Stats Probability Theory

Size: px
Start display at page:

Download "Stats Probability Theory"

Transcription

1 Stats Probability Theory

2 Instructor: Office: W.H.Laverty 235 McLean Hall Phone: Lectures: Evaluation: M T W Th F 1:30pm - 2:50pm Thorv 105 Lab: T W Th 3:00-3:50 Thorv 105 Assignments, Labs, Term tests - 40% Final Examination - 60% Test: Every Thursday in lab

3 Text: Devore and Berk, Modern Mathematical Statistics with applications. I will provide lecture notes (power point slides). I will provide tables. The assignments will not come from the textbook. This means that the purchasing of the text is optional.

4 Course Outline

5 Chapter 1 Introduction

6 Probability Counting techniques Rules of probability Conditional probability and independence Multiplicative Rule Bayes Rule, Simpson s paradox Chapter 2

7 Random variables Discrete random variables - their distributions Continuous random variables - their distributions Expectation Rules of expectation Moments variance, standard deviation, skewness, kurtosis Moment generating functions Chapters 3 and 4

8 Multivariate probability distributions Discrete and continuous bivariate distributions Marginal distributions, Conditional distributions Expectation for multivariate distributions Regression and Correlation Chapter 5

9 Functions of random variables Distribution function method, moment generating function method, transformation method Law of large numbers, Central Limit theorem Chapters 5, 6

10 Introduction to Probability Theory Probability Models for random phenomena

11 Phenomena Deterministic Non-deterministic

12 Deterministic Phenomena There exists a mathematical model that allows perfect prediction the phenomena s outcome. Many examples exist in Physics, Chemistry (the exact sciences). Non-deterministic Phenomena No mathematical model exists that allows perfect prediction the phenomena s outcome.

13 Non-deterministic Phenomena may be divided into two groups. 1. Random phenomena Unable to predict the outcomes, but in the longrun, the outcomes exhibit statistical regularity. 2. Haphazard phenomena unpredictable outcomes, but no long-run, exhibition of statistical regularity in the outcomes.

14 Phenomena Non-deterministic Deterministic Haphazard Random

15 Haphazard phenomena unpredictable outcomes, but no long-run, exhibition of statistical regularity in the outcomes. Do such phenomena exist? Will any non-deterministic phenomena exhibit long-run statistical regularity eventually?

16 Random phenomena Unable to predict the outcomes, but in the longrun, the outcomes exhibit statistical regularity. Examples 1. Tossing a coin outcomes S ={Head, Tail} Unable to predict on each toss whether is Head or Tail. In the long run can predict that 50% of the time heads will occur and 50% of the time tails will occur

17 2. Rolling a die outcomes S ={,,,,, } Unable to predict outcome but in the long run can one can determine that each outcome will occur 1/6 of the time. Use symmetry. Each side is the same. One side should not occur more frequently than another side in the long run. If the die is not balanced this may not be true.

18 3. Rolling a two balanced dice 36 outcomes

19 4. Buffoon s Needle problem A needle of length l, is tossed and allowed to land on a plane that is ruled with horizontal lines a distance, d, apart A typical outcome d l

20 5. Stock market performance A stock currently has a price of $ We will observe the price for the next 100 days 250 typical outcomes 200 price day

21 Definitions

22 The sample Space, S The sample space, S, for a random phenomena is the set of all possible outcomes. The sample space S may contain 1. A finite number of outcomes. 2. A countably infinite number of outcomes, or 3. An uncountably infinite number of outcomes.

