Math 225B: Differential Geometry, Homework 8

Size: px
Start display at page:

Download "Math 225B: Differential Geometry, Homework 8"

Transcription

1 Math 225B: Differential Geometry, Homewor 8 Ian Coley February 26, 204 Problem.. Find H (S S ) by induction on the number n of factors. We claim that H (T n ) ( n ). For the base case, we now that H 0 (S ) H (S ) R, which is consistent with ( ( 0) ). Assume the case of n. Then we may split T n A B, where A T n S \ {N} and B T n S \ {S}, the north and south poles of that particular circle. Then A B is two disconnected copies of T n, and A and B are homotopy equivalent to T n. Then by induction, we use the Mayer-Vietoris sequence H (A) H (B) H (A B) H (T n ) H (A) H (B) H (A B) which in our case is H (T n ) 2 H (T n ) 2 H (T n ) H (T n ) 2 H (T n ) 2. Going by dimensions, we have ( ) ( ) ( ) ( ) n n n n 2 2 H (T n ) 2 2. The image of the first map has dimension ( n ) since it is essentially projection onto one of the disconnected factors. Therefore the image of the second map in H (T n ) has dimension ( n ) (. Similarly, since the ernel of the last map has dimension n ), the image of the third map has dimension ( ) n. Therefore the total dimension of H (T n ) is ( ) n + This completes the proof. ( ) n (n )! ( )!(n )! + (n )!!(n )! (n )! + (n )(n )!!(n )! n(n )!!(n )! ( ) n. Problem.2. (a) Use the Mayer-Vietoris sequence to determine H (M \ {p}) in terms of H (M), for a connected manifold M.

2 (b) If M and N are two connected n-manifolds, let M#N be be the connected sum. Find the cohomology of M#N in terms of that of M and N. (c) Find χ for the n-holed torus. (a) Let dim M n, and assume n > so that M \ {p} is connected, since we now the cohomology of all connected -manifolds. Let U be a chart around the point {p}, so that U M \ {p} M. Then U R n, and U M \ {p} S n. Therefore we have a sequence H (S n ) H (M) H (R n ) H (M \ {p}) H (S n ) H + (M), where > 0 since we now what H 0 (M \ {p}) is since we assumed it was connected. For < n, we have 0 H (M) H (M \ {p}) 0 so H (M) H (M \ {p}). The last part of this sequence, starting at n, is 0 H n (M) H n (M \ {p}) R H n (M) H n (M \ {p}) 0 If M is nonorientable or noncompact, then H n (M) 0, so we obtain 0 H n (M) H n (M \ {p}) R 0 H n (M \ {p}) 0, so H n (M \ {p}) 0 as well and dim H n (M \ {p}) + dim H n (M). If M is compact and orientable, then H n (M) R. However M \ {p} is not compact anymore, so H n (M \ {p}) 0. Hence we obtain 0 H n (M) H n (M \ {p}) R R 0. Since R R 0 is surjective, H n (M \ {p}) R must be the zero map. Hence we again have 0 H n (M) H n (M \ {p}) 0 so H n (M) H n (M \ {p}). This completes the classification. (b) We can deconstruct the connected sum via A M\{p}, B N\{q}, and A B S n. Essentially, A is M plus part of the connecting tube, B is N plus part of the connecting tube, and A B is the tube itself. First, since the connected sum of connected manifolds is connected, H 0 (M#N) R. We have the sequence H (M \ {p}) H (N \ {q}) H (S n ) For < n, we have (from the results above) H (M#N) H (M \ {p}) H (N \ {q}) H (S n ) 0 H (M#N) H (M) H (N) 0, 2

3 so H (M#N) H (M) H (N). For the end of the sequence, 0 H n (M#N) H n (M \ {p}) H n (N \ {q}) R H n (M#N) H n (M \ {p}) H n (N \ {q}) 0. We have two cases here. If either M or N is noncompact or nonorientable, then the connected sum M#N will also be noncompact or nonorientable, so H n (M#N) 0. Therefore we have 0 H n (M#N) H n (M \ {p}) H n (N \ {q}) R 0. Therefore dim H n (M#N) dim H n (M \ {p}) + dim H n (N \ {q}), where the dimension of the individual manifolds minus a point are calculated as in (a), depending on their top homology. If both M and N are both compact and orientable, then so is their connected sum, so H n (M#N) R. We also have H n (M \ {p}) H n (N \ {q}) 0. Putting this together, 0 H n (M#N) H n (M) H n (N) R R 0. At the end of this sequence, we have R 0 has zero image, so R R is an isomorphism. Therefore the image of the direct sum to R is zero, so we have 0 H n (M#N) H n (M) H n (N) 0. Thus dim H n (M#N) dim H n (M) + dim H n (N). This completes the classification. (c) We use the definition that χ(m) n ( ) i dim H i (M). i0 The n-holed torus is the connected sum of n tori. We proceed by induction. Let T n denote the n-holed torus. Then Assume the n case. Then χ(t ) (). χ(t n ) χ(t #T n ) 2 + H (T #T n ) since each T g is compact, orientable, and connected. In particular, we see that dim H (T n ) 2(n ). From above, dim H (T #T n ) dim H (T ) + dim H (T n ) 2 + 2(n ) 2n. Therefore χ(t n ) 2 2n, as claimed. This completes the proof. 3

