π l m, m i co θ θdθ l + m m+ + m lm y z dydz l + m+ + m lm h l + m+ f ( + y + z). y. z dydz f ( u) u du l + m+ + h Error fuctio ψα { φα } CHAPTER (THEORY OF ERRORS) l dt e π d ( ) d ψα ( ) f(, α) dφ dψ f (, y) f [ φ( α), α ] + f [ ψ( α), α] dα ( ) φ( α) α dα dα (v)

6 CHAPTER (FOURIER SERIES) f ( ) + co + co co bi + bi bi +... Where π π ( ), ( )co π f π f, π b ( )i π f π π For eve fuctio: ( ), ( )co, π f π f b π For odd fuctio:,, b ( ) i π f For rbitrry fuctio: c c ( ), ( ) co π f f c c c i p, co p ( ) c π b f ( )i c c CHAPTER (DIFFERENTIAL EQUATIONS OF FIRST ORDER) (i) Vrible eprble: f (y)dy f(), f ( y) dy φ ( ) + c (ii) Homogeeou Equtio: (iii) Reducible to homogeeou: dy f ( ) where ech term of f () d f() re of the me degree. φ ( ) dy dv Put y v o tht v+. dy + by + c A + By + C Put X + h, y Y + k if b A B, Put + by z if b A B Lier differetil equtio: dy + Py Q where P d Q re ot fuctio of y. Itegrtig fctor Ect Differetil Equtio If If M N y M N y p e P p, the y. e ( Qe ) + c the M + Ndy i ect differetil equtio. the the give differetil equtio i ot ect, but it c be reduced ect differetil equtio. M N y. If i fuctio of loe y f () the N. If If f ( ) e. O multiplyig the differetil equtio by itegrtig fctor become ect differetil equtio. N M y M i fuctio of y loe y f (y), the (vi)

7 I.F. f ( y) dy e o multiplyig the give differetil equtio by itegrtig fctor become ect differetil equtio. 3. If M i of the form M yf (y) d N i of the from N f (y) the I.F. 4. For thi type of m y (y + bdy) + m y ( y + b dy) the I.F. h y k. where m+ h+ + k + d b m' + h+ ' + k + ' b' O olvig thee equtio we get the Vlue of h d k.. M Ny CHAPTER 3 (LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER) Rule to fid Complemetry Fuctio m. whe root of A.E. m, m ; C.F. m ce + ce. whe root re equl; C.F. (c + c )e m 3. whe root re comple + ib ; C.F. e [c co b + c i b] Rule to Fid Prticulr Itegrl (i) (ii) (iii) e e, if f () ; e e if f () f( D) f( ) f( ) f ( ) [ f( D)], Epd [f (D)] d the operte f( D) i i co co f( D ) f( ) f( D ) f( ) If f ( ) the i i (iv) e. φ ( ) e. φ( ) f( D ) f ( ) f( D) f( D+ ) (v) φ ( ) f ( D) φ( ) f( D) f( D) f( D) (vi) φ ( ) e e φ( ) D+ CHAPTER 4 (CAUCHY EULER EQUATIONS, METHOD OF VARIATION OF PARAMETERS) Vritio of Prmeter C.F. Ay + By the P.I. uy + vy yx yx Where u v yy yy yy yy d y dy 4 Homogeeou Differetil Equtio i + 4y Put e z dy, Dy, d y d DD ( ) y, where D dz (vii)

8 CHAPTER 5 (LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER) Equtio of the type d y f ( ) Equtio of the type d y f ( y) Equtio which do ot Coti y Directly The equtio which do ot coti y directly, c be writte f d y d y dy,,...,...() dy d y dp O ubtitutig Pie.., d i (), we get P d f,... P, Equtio tht do ot Coti Directly The equtio tht do ot coti directly re of the form d y d y dy y f,,..., 3 d y d P 3 dy d y dp dp dy dp O ubtitutig P, P i the equtio (), we get dy dy dp,... P, y...() dy Equtio () i olved for P. Let dy dy P f( y) f( y) f( y) Equtio whoe oe Solutio i kow dy f ( y ) + c If y u i give olutio belogig to the complemetry fuctio of the differetil equtio. Let the other olutio be y v. The y u. v i complete olutio of the differetil equtio. d y dy Let + P + Qy R...(), be the differetil equtio d u i the olutio icluded i the complemetry fuctio of () d u du P Qu...() () y u. v dy du dv v + u d y v d u + dv du + u d v (viii)

