Technology Computer Aided Design (TCAD) Laboratory. Lecture 2, A simulation primer

Size: px
Start display at page:

Download "Technology Computer Aided Design (TCAD) Laboratory. Lecture 2, A simulation primer"

Transcription

1 Technology Computer Aided Design (TCAD) Laboratory Lecture 2, A simulation primer [Source: Synopsys] Giovanni Betti Beneventi gbbeneventi@arces.unibo.it ; giobettibeneventi@gmail.com Office: Engineering faculty, ARCES lab. (Ex. 3.2 room), viale del Risorgimento 2, Bologna Phone: Advanced Research Center on Electronic Systems (ARCES) University of Bologna, Italy 1

2 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 2

3 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 3

4 Introduction In this lecture we will talk about different topics, all of them to be discussed before starting the laboratory activity. Some content of this class is related to the review of basic concepts, like the choice of a simulation domain, the equilibrium and out-of-equilibrium definitions, the definitions of static, transient, and AC simulations. In addition, a TCAD user perspective background on the numerical methods and on the solvers used in Synopsys Sentaurus TCAD is provided. 4

5 Outline Introduction Definition of equilibrium and out-ofequilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 5

6 Equilibrium and out-of-equilibrium In a system under equilibrium condition, each process and its inverse must selfbalance independently from any other process that may occur in the system. In other words, equilibrium is the special case where each fundamental process and its inverse self-balance, it is also known as detailed balance principle. If a net current flows, or if light is shined upon the semiconductor creating free carriers, we are out-of-equilibrium. Applied Voltage e I semiconductor Shined light E= hn e electrode V electrode A system under steady-state, transient, or ac signal is always out-of-equilibrium. The only exception is the presence of a capacitor, than can be biased but in which the net current flow is zero due to the presence of the oxide 6

7 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 7

8 Static, transient, and AC simulations (1) Static condition or steady-state (DC bias point). In steady-state conditions, for each property of the systems, its partial derivative with respect to time is zero, i.e., nothing is changing with time. To perform steady-state simulations, the Sentaurus TCAD keyword is Quasistationary. The Quasistationary command is used to ramp a device from a solution to another through the modification of the boundary conditions (that can be Voltage, Current, or Temperature). For example, ramping a drain voltage of a device from 0 to 5V is performed by Quasistationary( Goal {Voltage=5 Name=Drain } ){ Coupled { Poisson Electron Hole } } Step Boundary Re-solve the Device 8

9 Static, transient, and AC simulations (2) Transient response. A transient response or natural response is the timevarying response of a system to a change from equilibrium. In Sentaurus, the keyword that must be used to perform transient simulation is Transient. The command must start with a device that has already been solved under stationary conditions. The simulation then proceeds by iterating between incrementing time and re-solving the device. An example of performing a transient simulation is: Transient( InitialTime = 0.0 FinalTime=1.0e-5 ){ Coupled { Poisson Electron Hole } } Increment time Re-solve the Device 9

10 Static, transient, and AC simulations (3) Small signal AC analysis. Performing a small signal or AC analysis means simulate the behavior of system when a relatively small harmonic signal is superimposed to a steady-state condition or DC bias point. Small-signal modeling is a common analysis technique in electrical engineering which is used to approximate the behavior of nonlinear devices with linear equations. This linearization is formed about the DC bias point of the device (that is, the voltage/current levels present when no AC signal is applied), and can be accurate for small excursions about this point. The keyword for AC analysis in Sentaurus Sdevice is ACCoupled. Graphical, qualitative, illustration of steady-state, transient, and AC signals. 10

11 Example M. A. Alam (2008), "ECE 606: Principles of Semiconductor Devices, Italy, France, Germany and UK form our system. Italian population is the quantity of interest. Immigration/emigration in/from the other countries are our processes. France 4 4 Italy France 5 3 Italy France 2 6 Italy Germany UK EQUILIBRIUM 10 people going out and 10 people coming in Italy (population of Italy is stationary ). In addition, immigration and emigration counterbalance country-wise (each process counterbalance its opposite in each country): we are in equilibrium condition. Germany UK STEADY STATE 10 people going out and 10 people coming in Italy (population of Italy is stationary) But immigration and emigration process do not counterbalance countrywise: we are out-ofequilibrium. Germany UK TRANSIENT 12 people going out and 8 people coming in Italy. Italian population is not conserved, i.e. Italian population is not stationary. In addition, immigration and emigration do not counterbalance country-wise: we are out-ofequilibrium. 11

12 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 12

13 Simulation on 1D, 2D and 3D domains (1) Reality is always 3D. However, some problems can be thought (approximated) as they would occur in less than 3D. This can be done when there is invariance of the problem on some directions. In other words, a dimension can be suppressed from the simulation if the physical internal properties of the simulated device would not change if the dimension itself would be made infinite. To make such approximations (not always easy to see!), an a-priori knowledge of the problem is needed. Example Standard planar MOSFET FinFET z y x L 2D L Possible to think about a 2D equivalent (on the yz plane) of what happens in the transistor channel. That is the device features can be thought to be invariant in the x direction (within the channel). The larger the L the better the 2D approximation. L very thin and raised source and drain. Intrinsically a 3D device, very difficult to simplify into a 2D equivalent! 13