4 Problem.3. (a) Find H (Möbius strip). (b) Find H (P 2 ). (c) Find H (P n ). (d) Find H (Klein bottle). (e) Find the cohomology of M#(Möbius strip) and M#(Klein bottle) if M is the n-holed torus. (a) The Möbius strip is a nonorientable connected 2-manifold. Therefore H 0 (M) R and H 2 (M) 0. For H, we apply Problem.2(a). Since M \ {p} S for an interior point p, we have H (M) H (S ) R. (b) Consider P 2 A B, where A {[x : ] : x R} and B {[x : y] : x, y R, y 0}. Then A {p} and B P S, and A B S as well. Then we have H 0 (P 2 ) R since it is connected and H 2 (P 2 ) 0 since it is nonorientable. For H (P 2 ), and in our case, 0 H (P 2 ) H (A) H (B) H (A B) 0, 0 H (P 2 ) R R 0. Since R R 0 is an isomorphism, we have the image of H (P 2 ) R is zero. Since this map is also injective, we have H (P 2 ) 0. (c) We proceed by induction on n, using the above as a guideline. We claim that { H (P n R 0 or n if n is odd ). 0 else This clearly holds for the case of n 2 above. Let A {[x 0 : : x n : ] : x i R} and B {[x 0 : : x n ] : x i R, x j 0 for j n}. Then A B P n, A B S n, A {p}, and B P n. H 0 (P n ) R is clear. For < n, we have 0 H (A B) H (P n ) H (A) H (B) 0, so H (P n ) 0. At the end of this sequence, starting at n, we have 0 H n (P n ) H n (A) H n (B) H n (A B) H n (P n ) 0. Assume first that n is odd. Then n is even, so H n (A) H n (P n ) 0. Hence we have 0 H n (P n ) 0 R H n (P n ) 0, 4

5 so H n (P n ) 0 and H n (P n ) R. If n is even, then H n (A) R, so we have 0 H n (P n ) R R H n (P n ) 0. Then R H n (P n ) 0 is surjective, so R R is an injection. Hence the image of 0 H n (P n ) R is 0, and since it is an injection, this implies that H n (P n ) 0. Hence 0 R R H n (P n ) 0 implies that H n (P n ) 0 as well. This completes the proof. (d) The Klein bottle is homotopy equivalent to P 2 #P 2. Since this space is nonorientable and connected, we have H 0 (K) R and H 2 (K) 0. From Problem.2(b), we have dim H (K) 2 dim H (P 2 \ {p}). From Problem.2(a) and Problem.3(b), we have dim H (P 2 \ {p}) + dim H (P 2 ). Therefore dim H (K) 2, so H (K) R. (e) Since both the Möbius strip M and Klein bottle K are nonorientable, we have H 0 R and H 2 0 in both cases. Now, we have dim H (T n #M) dim H (T n \ {p}) + dim H (M \ {q}). Since T n is compact and orientable, dim H (T n \ {p}) dim H (T n ) 2n Since M \ {p} S, we have dim H (M \ {q}). Hence dim H (T n #M) 2n. Now, Since K is nonorientable, we have dim H (T n #K) 2n + dim H (K \ {q}). dim H (K \ {q{) + dim H (K) 2. Therefore we have dim H (T n #K) 2n +. This completes the proof. 5

Math 225B: Differential Geometry, Final

Math 225B: Differential Geometry, Final Math 225B: Differential Geometry, Final Ian Coley March 5, 204 Problem Spring 20,. Show that if X is a smooth vector field on a (smooth) manifold of dimension n and if X p is nonzero for some point of

More information

Math 6510 Homework 10

Math 6510 Homework 10 2.2 Problems 9 Problem. Compute the homology group of the following 2-complexes X: a) The quotient of S 2 obtained by identifying north and south poles to a point b) S 1 (S 1 S 1 ) c) The space obtained

More information

MATH 215B HOMEWORK 4 SOLUTIONS

MATH 215B HOMEWORK 4 SOLUTIONS MATH 215B HOMEWORK 4 SOLUTIONS 1. (8 marks) Compute the homology groups of the space X obtained from n by identifying all faces of the same dimension in the following way: [v 0,..., ˆv j,..., v n ] is

More information

Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2

Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2 Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2 Andrew Ma August 25, 214 2.1.4 Proof. Please refer to the attached picture. We have the following chain complex δ 3

More information

Part II. Algebraic Topology. Year

Part II. Algebraic Topology. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section II 18I The n-torus is the product of n circles: 5 T n = } S 1. {{.. S } 1. n times For all n 1 and 0

More information

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1 ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP HONG GYUN KIM Abstract. I studied the construction of an algebraically trivial, but topologically non-trivial map by Hopf map p : S 3 S 2 and a

More information

HOMEWORK FOR SPRING 2014 ALGEBRAIC TOPOLOGY

HOMEWORK FOR SPRING 2014 ALGEBRAIC TOPOLOGY HOMEWORK FOR SPRING 2014 ALGEBRAIC TOPOLOGY Last Modified April 14, 2014 Some notes on homework: (1) Homework will be due every two weeks. (2) A tentative schedule is: Jan 28, Feb 11, 25, March 11, 25,