9 dy d y Subtitutig the vlue of y,, i (), we get d u dv du d v du dv v + + u + P v u Qu. v R + + O rrgig d u du d v dv du dv v + P + Qu u P R The firt brcket i zero by virtue of reltio (), d the remig i divided by u. d v dv du dv P + + R u u d v du dv + P + u R u Norml Form (Removl of Firt Derivtive) d y dy Coider the differetil equtio + P + Qy R...() Put y uv where v i ot itegrl olutio of C.F. dy d y du du v + u u d v + du dv + v d u d dy d y O puttig the vlue of y,, i () we get d v dv du d u dv du u + + v P u v Q. uv R...(3) d u du dv d v dv v + Pv u P Q. v R d u du dv u d v dv + P P Qv v v R v Here i the lt brcket o L.H.S. i ot zero y v i ot prt of C.F. Here we hll remove the firt derivtive. dv dv P + or P or log v P v v P v e d v dv I () we hve to fid out the vlue of the lt brcket i.e., P Qv + + dv P P e Pv / P v e d v dp P dv dp P dp v v Pv v + P v 4 (i)...()

10 d v dv P Qv + + dp dp v + P v + P Pv + Qv v Q P 4 4 Equtio () i trformed d u u dp P + v Q v 4 Let d u dp P + u Q 4 Equtio (3) become R v Re P d u Qu + R where dp P Q Q 4 y uv d dv z, o tht d v dz P R Re or R v P v e A dz du R + P z + u u Thi i the lier differetil equtio of firt order d c be olved (z c be foud), which will coti oe cott. dv O itegrtio z, we c get v. Hvig foud v, the olutio i y uv. Note: Rule to fid out the itegrl belogig to the complemetry fuctio Rule Coditio u + P + Q e P + Q e 3 + P Q + e 4 P + Q 5 + P + Q 6 ( ) + P + Q CHAPTER 7 (APPLICATIONS TO DIFFERENTIAL EQUATIONS) Elemet Symbol Uit. Chrge q coulomb. Curret i mpere 3. Reitce, R + i ohm R ()

11 4. 5. Iductce, Cpcitce, + L i i hery H C + frd C 6. Electromotive force + E cott V or voltge (cott) i volt 7. Vrible voltge + E ~ vrible V volt i The formtio of differetil equtio for electric circuit deped upo the followig lw. dq (i) i, dt (ii) Voltge drop cro reitce R Ri (iii) Voltge drop cro iductce L. di L dt (iv) Voltge drop cro cpcitce C q C di Ri + L E dt R L L R di R + i E dt L L di R + i dt L q Ri c E i wt L i C + E E wt V C R i dq q R + dt c i Ri + dt E c i wt R E i wt di i R + E dt c co wt L C R d q dq + R + q dt dt c i i Mechicl Egieerig problem. V dt d, dt F m, dv V d F m, (i) dv F mv

12 Verticl motio Verticl Eltic Strig Horizotl Eltic Strig Stre (T) Stri Stri Stre Stri gt g ( kt e k k ) T Cott Module of Elticity (E) Etemio i legthq origil legth E l or E mg l Cott of elticity T E l d E Equtio of motio i m dt l Simple Hrmoic motio (S.H.M) d u dt The imple pedulum d Retorig force m dt mg i q d g i q dt Ocilltio of Sprig O O I A θ T P θ mg i θ mg O mg co θ d m dt mg k ( + ) Dmpled Free Ocilltio d + λ + u dt dt Forced ocilltio (without dmpig) d m dt mg k + q co t Forced ocilltio (without dmpig) Projectile y t d k k q + co t dt m m drt m g u co α A B P Y u i α k dt P mg u P (, y) A B e co t k ( + ) dmper O u co α A X (ii)

13 Fuctiol Euler equtio CHAPTER 8 (CALCULUS OF VARIATIONS) dy +. f d df y dy ' CHAPTER 9 (MAXIMA AND MINIMA OF FUNCTIONS) Workig rule to fid Etremum Vlue (i) Differetite f (, y) d fid out (ii) Put f d f f f f f,,,, y y y f y f (iii) Evlute r, f, t y y d olve thee equtio for d y. Let (, b) be the vlue of (, y). f for thee vlue (, b). (iv) If rt > d () r <, the f (, y) h mimum vlue. (b) r >, the f (, y) h miimum vlue. (v) If rt <, the f (, y) h o etremum vlue t the poit (, b). (iv) If rt, the the ce i doubtful d eed further ivetigtio. f f Note: The poit (, b), which re the root of d re clled ttiory poit. y Lgrge Method of Udetermied Multiplier Let f (, y, z) be fuctio of three vrible, y, z d the vrible be coected by the reltio. φ (, y, z)...() f (, y, z) to hve ttiory vlue, f, f y, f z f f f + dy + dz y z By totl differetitio of (), we get φ φ φ + dy + dz y z Multiplyig (3) by λ d ddig to (), we get...()...(3) f φ f φ f φ +λ + dy +λ dy + dz +λ dz y y z z (iii)