23 A countably infinite number of outcomes means that the outcomes are in a one-one correspondence with the positive integers {1, 2, 3, 4, 5, } This means that the outcomes can be labeled with the positive integers. S = {O 1, O 2, O 3, O 4, O 5, }

24 A uncountably infinite number of outcomes means that the outcomes are can not be put in a one-one correspondence with the positive integers. Example: A spinner on a circular disc is spun and points at a value x on a circular disc whose circumference is x S = {x 0 x <1} = [0,1) S 1.0 [ )

25 Examples 1. Tossing a coin outcomes S ={Head, Tail} 2. Rolling a die outcomes S ={,,,,, } ={1, 2, 3, 4, 5, 6}

26 3. Rolling a two balanced dice 36 outcomes

27 S ={ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} outcome (x, y), x = value showing on die 1 y = value showing on die 2

28 4. Buffoon s Needle problem A needle of length l, is tossed and allowed to land on a plane that is ruled with horizontal lines a distance, d, apart A typical outcome d l

29 An outcome can be identified by determining the coordinates (x,y) of the centre of the needle and θ, the angle the needle makes with the parallel ruled lines. (x,y) θ S = {(x, y, θ) - < x <, - < y <, 0 θ π }

30 An Event, E The event, E, is any subset of the sample space, S. i.e. any set of outcomes (not necessarily all outcomes) of the random phenomena S E

31 The event, E, is said to have occurred if after the outcome has been observed the outcome lies in E. S E

32 Examples 1. Rolling a die outcomes S ={,,,,, } ={1, 2, 3, 4, 5, 6} E = the event that an even number is rolled = {2, 4, 6} ={,, }

33 2. Rolling a two balanced dice 36 outcomes

34 S ={ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} outcome (x, y), x = value showing on die 1 y = value showing on die 2

35 E = the event that a 7 is rolled ={ (6, 1), (5, 2), (4, 3), (3, 4), (3, 5), (1, 6)}

36 Special Events The Null Event, The empty event - φ φ = { } = the event that contains no outcomes The Entire Event, The Sample Space - S S = the event that contains all outcomes The empty event, φ, never occurs. The entire event, S, always occurs.

37 Set operations on Events Union Let A and B be two events, then the union of A and B is the event (denoted by A B ) defined by: A(B A B= {e e belongs to A or e belongs to B} A(B A B A B

38 The event A(B A Boccurs if the event A occurs or the event and B occurs. A(B A B A B

39 Intersection Let A and B be two events, then the intersection of A and B is the event (denoted by A A'B B ) defined by: A ' B = {e e belongs to A and e belongs to B} A B A'B A B A B

40 The event A'B A B occurs if the event A occurs and the event and B occurs. A'B A B A B

41 Complement Let A be any event, then the complement of A (denoted by A) defined by: A = {e e does not belongs to A} A A

42 The event A occurs if the event A does not occur A A

43 In problems you will recognize that you are working with: 1. Union if you see the word or, 2. Intersection if you see the word and, 3. Complement if you see the word not.

44 DeMorgan s laws 1. A B = A B = 2. A B = A B =

45 DeMorgan s laws (in words) 1. A B = A B The event A or B does not occur if the event A does not occur and the event B does not occur 2. A B = A B The event A and B does not occur if the event A does not occur = or the event B does not occur

46 Another useful rule A = ( A B) ( A B) = In words The event A occurs if A occurs and B occurs or A occurs and B doesn t occur.

47 Rules involving the empty set, φ, and the entire event, S. 1. A φ = A 2. A φ = φ 3. A S = S 4. A S = A

48 Definition: mutually exclusive Two events A and B are called mutually exclusive if: A B= φ A B

49 If two events A and B are are mutually exclusive then: 1. They have no outcomes in common. They can t occur at the same time. The outcome of the random experiment can not belong to both A and B. A B

50 Some other set notation We will use the notation e A to mean that e is an element of A. We will use the notation e A to mean that e is not an element of A.

51 Thus { or } A B = e e A e B { and } A B = e e A e B A = { ee A}

52 We will use the notation A B (or B A) to mean that A is a subset B. (B is a superset of A.) ie.. if e A then e B. B A

53 Union and Intersection more than two events

54 k Union: E = E E E E i i= 1 i= 1 E = E E E i k E 2 E 1 E 3

55 k Intersection: E = E E E E i i= 1 i= 1 E = E E E i k E 2 E 1 E 3

56 DeMorgan s laws = 1. Ei Ei i i = 2. Ei Ei i i =

57 Probability

58 Suppose we are observing a random phenomena Let S denote the sample space for the phenomena, the set of all possible outcomes. An event E is a subset of S. A probability measure P is defined on S by defining for each event E, P[E] with the following properties 1. P[E] 0, for each E. 2. P[S] = 1. P Ei = P Ei Ei Ei =φ i j i i 3. [ ] if for all, [ ] [ ] [ ] P E E = P E + P E