More information

GEOMETRY FINAL CLAY SHONKWILER

GEOMETRY FINAL CLAY SHONKWILER GEOMETRY FINAL CLAY SHONKWILER 1 Let X be the space obtained by adding to a 2-dimensional sphere of radius one, a line on the z-axis going from north pole to south pole. Compute the fundamental group and

More information

30 Surfaces and nondegenerate symmetric bilinear forms

30 Surfaces and nondegenerate symmetric bilinear forms 80 CHAPTER 3. COHOMOLOGY AND DUALITY This calculation is useful! Corollary 29.4. Let p, q > 0. Any map S p+q S p S q induces the zero map in H p+q ( ). Proof. Let f : S p+q S p S q be such a map. It induces

More information

Chapter 1. Canonical Decomposition. Notes on Basic 3-Manifold Topology. 1. Prime Decomposition

Chapter 1. Canonical Decomposition. Notes on Basic 3-Manifold Topology. 1. Prime Decomposition 1.1 Prime Decomposition 1 Chapter 1. Canonical Decomposition Notes on Basic 3-Manifold Topology Allen Hatcher Chapter 1. Canonical Decomposition 1. Prime Decomposition. 2. Torus Decomposition. Chapter

More information

Assignment 6; Due Friday, February 24

Assignment 6; Due Friday, February 24 Assignment 6; Due Friday, February 24 The Fundamental Group of the Circle Theorem 1 Let γ : I S 1 be a path starting at 1. This path can be lifted to a path γ : I R starting at 0. Proof: Find a covering

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

MATH8808: ALGEBRAIC TOPOLOGY

MATH8808: ALGEBRAIC TOPOLOGY MATH8808: ALGEBRAIC TOPOLOGY DAWEI CHEN Contents 1. Underlying Geometric Notions 2 1.1. Homotopy 2 1.2. Cell Complexes 3 1.3. Operations on Cell Complexes 3 1.4. Criteria for Homotopy Equivalence 4 1.5.

More information

Universality of MGL. Scribe notes from a talk by Ben Knudsen. 20 Mar We will discuss work of Panin, Pimenov, Röndigs, and Smirnov.

Universality of MGL. Scribe notes from a talk by Ben Knudsen. 20 Mar We will discuss work of Panin, Pimenov, Röndigs, and Smirnov. Universality of MGL Scribe notes from a talk by Ben Knudsen 20 Mar 2014 We will discuss work of anin, imenov, Röndigs, and Smirnov. Orientability One major feature of orientability (for manifolds) is the

More information

Hungry, Hungry Homology

Hungry, Hungry Homology September 27, 2017 Motiving Problem: Algebra Problem (Preliminary Version) Given two groups A, C, does there exist a group E so that A E and E /A = C? If such an group exists, we call E an extension of

More information

Cutting and pasting. 2 in R. 3 which are not even topologically

Cutting and pasting. 2 in R. 3 which are not even topologically Cutting and pasting We begin by quoting the following description appearing on page 55 of C. T. C. Wall s 1960 1961 Differential Topology notes, which available are online at http://www.maths.ed.ac.uk/~aar/surgery/wall.pdf.

More information

GEOMETRY HW 12 CLAY SHONKWILER

GEOMETRY HW 12 CLAY SHONKWILER GEOMETRY HW 12 CLAY SHONKWILER 1 Let M 3 be a compact 3-manifold with no boundary, and let H 1 (M, Z) = Z r T where T is torsion. Show that H 2 (M, Z) = Z r if M is orientable, and H 2 (M, Z) = Z r 1 Z/2

More information

Algebraic Topology II Notes Week 12

Algebraic Topology II Notes Week 12 Algebraic Topology II Notes Week 12 1 Cohomology Theory (Continued) 1.1 More Applications of Poincaré Duality Proposition 1.1. Any homotopy equivalence CP 2n f CP 2n preserves orientation (n 1). In other

More information

Math 225A: Differential Topology, Homework 4

Math 225A: Differential Topology, Homework 4 Math 225A: Differential Topology, Homework 4 Ian Coley February 10, 2014 Problem 1.5.4. Let X and Z be transversal submanifolds of Y. Prove that if y X Z, then T y (X Z) = T y (X) T y (Z). Since X Z is

More information

Exercises for Algebraic Topology

Exercises for Algebraic Topology Sheet 1, September 13, 2017 Definition. Let A be an abelian group and let M be a set. The A-linearization of M is the set A[M] = {f : M A f 1 (A \ {0}) is finite}. We view A[M] as an abelian group via

More information

Algebraic Topology Final

Algebraic Topology Final Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Algebraic Topology Final Solutions 1. Let M be a simply connected manifold with the property that any map f : M M has a

More information

COBORDISM AND FORMAL POWER SERIES

COBORDISM AND FORMAL POWER SERIES COBORDISM AND FORMAL POWER SERIES NEIL STRICKLAND Thom s cobordism theorem The graded ring of cobordism classes of manifolds is Z/2[x 2, x 4, x 5, x 6, x 8, x 9, x 10, x 11, x 12, x 13, x 14, x 16, x 17,...