14 f φ f φ f φ +λ + +λ dy + +λ dz y y z z Thi equtio will hold good if f φ +λ f φ +λ y y f z φ +λ z...(4)...(5)...(6) O olvig (), (4), (5), (6), we c fid the vlue of, y, z d λ for which f (, y, z) h ttiory vlue. Drw Bck i Lgrge method i tht the ture of ttiory poit cot be determied. CHAPTER (COMPLEX VARIABLE FUNCTION) Alytic fuctio A igle vlued fuctio which i differetible t z z i id to be lytic t the poit z z u v u v C R Equtio:,. Ad u v ; u r v y y r r θ θ r v v To fid cojugte fuctio, dv + dy y Mile Thomo Method f (z) φ ( z,) dz + φ( z,) dz u u + dy if u i give y u u φ (, ), φ ( y, ) y, where y, where y f ( z) ψ ( z,) dz + ψ( z,) dz CHAPTER 3 (TRANSFORMATION) v v ψ (, ), ψ ( y, ). y For every poit (, y) i the z-ple, the reltio w f (z) defie correpodig (u, v) i the w-ple. We cll thi trformtio or mppig of z-ple ito w-ple z mp ito the poit w, w i lo kow the imge of z, If the poit P (, y) move log curve C i z-ple, the poit P (u, v) will correpodig curve C i w-ple, the we y tht curve C i the z-ple i correpodig curve C i the w-ple by the reltio w f (z). Coforml Trformtio Let two curve C, C, i the z-ple iterect t the poit P d the correpodig curve C, C i the w-ple iterect t P. If the gle of iterectio of the curve t P i z-ple i the me the gle of iterectio of the curve of w-ple t P i mgitude d ee, the the trformtio i clled coforml: coditio: (i) f (z) i lytic. (ii) f (z) If the ee of the rottio well the mgitude of the gle i preerved, the trformtio i id to be coforml. If oly the mgitude of the gle i preerved, trformtio i Iogol. Trltio: w z + c Rottio: w ze iq Or (iv)

15 Mgifictio: w c.z. Bilier Trformtio: w z + b cz + d Ivrit poit: w z + b the w z cz + d CHAPTER 4 (COMPLEX INTEGRATION) Cuchy Itegrl Theorem f ( z ) dz if f (z) i lytic fuctio withi C. c Cuchy Itegrl formul f ( z) dz ( ) c z πif, if f (z) i lytic i c, d i poit withi C. Reidue (i) Re f () lim ( z ) f ( z ), (ii) Re () φ( ) z ψ ( ) (iii) Re () d ( z ) f( z)!, (iv) Re () coefficiet of dz t Reidue Theorem f ( z ) dz πi (Sum of the reidue t the pole writte C) c π, where t z dz f(i θ, co θ) dθ, put i θ [ z ], co θ z+, dθ i z z iz C i the circle of rdiu oe. f( ), coider ( ) f( ) f z dz f( ) where f( ) c f( ) d c i the emicircle with rel i. CHAPTER 5 (TAYLOR S AND LAURENT S SERIES) Tylor erie. f (z) f () + f () (z ) + f "( )! (z ) f ( ) (z ) +...! Rdiu of Covergece : Luret theorem + lim R If we re required to epd f () bout poit where f (z) i ot lytic, the it i epded by Luret Serie d ot by Tylor Serie. Sttemet. If f (z) i lytic o c d c v d the ulr regio R bouded by the two cocetric circle c d c of rdii r d r (r < r ) d with cetre t, the for ll z i R f (z) + (z ) + (z ) b b z ( z ) f( w) πi c ( w ) + dw, r R A B W r b f ( w) πi c ( w ) + dw R C C (v)

16 Legedre Equtio CHAPTER 8 (LEGENDRE S FUNCTIONS) ( ) d y dy ( ) y () ( ) ( )( )( 3) 4 P ( ) () ()(3).4 Rodrigue formul Geertig Fuctio Orthogolity Property d P ( ) ( )! ( z + z ) ΣP ( ) z + P ( ). ( ) P m, if m d Recurrece Formule (i) ( + ) P+ ( + ) P P (ii) P P P (iii) (+ ) P P + P (iv) P P P (v) ( ) P [ P P ] (vi) Beel Equtio ( ) P ( + ) ( P+ P) CHAPTER 9 (LEGENDRE S FUNCTIONS) d y dy ( ) y + +, + P ( ) + r + r ( ) J( ) r r+ r+ Recurrece Formul (i) J J J + (ii) J J + J (iii) J J J + d (iv) J ( J + J+ ) (v) ( J ) J + (vi) d ( J ) J Hermite equtio CHAPTER 3 (HERMITE FUNCTION) d y dy + y Geertig fuctio of Hermite polyomil e { ( t ) } e t Orthogol property e Hm ( ) H ( ), H () + H + () t + H + () t +... m! π, m Recurrece Formule for H () of Hermite Equtio Four recurrece Reltio. H () H (). H () H () + H + () 3. H () H () H + () 4. H () H () + H () (vi)