59 = i i i [ ] P E P E i P[E 1 ] P[E 2 ] P[E 3 ] P[E 4 ] P[E 5 ] P[E 6 ]

60 Example: Finite uniform probability space In many examples the sample space S = {o 1, o 2, o 3, o N } has a finite number, N, of oucomes. Also each of the outcomes is equally likely (because of symmetry). Then P[{o i }] = 1/N and for any event E [ ] P E = Note n( E) n( E) no. of outcomes in E n S ( ) = = N total no. of outcomes : n( A) = no. of elements of A

61 Note: with this definition of P[E], i.e. [ ] P E = n( E) n( E) no. of outcomes in E n S ( ) 1. P[ E] 0. n( S) 2. PS= 1 3. [ ] P = = N total no. of outcomes n( S ) = n Ei n( E ) n( E ) i E i i N = = [ ] [ ] = P E + P E + E E = φ N 1 2 if i j

62 Thus this definition of P[E], i.e. [ ] P E = n( E) n( E) no. of outcomes in E n S ( ) = = N total no. of outcomes satisfies the axioms of a probability measure 1. P[E] 0, for each E. 2. P[S] = 1. P Ei = P Ei Ei Ei =φ i j i i 3. [ ] if for all, [ ] [ ] [ ] P E E = P E + P E

63 Another Example: We are shooting at an archery target with radius R. The bullseye has radius R/4. There are three other rings with width R/4. We shoot at the target until it is hit S = set of all points in the target = {(x,y) x 2 + y 2 R 2 } R E, any event is a sub region (subset) of S.

64 E, any event is a sub region (subset) of S. E [ ] Define : P E = Area ( E) Area E = 2 Area S π R ( ) ( )

65 [ ] P Bullseye 2 R π 4 = = 2 π R 1 16 [ ] P White ring π R π R = = = 2 π R 16 16

66 Thus this definition of P[E], i.e. [ ] P E = Area ( E) Area E = 2 Area S π R ( ) ( ) satisfies the axioms of a probability measure 1. P[E] 0, for each E. 2. P[S] = 1. P Ei = P Ei Ei Ei =φ i j i i 3. [ ] if for all, [ ] [ ] [ ] P E E = P E + P E

67 Finite uniform probability space Many examples fall into this category 1. Finite number of outcomes 2. All outcomes are equally likely 3. P[ E] = Note n( E) n( E) no. of outcomes in E n S ( ) = = N total no. of outcomes : n( A) = no. of elements of To handle problems in case we have to be able to count. Count n(e) and n(s). A

68 Next Topic: Counting

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS Recap. Probability (section 1.1) The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY Population Sample INFERENTIAL STATISTICS Today. Formulation

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 3 May 28th, 2009 Review We have discussed counting techniques in Chapter 1. Introduce the concept of the probability of an event. Compute probabilities in certain

More information

Probability Theory Review

Probability Theory Review Cogsci 118A: Natural Computation I Lecture 2 (01/07/10) Lecturer: Angela Yu Probability Theory Review Scribe: Joseph Schilz Lecture Summary 1. Set theory: terms and operators In this section, we provide

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov.

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov. Introduction to Probability Ariel Yadin Lecture 1 1. Example: Bertrand s Paradox We begin with an example [this is known as Bertrand s paradox]. *** Nov. 1 *** Question 1.1. Consider a circle of radius

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

02 Background Minimum background on probability. Random process

02 Background Minimum background on probability. Random process 0 Background 0.03 Minimum background on probability Random processes Probability Conditional probability Bayes theorem Random variables Sampling and estimation Variance, covariance and correlation Probability

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page α 2 θ 1 u 3. wear coat. θ 2 = warm u 2 = sweaty! θ 1 = cold u 3 = brrr!

ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page α 2 θ 1 u 3. wear coat. θ 2 = warm u 2 = sweaty! θ 1 = cold u 3 = brrr! ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page 2-01 Probability Decision trees u 1 u 2 α 2 θ 1 u 3 θ 2 u 4 Example 2.01 θ 1 = cold u 1 = snug! α 1 wear coat θ 2 = warm u 2 = sweaty! θ

More information

Statistics for Financial Engineering Session 2: Basic Set Theory March 19 th, 2006

Statistics for Financial Engineering Session 2: Basic Set Theory March 19 th, 2006 Statistics for Financial Engineering Session 2: Basic Set Theory March 19 th, 2006 Topics What is a set? Notations for sets Empty set Inclusion/containment and subsets Sample spaces and events Operations

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

Chapter 1 (Basic Probability)

Chapter 1 (Basic Probability) Chapter 1 (Basic Probability) What is probability? Consider the following experiments: 1. Count the number of arrival requests to a web server in a day. 2. Determine the execution time of a program. 3.

More information

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes Lecture 2 s; Text: A Course in Probability by Weiss 2.4 STAT 225 Introduction to Probability Models January 8, 2014 s; Whitney Huang Purdue University 2.1 Agenda s; 1 2 2.2 Intersection: the intersection

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

18.600: Lecture 3 What is probability?

18.600: Lecture 3 What is probability? 18.600: Lecture 3 What is probability? Scott Sheffield MIT Outline Formalizing probability Sample space DeMorgan s laws Axioms of probability Outline Formalizing probability Sample space DeMorgan s laws

More information

Probability Theory and Applications

Probability Theory and Applications Probability Theory and Applications Videos of the topics covered in this manual are available at the following links: Lesson 4 Probability I http://faculty.citadel.edu/silver/ba205/online course/lesson

More information

Stat 451: Solutions to Assignment #1

Stat 451: Solutions to Assignment #1 Stat 451: Solutions to Assignment #1 2.1) By definition, 2 Ω is the set of all subsets of Ω. Therefore, to show that 2 Ω is a σ-algebra we must show that the conditions of the definition σ-algebra are

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Dr. Jing Yang jingyang@uark.edu OUTLINE 2 Applications

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 2: Random Experiments Prof. Vince Calhoun Reading This class: Section 2.1-2.2 Next class: Section 2.3-2.4 Homework: Assignment 1: From the

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

ECE353: Probability and Random Processes. Lecture 2 - Set Theory

ECE353: Probability and Random Processes. Lecture 2 - Set Theory ECE353: Probability and Random Processes Lecture 2 - Set Theory Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu January 10, 2018 Set

More information

Chapter 2: Probability Part 1

Chapter 2: Probability Part 1 Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability Part 1 Dr. O. Phillips Agboola Sample Space (S) Experiment: is some procedure (or process) that we do and it results in an outcome.

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch Monty Hall Puzzle Example: You are asked to select one of the three doors to open. There is a large prize behind one of the doors and if you select that door, you win the prize. After you select a door,

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

CIVL Why are we studying probability and statistics? Learning Objectives. Basic Laws and Axioms of Probability

CIVL Why are we studying probability and statistics? Learning Objectives. Basic Laws and Axioms of Probability CIVL 3103 Basic Laws and Axioms of Probability Why are we studying probability and statistics? How can we quantify risks of decisions based on samples from a population? How should samples be selected

More information

Probability Dr. Manjula Gunarathna 1

Probability Dr. Manjula Gunarathna 1 Probability Dr. Manjula Gunarathna Probability Dr. Manjula Gunarathna 1 Introduction Probability theory was originated from gambling theory Probability Dr. Manjula Gunarathna 2 History of Probability Galileo

More information

Origins of Probability Theory

Origins of Probability Theory 1 16.584: INTRODUCTION Theory and Tools of Probability required to analyze and design systems subject to uncertain outcomes/unpredictability/randomness. Such systems more generally referred to as Experiments.