More information

CW-complexes. Stephen A. Mitchell. November 1997

CW-complexes. Stephen A. Mitchell. November 1997 CW-complexes Stephen A. Mitchell November 1997 A CW-complex is first of all a Hausdorff space X equipped with a collection of characteristic maps φ n α : D n X. Here n ranges over the nonnegative integers,

More information

2.5 Excision implies Simplicial = Singular homology

2.5 Excision implies Simplicial = Singular homology 2.5 Excision implies Simplicial = Singular homology 1300Y Geometry and Topology 2.5 Excision implies Simplicial = Singular homology Recall that simplicial homology was defined in terms of a -complex decomposition

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

Algebraic Topology I Homework Spring 2014

Algebraic Topology I Homework Spring 2014 Algebraic Topology I Homework Spring 2014 Homework solutions will be available http://faculty.tcu.edu/gfriedman/algtop/algtop-hw-solns.pdf Due 5/1 A Do Hatcher 2.2.4 B Do Hatcher 2.2.9b (Find a cell structure)

More information

NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY

NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY 1. Closed and exact forms Let X be a n-manifold (not necessarily oriented), and let α be a k-form on X. We say that α is closed if dα = 0 and say

More information

arxiv: v1 [math.gt] 23 Apr 2014

arxiv: v1 [math.gt] 23 Apr 2014 THE NUMBER OF FRAMINGS OF A KNOT IN A 3-MANIFOLD PATRICIA CAHN, VLADIMIR CHERNOV, AND RUSTAM SADYKOV arxiv:1404.5851v1 [math.gt] 23 Apr 2014 Abstract. In view of the self-linking invariant, the number

More information

Homology lens spaces and Dehn surgery on homology spheres

Homology lens spaces and Dehn surgery on homology spheres F U N D A M E N T A MATHEMATICAE 144 (1994) Homology lens spaces and Dehn surgery on homology spheres by Craig R. G u i l b a u l t (Milwaukee, Wis.) Abstract. A homology lens space is a closed 3-manifold

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

Lecture 2. Smooth functions and maps

Lecture 2. Smooth functions and maps Lecture 2. Smooth functions and maps 2.1 Definition of smooth maps Given a differentiable manifold, all questions of differentiability are to be reduced to questions about functions between Euclidean spaces,

More information

Lecture on Equivariant Cohomology

Lecture on Equivariant Cohomology Lecture on Equivariant Cohomology Sébastien Racanière February 20, 2004 I wrote these notes for a hours lecture at Imperial College during January and February. Of course, I tried to track down and remove

More information

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion: Date: July 15, 2015.

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion: Date: July 15, 2015. 07-13-2015 Contents 1. Dimension 1 2. The Mayer-Vietoris Sequence 3 2.1. Suspension and Spheres 4 2.2. Direct Sums 4 2.3. Constuction of the Mayer-Vietoris Sequence 6 2.4. A Sample Calculation 7 As we

More information

Algebraic Topology Lecture Notes. Jarah Evslin and Alexander Wijns

Algebraic Topology Lecture Notes. Jarah Evslin and Alexander Wijns Algebraic Topology Lecture Notes Jarah Evslin and Alexander Wijns Abstract We classify finitely generated abelian groups and, using simplicial complex, describe various groups that can be associated to

More information

Math 225A: Differential Topology, Final Exam

Math 225A: Differential Topology, Final Exam Math 225A: Differential Topology, Final Exam Ian Coley December 9, 2013 The goal is the following theorem. Theorem (Hopf). Let M be a compact n-manifold without boundary, and let f, g : M S n be two smooth

More information

Algebraic Topology exam

Algebraic Topology exam Instituto Superior Técnico Departamento de Matemática Algebraic Topology exam June 12th 2017 1. Let X be a square with the edges cyclically identified: X = [0, 1] 2 / with (a) Compute π 1 (X). (x, 0) (1,

More information

Geometric Topology. Harvard University Fall 2003 Math 99r Course Notes

Geometric Topology. Harvard University Fall 2003 Math 99r Course Notes Geometric Topology Harvard University Fall 2003 Math 99r Course Notes Contents 1 Introduction: Knots and Reidemeister moves........... 1 2 1-Dimensional Topology....................... 1 3 2-Dimensional

More information

0, otherwise Furthermore, H i (X) is free for all i, so Ext(H i 1 (X), G) = 0. Thus we conclude. n i x i. i i

0, otherwise Furthermore, H i (X) is free for all i, so Ext(H i 1 (X), G) = 0. Thus we conclude. n i x i. i i Cohomology of Spaces (continued) Let X = {point}. From UCT, we have H{ i (X; G) = Hom(H i (X), G) Ext(H i 1 (X), G). { Z, i = 0 G, i = 0 And since H i (X; G) =, we have Hom(H i(x); G) = Furthermore, H

More information

Math 440 Problem Set 2

Math 440 Problem Set 2 Math 440 Problem Set 2 Problem 4, p. 52. Let X R 3 be the union of n lines through the origin. Compute π 1 (R 3 X). Solution: R 3 X deformation retracts to S 2 with 2n points removed. Choose one of them.