17 CHAPTER 3 (LAGUERRES FUNCTIONS) d y dy + ( ) + y Lguerre Fuctio for Differet Vlue of. L ()! L () L () L () 4 + L 3 () L 4 () d o o. Geertig Fuctio of Lguerre Polyomil L ( ) ( t) t e! Recurrece Reltio t t t L ( ) t I. e ( t) t! II. L () L () + L () III. L + () + ( ) L () + L () t IV. ( t) e Orthogol Property L ( t )! / Let f( ) e L( )...()! L ( ) L ( ) m!! for m Over the itervl whe δ m, for m m f ( ) ( ) m f e δ m, CHAPTER 34 (LINEAR TRANSFORMATIONS) (i) T ( + b) T () + T (b), b U d (ii) T ( ) T () F, U Zero Trformtio if U (F) d V (F) be two vector pce over the me field F, the the mppig o ˆ,, U v. Mtri of Lier Trformtio Coider the imulteou equtio give below: (vii)

18 The left hd ide of the equtio c be coidered the lier trformtio of T T we c write the formul A:T A (X) AX y 5 C A (4, 5) S {(, ), (, )} S {(, ), (, )} 4 3 Pth (4, 5) 4 (, ) + 4 (, ) Pth (4, 5) 5 (, ) + 4 (, ) B 3 4 if T : A B i trformtio the et A i clled the domi d the et B i clled the codomi of T. Chge of Bi Codomi of lier trformtio Rk d Nullity of lier Trformtio Let T : V W be Lier Trformtio. We kow tht T (V) i ubpce of the vector pce. The dimeio of thi ubpce T (V) i clled the rk of T. Nullity of f dim [ker (f)] Similrity of Mtrice If A d B re qure mtrice of order over the field F, the B i id to be imilr to A, if there eit ivertible qure mtri P with elemet i F i uch tht B P AP CHAPTER 35 (BASIS OF NULL SPACE, ROW SPACE AND COLUMN SPACE) Row Vector Here we hve m mtri A... m m... m The elemet,... re kow eterie. If,... re rel, the eterie re i R. The row of A decribed vector i R re clled row vector or row mtri r (,, ) r (, ) r m ( m, m m ) (viii)

19 Colum Vector Colum vector of A re C..., C... m Colum pce m A {C, C... C } Row pce A [r, r... r } C m Null pce A i R i clled the ull pce of A. If i deoted by ull (A) Dimeio of Vector pce The umber of vector preet i bi of vector pce V i clled the dimeio of V. It i deoted by dim (V). Nullity The dimeio of the ull pce of the mtri A i clled the ullity of A d i deoted by ullity (A) or the umber of free vrible i the olutio of AX. Rk of Mtri The row rk of mtri i equl to the dimeio of the row pce of the mtri. The colum rk of mtri i equl to the dimeio of the colum pce of the give mtri. Rk Nullity Theorem Coider mtri A the rk (A) + ull (A) umber of colum of A. CHAPTER 36 (REAL INNER PRODUCT SPACES) Ier Product pce A vector pce together with ier product defied o it i clled ier product pce. We kow the clr product of vector d b i R we c defie ier product of two-colum vector d b (, b) T.b. A rel vector pce V i clled rel ier product pce if it h the followig propertie:. Symmetry. (X, Y) (Y, X). Additivity. (X + Y, Z) (X, Z) + (Y, Z) 3. Lierity. C(X, Y) (C X, Y) (X, CY) 4. Poitivity. (X, X) d (X, X) if d oly if X. The legth or orm of vector X i V i defied by X ( X, X) (i)

20 Orthogol Vector (Perpediculr Vector) Accordig to Cuchy Schwrz iequlity ( ) XY, X Y Sclr product of two vector ( ) XY, X Y coθ Where θ i the gle betwee two vector X d Y If co θ, the (X, Y) Thee two vector X d Y re kow orthogol vector. Grm-Schmidt orthogolitio-proce Y X ( Y, X) Y ( Y, Y) Uitry Trformtio Y X ( X, Y ) Y Y X Y ( X, Y ) ( X, Y ) _ Y Y Y X Y Y A lier trformtio, Y AX, where A i Uitry (i.e., A i uch A θ A A A θ I ), i clled uitry trformtio. Theorem. The ecery d ufficiet cditio for lier trformtio Y AX d V (C) to preerve legth i tht A i uitry. Orthogol Trformtio A trformtio Y AX i id to be orthogol if it mtri i orthogol. Orthogol projectio Projectio of log b b b b Lier Trformtio of Mtrice Let X d Y be two vector uch tht y y X, Y y y [,,..., ] y [ ] ()