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

CS 441 Discrete Mathematics for CS Lecture 19. Probabilities. CS 441 Discrete mathematics for CS. Probabilities

CS 441 Discrete Mathematics for CS Lecture 19. Probabilities. CS 441 Discrete mathematics for CS. Probabilities CS 441 Discrete Mathematics for CS Lecture 19 Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Experiment: a procedure that yields one of the possible outcomes Sample space: a set of possible outcomes

More information

Dynamic Programming Lecture #4

Dynamic Programming Lecture #4 Dynamic Programming Lecture #4 Outline: Probability Review Probability space Conditional probability Total probability Bayes rule Independent events Conditional independence Mutual independence Probability

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Content Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of Probability Conditional Probability Bayes Theorem 2

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

MATH 450: Mathematical statistics

MATH 450: Mathematical statistics Departments of Mathematical Sciences University of Delaware August 28th, 2018 General information Classes: Tuesday & Thursday 9:30-10:45 am, Gore Hall 115 Office hours: Tuesday Wednesday 1-2:30 pm, Ewing

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Last time. Numerical summaries for continuous variables. Center: mean and median. Spread: Standard deviation and inter-quartile range

Last time. Numerical summaries for continuous variables. Center: mean and median. Spread: Standard deviation and inter-quartile range Lecture 4 Last time Numerical summaries for continuous variables Center: mean and median Spread: Standard deviation and inter-quartile range Exploratory graphics Histogram (revisit modes ) Histograms Histogram

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

1 INFO Sep 05

1 INFO Sep 05 Events A 1,...A n are said to be mutually independent if for all subsets S {1,..., n}, p( i S A i ) = p(a i ). (For example, flip a coin N times, then the events {A i = i th flip is heads} are mutually

More information

Lecture 8: Probability

Lecture 8: Probability Lecture 8: Probability The idea of probability is well-known The flipping of a balanced coin can produce one of two outcomes: T (tail) and H (head) and the symmetry between the two outcomes means, of course,

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

Lecture 1 Introduction to Probability and Set Theory Text: A Course in Probability by Weiss

Lecture 1 Introduction to Probability and Set Theory Text: A Course in Probability by Weiss Lecture 1 to and Set Theory Text: A Course in by Weiss 1.2 2.3 STAT 225 to Models January 13, 2014 to and Whitney Huang Purdue University 1.1 Agenda to and 1 2 3 1.2 Motivation Uncertainty/Randomness in

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

Chapter Learning Objectives. Random Experiments Dfiii Definition: Dfiii Definition:

Chapter Learning Objectives. Random Experiments Dfiii Definition: Dfiii Definition: Chapter 2: Probability 2-1 Sample Spaces & Events 2-1.1 Random Experiments 2-1.2 Sample Spaces 2-1.3 Events 2-1 1.4 Counting Techniques 2-2 Interpretations & Axioms of Probability 2-3 Addition Rules 2-4

More information

Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction

Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction Course information Instructor Professor Jun Shao TA Mr. Han Chen Office 1235A MSC 1335 MSC Phone 608-262-7938 608-263-5948 Email shao@stat.wisc.edu

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head}

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head} Chapter 7 Notes 1 (c) Epstein, 2013 CHAPTER 7: PROBABILITY 7.1: Experiments, Sample Spaces and Events Chapter 7 Notes 2 (c) Epstein, 2013 What is the sample space for flipping a fair coin three times?

More information

Probability Pearson Education, Inc. Slide

Probability Pearson Education, Inc. Slide Probability The study of probability is concerned with random phenomena. Even though we cannot be certain whether a given result will occur, we often can obtain a good measure of its likelihood, or probability.