More information

MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS

MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS Key Problems 1. Compute π 1 of the Mobius strip. Solution (Spencer Gerhardt): MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS In other words, M = I I/(s, 0) (1 s, 1). Let x 0 = ( 1 2, 0). Now

More information

ANSWERS TO VARIOUS HOMEWORK PROBLEMS IN MATH 3210, FALL 2015

ANSWERS TO VARIOUS HOMEWORK PROBLEMS IN MATH 3210, FALL 2015 ANSWERS TO VARIOUS HOMEWORK PROBLEMS IN MATH 3210, FALL 2015 HOMEWORK #11 (DUE FRIDAY DEC 4) Let M be a manifold. Define the Poincaré polynomial p M (t) := dim M i=0 (dim H i (M))t i and the Euler characteristic

More information

Nonabelian Poincare Duality (Lecture 8)

Nonabelian Poincare Duality (Lecture 8) Nonabelian Poincare Duality (Lecture 8) February 19, 2014 Let M be a compact oriented manifold of dimension n. Then Poincare duality asserts the existence of an isomorphism H (M; A) H n (M; A) for any

More information

Homework 4: Mayer-Vietoris Sequence and CW complexes

Homework 4: Mayer-Vietoris Sequence and CW complexes Homework 4: Mayer-Vietoris Sequence and CW complexes Due date: Friday, October 4th. 0. Goals and Prerequisites The goal of this homework assignment is to begin using the Mayer-Vietoris sequence and cellular

More information

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected.

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected. Problem List I Problem 1. A space X is said to be contractible if the identiy map i X : X X is nullhomotopic. a. Show that any convex subset of R n is contractible. b. Show that a contractible space is

More information

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture:

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture: Samuel Lee Algebraic Topology Homework #6 May 11, 2016 Problem 1: ( 2.1: #1). What familiar space is the quotient -complex of a 2-simplex [v 0, v 1, v 2 ] obtained by identifying the edges [v 0, v 1 ]

More information

AN ASPHERICAL 5-MANIFOLD WITH PERFECT FUNDAMENTAL GROUP

AN ASPHERICAL 5-MANIFOLD WITH PERFECT FUNDAMENTAL GROUP AN ASPHERICAL 5-MANIFOLD WITH PERFECT FUNDAMENTAL GROUP J.A. HILLMAN Abstract. We construct aspherical closed orientable 5-manifolds with perfect fundamental group. This completes part of our study of

More information

THE POINCARE-HOPF THEOREM

THE POINCARE-HOPF THEOREM THE POINCARE-HOPF THEOREM ALEX WRIGHT AND KAEL DIXON Abstract. Mapping degree, intersection number, and the index of a zero of a vector field are defined. The Poincare-Hopf theorem, which states that under

More information

Topological degree and invariance of domain theorems

Topological degree and invariance of domain theorems Topological degree and invariance of domain theorems Cristina Ana-Maria Anghel Geometry and PDE s Workshop Timisoara West University 24 th May 2013 The invariance of domain theorem, appeared at the beginning

More information

LOCALISATIONS OF COBORDISM CATEGORIES AND INVERTIBLE TFTS IN DIMENSION TWO

LOCALISATIONS OF COBORDISM CATEGORIES AND INVERTIBLE TFTS IN DIMENSION TWO Homology, Homotopy and Applications, vol.??(1), 2013, pp.1 26. LOCALISATIONS OF COBORDISM CATEGORIES AND INVERTIBLE TFTS IN DIMENSION TWO R. JUER and U. TILLMANN ACCEPTED FOR PUBLICATION IN HOMOLOGY, HOMOTOPY

More information

NOTES FOR MATH 5520, SPRING Outline

NOTES FOR MATH 5520, SPRING Outline NOTES FOR MATH 5520, SPRING 2011 DOMINGO TOLEDO 1. Outline This will be a course on the topology and geometry of surfaces. This is a continuation of Math 4510, and we will often refer to the notes for

More information

Algebraic Topology M3P solutions 2

Algebraic Topology M3P solutions 2 Algebraic Topology M3P1 015 solutions AC Imperial College London a.corti@imperial.ac.uk 3 rd February 015 A small disclaimer This document is a bit sketchy and it leaves some to be desired in several other

More information

Quiz-1 Algebraic Topology. 1. Show that for odd n, the antipodal map and the identity map from S n to S n are homotopic.