21 Mior CHAPTER 37 (DETERMINANTS) The mior of elemet i defied determit obtied by deletig the row d colum cotiig the elemet. Thu the mior of, b d c re repectively. b c c b, d b3 c3 3 c3 3 b3 b c Thu b c (mior of ) b (mior of b ) + c (mior of c ). 3 b3 c3 Cofctor Cofctor ( ) r+c Mior Propertie of Determit Property (i). The vlue of determit remi ultered; if the row re iterchged ito colum (or the colum ito row). Property (ii). If two row (or two colum) of determit re iterchged, the ig of the vlue of the determit chge. Property (iii). If two row (or colum) of determit re ideticl, the vlue of the determit i zero. Property (iv). If the elemet of y row (or colum) of determit be ech multiplied by the me umber, the determit i multiplied by tht umber. Property (v). The vlue of the determit remi ultered if to the elemet of oe row (or colum) be dded y cott multiple of the correpodig elemet of y other row (or colum) repectively. Fctor Theorem If the elemet of determit re polyomil i vrible d if the ubtitutio mke two row (or colum) ideticl the ( ) i fctor of the determit. Whe two row re ideticl, the vlue of the determit i zero. The epio of determit beig polyomil i vihe o puttig, the i it fctor by the Remider theorem. CHAPTER 38 (ALGEBRA OF MATRICES) Type of equtio, AX B; C {A, B} () Coitet equtio If Rk of C Rk of A () Uique olutio If Rk of C Rk of A Number of ukow (b) Ifiite olutio If Rk of C Rk of A < Number of ukow () Icoitet equtio. If Rk of C Rk of A. Eige vlue re the root of the chrcteritic equtio A li O Cyley Hmilto Theorem. Every qure mtri tifie it ow chrcteritic equtio. Digolitio P AP D, where P i the modl mtri cotiig eige vector, D i the digol mtri cotiig eige vlue. (i)

22 Determit Crmer rule. olve the followig equtio. + b y + c z d + b y + c z d 3 + b 3 y + c 3 z d 3 D b c b c 3 3 c3, D d b c d b c, d3 b c3 D d c d c, 3 d3 c3 D 3 b d b d 3 b3 d3 D, D D y, D D3 z D Rk of Mtri The rk of mtri i id to be r if CHAPTER 39 (RANK OF MATRIX) () It h t let oe o-zero mior of order r. (b) Every mior of A of order higher th r i zero. Note: (i) No-zero row i tht row i which ll the elemet re ot zero. (ii) The rk of the product mtri AB of two mtrice A d B i le th the rk of either of the mtrice A d B. (iii) Correpodig to every mtri A of rk r, there eit o-igulr mtrice P d Q uch tht PAQ I r Norml form (Coicl form) By performig elemetry trformtio, y o-zero mtri A c be reduced to oe of the followig four form, clled the Norml form of A : (i) I r (ii) [I r ] (iii) I r The umber r o obtied i clled the rk of A d we write ρ(a) r. The form (iv) I r I r CHAPTER 4 (CONSISTENCY OF LINEAR SYSTEM OF EQUATIONS AND THEIR SOLUTION) Homogeeou Equtio For ytem of homogeeou lier equtio AX O (i) X O i lwy olutio. Thi olutio i which ech ukow h the vlue zero i clled the Null Solutio or the Trivil olutio. Thu homogeeou ytem i lwy coitet. A ytem of homogeeou lier equtio h either the trivil olutio or ifiite umber of olutio. (ii) If R (A) umber of ukow, the ytem h oly the trivil olutio. (iii) If R (A) < umber of ukow, the ytem h ifiite umber of o-trivil olutio. (ii)