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

1. (11.1) Compound Events 2. (11.2) Probability of a Compound Event 3. (11.3) Probability Viewed as Darts Tossed at a Dartboard

1. (11.1) Compound Events 2. (11.2) Probability of a Compound Event 3. (11.3) Probability Viewed as Darts Tossed at a Dartboard Chapter 11: Probability of Compound Events 1. (11.1) Compound Events 2. (11.2) Probability of a Compound Event 3. (11.3) Probability Viewed as Darts Tossed at a Dartboard 1. (11.1) Compound Events MoCvaCng

More information

AMS7: WEEK 2. CLASS 2

AMS7: WEEK 2. CLASS 2 AMS7: WEEK 2. CLASS 2 Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Friday April 10, 2015 Probability: Introduction Probability:

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

Lecture 3 - Axioms of Probability

Lecture 3 - Axioms of Probability Lecture 3 - Axioms of Probability Sta102 / BME102 January 25, 2016 Colin Rundel Axioms of Probability What does it mean to say that: The probability of flipping a coin and getting heads is 1/2? 3 What

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

Chapter 4 - Introduction to Probability

Chapter 4 - Introduction to Probability Chapter 4 - Introduction to Probability Probability is a numerical measure of the likelihood that an event will occur. Probability values are always assigned on a scale from 0 to 1. A probability near

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review 6.262: Discrete Stochastic Processes 2/2/11 Lecture 1: Introduction and Probability review Outline: Probability in the real world Probability as a branch of mathematics Discrete stochastic processes Processes

More information

Lecture 4: Probability and Discrete Random Variables

Lecture 4: Probability and Discrete Random Variables Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 4: Probability and Discrete Random Variables Wednesday, January 21, 2009 Lecturer: Atri Rudra Scribe: Anonymous 1

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Section 13.3 Probability

Section 13.3 Probability 288 Section 13.3 Probability Probability is a measure of how likely an event will occur. When the weather forecaster says that there will be a 50% chance of rain this afternoon, the probability that it

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Chapter 1: Introduction to Probability Theory

Chapter 1: Introduction to Probability Theory ECE5: Stochastic Signals and Systems Fall 8 Lecture - September 6, 8 Prof. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter : Introduction to Probability Theory Axioms of Probability

More information

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING PROBABILITY THEORY & STOCHASTIC PROCESSES

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING PROBABILITY THEORY & STOCHASTIC PROCESSES G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING PROBABILITY THEORY & STOCHASTIC PROCESSES LECTURE NOTES ON PTSP (15A04304) B.TECH ECE II YEAR I SEMESTER

More information

Chapter 2. Probability

Chapter 2. Probability 2-1 Chapter 2 Probability 2-2 Section 2.1: Basic Ideas Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty. Examples: rolling a die tossing

More information

Topic 5 Basics of Probability

Topic 5 Basics of Probability Topic 5 Basics of Probability Equally Likely Outcomes and the Axioms of Probability 1 / 13 Outline Equally Likely Outcomes Axioms of Probability Consequences of the Axioms 2 / 13 Introduction A probability

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

STAT200 Elementary Statistics for applications

STAT200 Elementary Statistics for applications STAT200 Elementary Statistics for applications Lecture # 12 Dr. Ruben Zamar Winter 2011 / 2012 http://www4.agr.gc.ca/aafc-aac/display-afficher.do?id=1256763623482 Randomness Randomness is unpredictable

More information

Probability Theory and Simulation Methods

Probability Theory and Simulation Methods Feb 28th, 2018 Lecture 10: Random variables Countdown to midterm (March 21st): 28 days Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 1 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

Randomized Algorithms. Andreas Klappenecker

Randomized Algorithms. Andreas Klappenecker Randomized Algorithms Andreas Klappenecker Randomized Algorithms A randomized algorithm is an algorithm that makes random choices during its execution. A randomized algorithm uses values generated by a

More information

Chapter 3 : Conditional Probability and Independence

Chapter 3 : Conditional Probability and Independence STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 2016 Néhémy Lim Chapter 3 : Conditional Probability and Independence 1 Conditional Probabilities How should we modify the probability of an event when

More information

Statistical Theory 1

Statistical Theory 1 Statistical Theory 1 Set Theory and Probability Paolo Bautista September 12, 2017 Set Theory We start by defining terms in Set Theory which will be used in the following sections. Definition 1 A set is

More information

HW MATH425/525 Lecture Notes 1

HW MATH425/525 Lecture Notes 1 HW MATH425/525 Lecture Notes 1 Definition 4.1 If an experiment can be repeated under the same condition, its outcome cannot be predicted with certainty, and the collection of its every possible outcome

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information