Quiz-1 Algebraic Topology. 1. Show that for odd n, the antipodal map and the identity map from S n to S n are homotopic. Quiz-1 Algebraic Topology 1. Show that for odd n, the antipodal map and the identity map from S n to S n are homotopic. 2. Let X be an Euclidean Neighbourhood Retract space and A a closed subspace of X

More information

A PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE FROM THE ACTION ON THE COMPLEX OF CURVES

A PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE FROM THE ACTION ON THE COMPLEX OF CURVES Szepietowski, B. Osaka J. Math. 45 (008), 83 36 A PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE FROM THE ACTION ON THE COMPLEX OF CURVES BŁAŻEJ SZEPIETOWSKI (Received June 30, 006,

More information

Handlebody Decomposition of a Manifold

Handlebody Decomposition of a Manifold Handlebody Decomposition of a Manifold Mahuya Datta Statistics and Mathematics Unit Indian Statistical Institute, Kolkata mahuya@isical.ac.in January 12, 2012 contents Introduction What is a handlebody

More information

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM ARIEL HAFFTKA 1. Introduction In this paper we approach the topology of smooth manifolds using differential tools, as opposed to algebraic ones such

More information

Counting conjugacy classes of subgroups in a finitely generated group

Counting conjugacy classes of subgroups in a finitely generated group arxiv:math/0403317v2 [math.co] 16 Apr 2004 Counting conjugacy classes of subgroups in a finitely generated group Alexander Mednykh Sobolev Institute of Mathematics, Novosibirsk State University, 630090,

More information

The uniformization theorem

The uniformization theorem 1 The uniformization theorem Thurston s basic insight in all four of the theorems discussed in this book is that either the topology of the problem induces an appropriate geometry or there is an understandable

More information

THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE. 1. Introduction. Theorem 1.1. The topological complexity of the Klein bottle K equals 5.

THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE. 1. Introduction. Theorem 1.1. The topological complexity of the Klein bottle K equals 5. THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE DONALD M. DAVIS Abstract. We use obstruction theory to determine the topological complexity of the Klein bottle. The same result was obtained by Cohen and

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 21 (Day 1) 1. (CA) Evaluate sin 2 x x 2 dx Solution. Let C be the curve on the complex plane from to +, which is along

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

Multiplicity of singularities is not a bi-lipschitz invariant

Multiplicity of singularities is not a bi-lipschitz invariant Multiplicity of singularities is not a bi-lipschitz invariant Misha Verbitsky Joint work with L. Birbrair, A. Fernandes, J. E. Sampaio Geometry and Dynamics Seminar Tel-Aviv University, 12.12.2018 1 Zariski

More information

Some K-theory examples

Some K-theory examples Some K-theory examples The purpose of these notes is to compute K-groups of various spaces and outline some useful methods for Ma448: K-theory and Solitons, given by Dr Sergey Cherkis in 2008-09. Throughout

More information

Fiber Bundles, The Hopf Map and Magnetic Monopoles

Fiber Bundles, The Hopf Map and Magnetic Monopoles Fiber Bundles, The Hopf Map and Magnetic Monopoles Dominick Scaletta February 3, 2010 1 Preliminaries Definition 1 An n-dimension differentiable manifold is a topological space X with a differentiable

More information

Lecture III: Neighbourhoods

Lecture III: Neighbourhoods Lecture III: Neighbourhoods Jonathan Evans 7th October 2010 Jonathan Evans () Lecture III: Neighbourhoods 7th October 2010 1 / 18 Jonathan Evans () Lecture III: Neighbourhoods 7th October 2010 2 / 18 In

More information

BEN KNUDSEN. Conf k (f) Conf k (Y )

BEN KNUDSEN. Conf k (f) Conf k (Y ) CONFIGURATION SPACES IN ALGEBRAIC TOPOLOGY: LECTURE 2 BEN KNUDSEN We begin our study of configuration spaces by observing a few of their basic properties. First, we note that, if f : X Y is an injective

More information

Homotopy and homology groups of the n-dimensional Hawaiian earring

Homotopy and homology groups of the n-dimensional Hawaiian earring F U N D A M E N T A MATHEMATICAE 165 (2000) Homotopy and homology groups of the n-dimensional Hawaiian earring by Katsuya E d a (Tokyo) and Kazuhiro K a w a m u r a (Tsukuba) Abstract. For the n-dimensional

More information

M4P52 Manifolds, 2016 Problem Sheet 1

M4P52 Manifolds, 2016 Problem Sheet 1 Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

More information

A (Brief) History of Homotopy Theory

A (Brief) History of Homotopy Theory April 26, 2013 Motivation Why I m giving this talk: Dealing with ideas in the form they were first discovered often shines a light on the primal motivation for them (...) Why did anyone dream up the notion

More information

arxiv: v1 [math.gt] 22 May 2018

arxiv: v1 [math.gt] 22 May 2018 arxiv:1805.08580v1 [math.gt] 22 May 2018 A CHARACTERIZATION ON SEPARABLE SUBGROUPS OF 3-MANIFOLD GROUPS HONGBIN SUN Abstract. In this paper, we give a complete characterization on which finitely generated

More information

The Poincaré Conjecture

The Poincaré Conjecture LX 2009 Easter 2009 I see dead people Cimetière du Montparnasse, Paris Henri Poincaré Jules Henri Poincaré (1854 1912) Henri Poincaré Jules Henri Poincaré (1854 1912) Mathematician, theoretical physicist,

More information

Mike Davis. July 4, 2006

Mike Davis. July 4, 2006 July 4, 2006 1 Properties 2 3 The Euler Characteristic Conjecture Singer Conjecture Properties Last time L 2 C i (X ) := {ϕ : {i-cells} R ϕ(e) 2 < } L 2 H i (X ) := Z i (X )/B i (X ) L 2 H i (X ) := Z