23 A ytem of homogeeou lier equtio AX O Alwy h olutio Fid R(A) R (A) (o. of ukow) Uique or trivil olutio (ech ukow equl to zero) R (A) < (o. of ukow) Ifiite o. of o-trivil olutio Lier Depedece d Idepedece of Vector Vector (mtrice) X, X,... X re id to be depedet if () ll the vector (row or colum mtrice) re of the me order. () clr λ, λ,... λ (ot ll zero) eit uch tht λ X + λ X + λ 3 X λ X Otherwie they re lierly idepedet. Remember: If i et of vector, y vector of the et i the combitio of the remiig vector, the the vector re clled depedet vector. A ytem of o-homogeeou lier equtio AX B Fid R(A) d R(C) R (A) R(C) Solutio eit, ytem i coitet R (A) R (C) No olutio, ytem i icoitet R (A) R(C) (o. of ukow) Uique olutio R (A) R(C) < (o. of ukow) Ifiite o. of olutio Prtitioig of Mtrice Sub mtri. A mtri obtied by deletig ome of the row d colum of mtri A i id to be ub mtri. 4 For emple, A 5, the ,, re the ub mtrice. Prtitioig: A mtri my be ubdivided ito ub mtrice by drwig lie prllel to it row d colum. Thee ub mtrice my be coidered the elemet of the origil mtri. (iii)

24 : 4 : 3 4 For emple, A : : 6 5 CHAPTER 4 (EIGEN VALUES, EIGEN VECTOR, CAYLEY HAMILTON THEOREM, DIAGONALISATION) Fige Vlue Let X be uch vector which trform ito λx by me of the trformtio (). Suppoe the lier trformtio Y AX trform X ito clr multiple of itelf i.e. λx. AX Y λ X AX λ IX (A λi) X...() Thu the ukow clr λ i kow eige vlue of the mtri A d the correpodig o zero vector X eige vector. (b) Chrcteritic Polyomil: The determit A λi whe epded will give polyomil, which we cll chrcteritic polyomil of mtri A. For emple; λ 3λ λ ( λ) (6 5 λ + λ ) ( λ ) + ( 3 + λ) λ λ λ + 5 (c) Chrcteritic Equtio: The equtio A λi i clled the chrcteritic equtio of the mtri A e.g. λ 3 7λ + λ 5 (d) Chrcteritic Root or Eige Vlue: The root of chrcteritic equtio A λi re clled chrcteritic root of mtri A. e.g. λ 3 7 λ + λ 5 (λ ) (λ ) (λ 5) λ,, 5 Chrcteritic root re,, 5. Cyley-Hmilto Theorem Stemet. Every qure mtri tifie it ow chrcteritic equtio. If ( ) ( A I λ λ + λ + λ + + ) A ( ij ), the the mtri equtio Power of mtri i tified by X A i.e X X X I A A A I PD PP A PP A be the chrcteritic polyomil of mtri A PD P where D (iv) λ λ λ3

25 Workig procedure (i) Fid the eigee vlue of qure mtri A. (ii) Fid the correpodig eige vector d write modl mtri P. (iii) Fid digol mtri D from D P AP (iv) Obti A from A PD P Chrcteritic Vector or Eige Vector AX lx X i clled eige vector. Propertie of Eige Vector. The eige vector X of mtri A i ot uique.. If λ, λ,..., λ be ditict eige vlue of mtri the correpodig eige vector X, X,..., X form lierly idepedet et. 3. If two or more eige vlue re equl it my or my ot be poible to get lierly idepedet eige vector correpodig to the equl root. 4. Two eige vector X d X re clled orthogol vector if X X. 5. Eige vector of ymmetric mtri correpodig to differet eige vlue re orthogol. Orthogol Vector Two vector X d Y re id to be orthogol if T T X X X X. Algebric Multiplicity Algebric multiplicity of eige vlue i the umber of time of repetitio of eige vlue. 3 6 Geometric Multiplicity re 3, 3, 5. Geometric multiplicity of eige vlue i the umber of lierly idepedet eige vector correpodig to λ. It i deoted by Mult g (λ) 3 λ 3 re 3 d. So the mult g ( 3) Similrity Trformtio Let A d B be two qure mtrice of order. The B i id to be imilr to A if there eit oigulr mtri P uch tht B P AP...() Equtio () i clled imilr trformtio. Digolitio of Mtri Digolitio of mtri A i the proce of reductio of A to digol form D. If A i relted to D by imilrity trformtio uch tht D P AP the A i reduced to the digol mtri D through modl mtri P. D i lo clled pectrl mtri of A. (v)