14 Simulation on 1D, 2D and 3D domains (2) The simplification of a 3D problem into 2D or even 1D, if possible, is strongly encouraged. Indeed, the simplification of the simulation domain, means a lower number of nodes in which the numerical simulation must be computed. Reducing the number of the mesh nodes decreases the computational burden and therefore the time needed for the simulation to be performed. e.g.: same device, for 2D simulation ~ 10 3 nodes, for a 3D simulations ~10 5 nodes ~ 2 orders of magnitude of difference in the node numbers! One of the most frequently employed simplification is simulating a 3D device having cylindrical symmetry using a 2D domain and solving the model equations in cylindrical coordinates. Example Nanowire (NW) MOSFET source gate drain equivalent 2D domain to be simulated in cylindrical coordinates To simulate a 2D domain in cylindrical coordinates, the partial-differential equations must be expressed in the cylindrical coordinate system. In Sentaurus Synopsys this is accomplished by using the Cylindrical keyword in the Math section of the Sdevice input file (see later) Because of the simple geometry, all the devices simulated in the course need only a 2D planar (*) simulation domain. (*) planar = Cartesian coordinates vs. cylindrical coordinates 14

15 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 15

16 Scope In this tutorial we discuss the basic features of the numerical method used in TCAD Sentaurus Devices from a TCAD user perspective. The purpose of this tutorial is not describing into details the numerical methods implemented in the software, but discussing their general features, in order for the user to understand which numerical methods is most useful to be employed for a given problem and to cope with possible convergence issues. In general, in an iterative solution method, we start with a guess for the solution (often the zero vector) and then we successively renew this guess, getting closer to the solution at each stage. The iterations continue until the solution converges to a desired accuracy x i x i-1 < e, where x is the solution vector, that is the vector of the values of the problem unknowns, i is the index counting the iteration number, and e is the vector which defines the needed accuracy. 16

17 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 17

18 Considerations on numerical mesh (1) Define and effectively optimize numerical meshes in which the problem can be solved assuring convergence and, at the same time, reasonable simulation times, is a challenge. However, some general rules can be applied: The grid spacing must be sufficiently dense so that all the relevant features of the geometry (e.g. doping) are accurately represented. Points must be allocated to accurately approximate the physical quantities of interest (e.g. potentials, fields, carrier concentrations, currents). This means that high grid densities must be allocated in regions where the geometrical and physical quantities of interest undergo rapid changes (e.g. junctions). Conversely, the spacing between points could be relaxed in the areas where values are expected to stay relatively constant without adding any significant contribution to the overall error (e.g. quasi-neutral regions, deep regions inside the device). In fact, because the overall computation time depends on the total number of grid points, grid point number must be minimized for computational efficiency. In advanced finite-element software, as well as in Synopsys Sentaurus there are tools for automated grid generation and automatic adaptation of grids. 18

19 Considerations on numerical mesh (2) Example. Numerical grid in a pn diode junction p region n region Once that convergence is achieved within reasonable simulation time, an operation that must always been performed prior to elaborate the results of a simulation is to check the invariance of the solution with respect to variations of the numerical mesh. That is, once a mesh has been created to assure convergence in reasonable time, try to further reduce the mesh spacing and see if the solutions does not change. If the solution does not change mesh is good! 19

20 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 20

21 Generalities The power of an iterative method lies in its ability to achieve convergence efficiently, i.e. as fast as possible. In general, convergence and speed are two conflicting issues, since more robust convergence means a higher number of iterations and heavier mesh (i.e. an higher number of points in which the solution must be computed). For semiconductor devices, two different approaches are usually employed to solve the coupled set of equations that comprises the Drift-Diffusion model, depending upon the problem (it is also possible to combine the two methods for the same problem when needed): 1. The Newton iteration (or fully-coupled method) and 2. The Gummel iteration (or de-coupled method) For both of them, once the non-linear partial-differential-equations of the Drift-Diffusion model are discretized in space, the Newton s method for the solution of non-linear systems is applied. For both of them, in general, the solution converges non-linearly, meaning that the error, defined as the difference in the unknown between two subsequent iteration is a non-linear function of the iteration counter. 21

22 Newton method In both Newton and Gummel iteration schemes, the Newton iterative method is applied to solve the non-linear system. Let s briefly review the concept of the Newton method by considering a single-variable equation. The first step of the method consists in manipulating the equation in the residual form f x = 0, being f a function of some real unknown x and let its derivative being f. Thus, to solve the equation one needs to find out the zeroes of the function. To get successively better approximation of the zeroes we start with a first guess x 0. Then, provided that the function is reasonably well-behaved, a better approximation of x 0, x 1, can be easily calculated. In fact: Being x 0 a first guess as a zero of f x. Suppose x 1 is a zero of f x then f x 0 = 0 f(x 0) x 1 x 0 x 1 = x 0 f(x 0) f (x 0 ) Geometrically (x 1,0) is the intersection with the x-axis of a line tangent to f at x 0, f x 0. The process is repeated as x n+1 = x n f(x n) f (x n ) until a sufficiently accurate value is reached. f(x) x 1 x 0 x two iterations enough to get good accuracy 22