More information

Math 215a Homework #1 Solutions. π 1 (X, x 1 ) β h

Math 215a Homework #1 Solutions. π 1 (X, x 1 ) β h Math 215a Homework #1 Solutions 1. (a) Let g and h be two paths from x 0 to x 1. Then the composition sends π 1 (X, x 0 ) β g π 1 (X, x 1 ) β h π 1 (X, x 0 ) [f] [h g f g h] = [h g][f][h g] 1. So β g =

More information

MATH 215B HOMEWORK 5 SOLUTIONS

MATH 215B HOMEWORK 5 SOLUTIONS MATH 25B HOMEWORK 5 SOLUTIONS. ( marks) Show that the quotient map S S S 2 collapsing the subspace S S to a point is not nullhomotopic by showing that it induces an isomorphism on H 2. On the other hand,

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Manifolds and Poincaré duality

Manifolds and Poincaré duality 226 CHAPTER 11 Manifolds and Poincaré duality 1. Manifolds The homology H (M) of a manifold M often exhibits an interesting symmetry. Here are some examples. M = S 1 S 1 S 1 : M = S 2 S 3 : H 0 = Z, H

More information

Math 210B: Algebra, Homework 6

Math 210B: Algebra, Homework 6 Math 210B: Algebra, Homework 6 Ian Coley February 19, 2014 Problem 1. Let K/F be a field extension, α, β K. Show that if [F α) : F ] and [F β) : F ] are relatively prime, then [F α, β) : F ] = [F α) :

More information

Math 147, Homework 6 Solutions Due: May 22, 2012

Math 147, Homework 6 Solutions Due: May 22, 2012 Math 147, Homework 6 Solutions Due: May 22, 2012 1. Let T = S 1 S 1 be the torus. Is it possible to find a finite set S = {P 1,..., P n } of points in T and an embedding of the complement T \ S into R

More information

Math 210B: Algebra, Homework 4

Math 210B: Algebra, Homework 4 Math 210B: Algebra, Homework 4 Ian Coley February 5, 2014 Problem 1. Let S be a multiplicative subset in a commutative ring R. Show that the localisation functor R-Mod S 1 R-Mod, M S 1 M, is exact. First,

More information

Atiyah-Singer Revisited

Atiyah-Singer Revisited Atiyah-Singer Revisited Paul Baum Penn State Texas A&M Universty College Station, Texas, USA April 1, 2014 From E 1, E 2,..., E n obtain : 1) The Dirac operator of R n D = n j=1 E j x j 2) The Bott generator

More information

32 Proof of the orientation theorem

32 Proof of the orientation theorem 88 CHAPTER 3. COHOMOLOGY AND DUALITY 32 Proof of the orientation theorem We are studying the way in which local homological information gives rise to global information, especially on an n-manifold M.

More information

Algebraic Topology Andreas Kriegl

Algebraic Topology Andreas Kriegl Algebraic Topology Andreas Kriegl email:andreas.kriegl@univie.ac.at 250109, WS 2011, Mo Do. 10 10-10 55, UZA 2, 2A310 These lecture notes are inspired to a large extend by the book R.Stöcker/H.Zieschang:

More information

Intersection of stable and unstable manifolds for invariant Morse functions

Intersection of stable and unstable manifolds for invariant Morse functions Intersection of stable and unstable manifolds for invariant Morse functions Hitoshi Yamanaka (Osaka City University) March 14, 2011 Hitoshi Yamanaka (Osaka City University) ()Intersection of stable and

More information

ESSENTIAL CLOSED SURFACES IN BOUNDED 3-MANIFOLDS

ESSENTIAL CLOSED SURFACES IN BOUNDED 3-MANIFOLDS JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 10, Number 3, July 1997, Pages 553 563 S 0894-0347(97)00236-1 ESSENTIAL CLOSED SURFACES IN BOUNDED 3-MANIFOLDS D. COOPER, D. D. LONG, AND A. W. REID

More information

Math 205C - Topology Midterm

Math 205C - Topology Midterm Math 205C - Topology Midterm Erin Pearse 1. a) State the definition of an n-dimensional topological (differentiable) manifold. An n-dimensional topological manifold is a topological space that is Hausdorff,

More information

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U )

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U ) 3 Riemann surfaces 3.1 Definitions and examples From the definition of a surface, each point has a neighbourhood U and a homeomorphism ϕ U from U to an open set V in R 2. If two such neighbourhoods U,

More information

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2 Transversality Abhishek Khetan December 13, 2017 Contents 1 Basics 1 2 The Transversality Theorem 1 3 Transversality and Homotopy 2 4 Intersection Number Mod 2 4 5 Degree Mod 2 4 1 Basics Definition. Let

More information

J-holomorphic curves in symplectic geometry

J-holomorphic curves in symplectic geometry J-holomorphic curves in symplectic geometry Janko Latschev Pleinfeld, September 25 28, 2006 Since their introduction by Gromov [4] in the mid-1980 s J-holomorphic curves have been one of the most widely

More information

GENERALIZED PROPERTY R AND THE SCHOENFLIES CONJECTURE MARTIN SCHARLEMANN

GENERALIZED PROPERTY R AND THE SCHOENFLIES CONJECTURE MARTIN SCHARLEMANN GENERALIZED PROPERTY R AND THE SCHOENFLIES CONJECTURE MARTIN SCHARLEMANN ABSTRACT. There is a relation between the generalized Property R Conjecture and the Schoenflies Conjecture that suggests a new line