26 Power of Mtri (By Digolitio) We c obti power of mtri by uig digolitio. We kow tht D P AP Where A i the qure mtri d P i o-igulr mtri. D (P AP) (P AP) P A (P P ) AP P A P Similrly D 3 P A 3 P I geerl D P A P...() Pre-multiply () by P d pot-multiply by P P D P P (P A P) P (P P ) A (P P ) A Procedure: () Fid eige vlue for qure mtri A. () Fid eige vector to get the modl mtri P. (3) Fid the digol mtri D, by the formul D P AP (4) Obti A by the formul A P D P. Hermiti Mtri Defiitio. A qure mtri A [ ij ] i id to be Hermiti if the (i, j)th elemet of A, i.e., For emple Skew-Hermiti Mtri ij 3+ 4 i b id, 3 4i b + id c ji for ll i d j. Defiitio. A qure mtri A ( ij ) i id to be Skew-Hermiti mtri if the (i, j)th elemet of A i equl to the egtive of the cojugte comple of the (j, i)th elemet of A, i.e., Periodic Mtri ij ji for ll i d j. A qure mtri i id to be periodic, if A k+ A, where k i poitive iteger. If k i the let poitive iteger for which A k+ A, the A i id to be of period k. Idempotet Mtri A qure mtri i id to be idempotet provided A A. Uitry Mtri A qure mtri A i id to be uitry mtri if θ θ AA AA I CHAPTER 4 (PARTIAL DIFFERENTIAL EQUATIONS) dy dz Pp + Qq R we c lo ue multiplier. P Q R z z z Homogeeou equtio + + A.E. i y m + m + y Ce I. If m m, m m, C.F. f (y + m ) + f (y + m ) Ce II. If m m C.F. f (y + m ) + f (y + m ) (vi)

27 (i) Prticulr Itegrl (ii) P.I. (iii) P.I. (iv) P.I. by by e + e +, f( DD, ) f( b, ) i( + by) i( + by) f ( D, DD, D ) f (, b, b ) (, ) f( DD, ) f y, ue Biomil Theorem f(, y) f(, c+ m) f ( D + md ) CHAPTER 43 (LINEAR AND NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS) No Homogeeou Equtio Moge Method Rr + S + Tt v dp dy dq r, t ubtitute the vlue of r d t i (ii). dy Rdy Sdy + T...(i) CHAPTER 44 (APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS) If (i) u u c t (wve equtio) (ii) u u c t (Oe dimeio het flow) (iii) u u + y (Two dimeio het flow) Clifictio z z z A + B + C + F (, y, z, p, q) y y. Prbolic if B 4A C. Elliptic if B 4A C < 3. Hypercritic if B 4A C > Fourier Trform CHAPTER 45 (INTEGRAL TRANSFORM) F () f () t f () t i dt. π i Fe () π Fourier Sie Trform f () F () i d F ( ) π t dt π f ( ) i (vii)

28 Fourier Coie Trform f () f () co F ( ) d π f ( t) co t dt. π. L(). 4. L (coh t) 7. L (co t). + CHAPTER 46 (LAPLACE TRANSFORM)! Lt ( ) L (ih t) t Le ( ) 6. L (i t) + 8. Le t f(t) F ( ) 9. Le f (t) Lf (t) f () L f ( t) Lf ( t) f () f (). d. Lt [ f( t)] ( ) [ F ( )] 3. d L f () t F ( ) d t 4. e 5. Lut [ ( )] 6. L[ f( t ). u( t )] 7. e F( ) T t 8. Lδ( t ) e e f () t dt 9. Lf () t T e. 3. Lt co t ( + ). L (i t t co t ) ( + ). L (i t t co t) 3 ( + ) t Covolutio Theorem L f () f( t ) F()* F() L f () t dt F( ) whe ut ( ) whe Lδ( t ) t < t > t L i t ( + ) CHAPTER 47 (INVERSE LAPLACE TRANSFORMS) L. L coh t 5. L co t 8. + t L 3. ( )! L ih t 6. t L F ( ) e ft () L 3 (i t t co t ). ( + ) L t co t. ( + ) L (i t + t co t ) ( + ) (viii) t L e L i t + L t i t ( + )

29 3. d L [ F( )] f ( t) + f () 4. dt t L F () f () t dt 5. L e F( ) f( t ) u( t ) 7. f() t L Fd () 9. t L f () f( t ) F(). F() t L F ( + ) e ft () d L F( ) tf() t d. f (t) um of the reidue of e t F () F( αi) αit F () t the pole of F (). L e G () i G ( αi) (i)

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

Tranformations. Some slides adapted from Octavia Camps

Tranformations. Some slides adapted from Octavia Camps Trformtio Some lide dpted from Octvi Cmp A m 3 3 m m 3m m Mtrice 5K C c m ij A ij m b ij B A d B mut hve the me dimeio m 3 Mtrice p m m p B A C H @K?J H @K?J m k kj ik ij b c A d B mut hve A d B mut hve

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

Chap8 - Freq 1. Frequency Response

Chap8 - Freq 1. Frequency Response Chp8 - Freq Frequecy Repoe Chp8 - Freq Aged Prelimirie Firt order ytem Frequecy repoe Low-p filter Secod order ytem Clicl olutio Frequecy repoe Higher order ytem Chp8 - Freq 3 Frequecy repoe Stedy-tte

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION School Of Distce Eductio Questio Bk UNIVERSITY OF ALIUT SHOOL OF DISTANE EDUATION B.Sc MATHEMATIS (ORE OURSE SIXTH SEMESTER ( Admissio OMPLEX ANALYSIS Module- I ( A lytic fuctio with costt modulus is :

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper SET - GSE tch : 0th Std. Eg. Medium MHESH TUTILS SUJET : Mths(0) First Prelimiry Exm Model swer Pper PRT -.. () like does ot exist s biomil surd. () 4.. 6. 7. 8. 9. 0... 4 (c) touches () - d () -4 7 (c)

More information

For all Engineering Entrance Examinations held across India. Mathematics

For all Engineering Entrance Examinations held across India. Mathematics For ll Egieerig Etrce Exmitios held cross Idi. JEE Mi Mthemtics Sliet Fetures Exhustive coverge of MCQs subtopic wise. 95 MCQs icludig questios from vrious competitive exms. Precise theory for every topic.

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

S(x)along the bar (shear force diagram) by cutting the bar at x and imposing force_y equilibrium.

S(x)along the bar (shear force diagram) by cutting the bar at x and imposing force_y equilibrium. mmetric leder Bems i Bedig Lodig Coditios o ech ectio () pplied -Forces & z-omets The resultts t sectio re: the bedig momet () d z re sectio smmetr es the sher force () [ for sleder bems stresses d deformtio

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

1999 by CRC Press LLC

1999 by CRC Press LLC Poulri A. D. The Melli Trform The Hdboo of Formul d Tble for Sigl Proceig. Ed. Alexder D. Poulri Boc Rto: CRC Pre LLC,999 999 by CRC Pre LLC 8 The Melli Trform 8. The Melli Trform 8. Propertie of Melli

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays. Sphericl refrctig urfce Here, the outgoig ry re o the oppoite ide of the urfce from the Icomig ry. The oject i t P. Icomig ry PB d PV form imge t P. All prxil ry from P which trike the phericl urfce will

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

DIGITAL SIGNAL PROCESSING LECTURE 5

DIGITAL SIGNAL PROCESSING LECTURE 5 DIGITAL SIGNAL PROCESSING LECTURE 5 Fll K8-5 th Semester Thir Muhmmd tmuhmmd_7@yhoo.com Cotet d Figures re from Discrete-Time Sigl Processig, e by Oppeheim, Shfer, d Buck, 999- Pretice Hll Ic. The -Trsform

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

REVISION SHEET FP1 (AQA) ALGEBRA. E.g., if 2x

REVISION SHEET FP1 (AQA) ALGEBRA. E.g., if 2x The mi ides re: The reltioships betwee roots d coefficiets i polyomil (qudrtic) equtios Fidig polyomil equtios with roots relted to tht of give oe the Further Mthemtics etwork wwwfmetworkorguk V 7 REVISION

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM Bsic Mths Fiorell Sgllri Uiversity of Bolog, Itly Fculty of Egieerig Deprtmet of Mthemtics - CIRM Mtrices Specil mtrices Lier mps Trce Determits Rk Rge Null spce Sclr products Norms Mtri orms Positive

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Physics of Semiconductor Devices Vol.10

Physics of Semiconductor Devices Vol.10 10-1 Vector Spce Physics of Semicoductor Devices Vol.10 Lier Algebr for Vector Alysis To prove Crmer s rule which ws used without proof, we expli the vector lgebr tht ws explied ituitively i Vol. 9, by

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Intermediate Applications of Vectors and Matrices Ed Stanek

Intermediate Applications of Vectors and Matrices Ed Stanek Iteredite Applictio of Vector d Mtrice Ed Stek Itroductio We decribe iteredite opertio d pplictio of vector d trice for ue i ttitic The itroductio i iteded for thoe who re filir with bic trix lgebr Followig

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.0 Clculus Jso Strr Due by :00pm shrp Fll 005 Fridy, Dec., 005 Solutios to Problem Set 7 Lte homework policy. Lte work will be ccepted oly with medicl ote or for other Istitute pproved reso. Coopertio

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem CHAPTER : Boudr-Vlue Problems i Electrosttics: I Applictios of Gree s theorem .6 Gree Fuctio for the Sphere; Geerl Solutio for the Potetil The geerl electrosttic problem (upper figure): ( ) ( ) with b.c.

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

Inner Product Spaces (Chapter 5)

Inner Product Spaces (Chapter 5) Ier Product Spces Chpter 5 I this chpter e ler out :.Orthogol ectors orthogol suspces orthogol mtrices orthogol ses. Proectios o ectors d o suspces Orthogol Suspces We ko he ectors re orthogol ut ht out

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information