More information

GEOMETRY FINAL CLAY SHONKWILER

GEOMETRY FINAL CLAY SHONKWILER GEOMETRY FINAL CLAY SHONKWILER 1 a: If M is non-orientale and p M, is M {p} orientale? Answer: No. Suppose M {p} is orientale, and let U α, x α e an atlas that gives an orientation on M {p}. Now, let V,

More information

The Real Grassmannian Gr(2, 4)

The Real Grassmannian Gr(2, 4) The Real Grassmannian Gr(2, 4) We discuss the topology of the real Grassmannian Gr(2, 4) of 2-planes in R 4 and its double cover Gr + (2, 4) by the Grassmannian of oriented 2-planes They are compact four-manifolds

More information

CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA. Contents 1. Introduction 1

CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA. Contents 1. Introduction 1 CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA PAOLO DEGIORGI Abstract. This paper will first go through some core concepts and results in homology, then introduce the concepts of CW complex, subcomplex

More information

FUNDAMENTAL GROUPS OF FINITE VOLUME, BOUNDED NEGATIVELY CURVED 4-MANIFOLDS ARE NOT 3-MANIFOLD GROUPS

FUNDAMENTAL GROUPS OF FINITE VOLUME, BOUNDED NEGATIVELY CURVED 4-MANIFOLDS ARE NOT 3-MANIFOLD GROUPS FUNDAMENTAL GROUPS OF FINITE VOLUME, BOUNDED NEGATIVELY CURVED 4-MANIFOLDS ARE NOT 3-MANIFOLD GROUPS GRIGORI AVRAMIDI, T. TÂM NGUY ÊN-PHAN, YUNHUI WU Abstract. We study noncompact, complete, finite volume,

More information

L E C T U R E N O T E S O N H O M O T O P Y T H E O R Y A N D A P P L I C AT I O N S

L E C T U R E N O T E S O N H O M O T O P Y T H E O R Y A N D A P P L I C AT I O N S L A U R E N T I U M A X I M U N I V E R S I T Y O F W I S C O N S I N - M A D I S O N L E C T U R E N O T E S O N H O M O T O P Y T H E O R Y A N D A P P L I C AT I O N S i Contents 1 Basics of Homotopy

More information

QUALIFYING EXAM, Fall Algebraic Topology and Differential Geometry

QUALIFYING EXAM, Fall Algebraic Topology and Differential Geometry QUALIFYING EXAM, Fall 2017 Algebraic Topology and Differential Geometry 1. Algebraic Topology Problem 1.1. State the Theorem which determines the homology groups Hq (S n \ S k ), where 1 k n 1. Let X S

More information

An Outline of Homology Theory

An Outline of Homology Theory An Outline of Homology Theory Stephen A. Mitchell June 1997, revised October 2001 Note: These notes contain few examples and even fewer proofs. They are intended only as an outline, to be supplemented

More information

MOM TECHNOLOGY AND VOLUMES OF HYPERBOLIC 3-MANIFOLDS DAVID GABAI, ROBERT MEYERHOFF, AND PETER MILLEY

MOM TECHNOLOGY AND VOLUMES OF HYPERBOLIC 3-MANIFOLDS DAVID GABAI, ROBERT MEYERHOFF, AND PETER MILLEY 1 MOM TECHNOLOGY AND VOLUMES OF HYPERBOLIC 3-MANIFOLDS DAVID GABAI, ROBERT MEYERHOFF, AND PETER MILLEY arxiv:math.gt/0606072 v2 31 Jul 2006 0. Introduction This paper is the first in a series whose goal

More information

Lecture 4: Knot Complements

Lecture 4: Knot Complements Lecture 4: Knot Complements Notes by Zach Haney January 26, 2016 1 Introduction Here we discuss properties of the knot complement, S 3 \ K, for a knot K. Definition 1.1. A tubular neighborhood V k S 3

More information

From singular chains to Alexander Duality. Jesper M. Møller

From singular chains to Alexander Duality. Jesper M. Møller From singular chains to Alexander Duality Jesper M. Møller Matematisk Institut, Universitetsparken 5, DK 2100 København E-mail address: moller@math.ku.dk URL: http://www.math.ku.dk/~moller Contents Chapter

More information

Topology Hmwk 1 All problems are from Allen Hatcher Algebraic Topology (online) ch 3.2

Topology Hmwk 1 All problems are from Allen Hatcher Algebraic Topology (online) ch 3.2 Topology Hmwk 1 All problems are from Allen Hatcher Algebraic Topology (online) ch 3.2 Andrew Ma March 1, 214 I m turning in this assignment late. I don t have the time to do all of the problems here myself

More information

Geometry Qualifying Exam Notes

Geometry Qualifying Exam Notes Geometry Qualifying Exam Notes F 1 F 1 x 1 x n Definition: The Jacobian matrix of a map f : N M is.. F m F m x 1 x n square matrix, its determinant is called the Jacobian determinant.. When this is a Definition:

More information