23 Newton iteration In the fully-coupled Newton iteration (also called Bank-Rose scheme in semiconductor device simulators) the total system of unknowns is solved together, meaning that there is only one system to be solved. The systems derives from the discretization of (i.e. includes) all equations to be solved: Poisson equations, Continuity equations and Transport equations. Initial guess of the solution Solve a whole system including Poisson, Continuity and Transport equations Newton iteration n converged?? y The keyword for the Newton iteration in Sentaurus Device is Coupled. 23

24 Gummel iteration Each iteration of the Gummel method treats one equation at a time, solving for the given equation (i.e. Poisson equation or Continuity and Transport equations) with respect to its primary unknown (i.e., for Poisson equation the electric field, for the Continuity and Transport equations the carrier densities) updating at each step only the values of the primary unknown. An iteration is completed when the procedure has been performed on each independent variable. Initial guess of the solution Solve Poisson equation n converged?? y Solve Continuity and Transport equations Gummel iteration n converged?? y The keyword for the Gummel iteration in Sentaurus Device is Plugin. 24

25 Combined Newton-Gummel iteration A combined scheme is often used where heating effects (accounted for with the Fourier heating postulate) come into play. First of all, the Drift-Diffusion model is computed until convergence is achieved with a Newton iteration, then electric field and current density solutions are plugged into the Fourier equation, which is computed until convergence is achieved in a Gummel scheme. Initial guess of the solution Solve a whole system including Poisson, Continuity and Transport equations Newton iteration n converged?? y Gummel iteration Solve Heat equation n converged?? y 25

26 Comparison between Newton and Gummel iterations Newton s iteration converge with a lower number of iteration compared to the Gummel iteration (quadratic rate of convergence vs. linear rate of convergence). However the single Newton iteration takes more time than a Gummel iteration. Gummel iteration converges relatively slowly compared to Newton iteration but the method will often tolerate poor initial guess. In certain problems where it is difficult to choose good initial guess, starting with Gummel to refine an initial guess, then switching to Newton after some iterations to achieve quicker convergence can be useful. In general use Gummel only when the transport problem can be decoupled from the electrostatic problem (i.e. at low fields where diffusion dominates, no band-to-band-tunneling, no avalanche, no field-dependent mobility). In those cases, Gummel is quicker than Newton, since Newton keeps updating quantities that are essentially constant or weakly changing. As initial guess, one often relies on the equilibrium solution. 26

27 Error handling/accuracy of simulations During a Solve statement, Sentaurus Device tries to determine the value of an equation variable x, such that the computed updated x (after the n-th iteration) is small enough. That is, it iterates until ε R x x x < 1 where ε R = 10-Digits and ε A = Error x + ε A and x is a scaling constant equal to 0.1 What does it mean? Let s simplify the inequality in two limiting cases: For x x x < ε R Relative Error criterion For x 0 x < ε A x Absolute Error criterion 27

28 Outline Introduction Definition of equilibrium and out-of-equilibrium Static, Transient and AC simulations Simplify the simulation domain Numerical methods from a TCAD user perspective Meshing Numerical methods Synopsys Sentaurus TCAD Solvers 28

29 Choosing the appropriate solver At each step of the simulation a linear system is solved Three linear solvers are available in Sentaurus Sdevice, which basic features are listed in the following table solver type memory requirements SUPER direct (systematic triangularization of the matrixes) high good for PARDISO direct parallel high 2D modification of default parameters not recommended ILS (based on the GMRES) iterative parallel (first guess than refinement) low 1D 3D requires modification of default parameters 29

CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY

CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY 15 CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY In this chapter TCAD and the various modules available in the TCAD simulator have been discussed. The simulation methodologies to extract

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with

More information

Bipolar Transistor WS 2011

Bipolar Transistor WS 2011 Institut für Integrierte Systeme Integrated Systems Laboratory Bipolar Transistor WS 2011 1 Introduction In this exercise we want to simulate the IV characteristics of a bipolar transistor and draw the

More information

EE 3329 Electronic Devices Syllabus ( Extended Play )

EE 3329 Electronic Devices Syllabus ( Extended Play ) EE 3329 - Electronic Devices Syllabus EE 3329 Electronic Devices Syllabus ( Extended Play ) The University of Texas at El Paso The following concepts can be part of the syllabus for the Electronic Devices

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Solid State Electronics. Final Examination

Solid State Electronics. Final Examination The University of Toledo EECS:4400/5400/7400 Solid State Electronic Section elssf08fs.fm - 1 Solid State Electronics Final Examination Problems Points 1. 1. 14 3. 14 Total 40 Was the exam fair? yes no

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

Session 6: Solid State Physics. Diode

Session 6: Solid State Physics. Diode Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between

More information

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability Journal of Computational Electronics 3: 165 169, 2004 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. A Computational Model of NBTI and Hot Carrier Injection Time-Exponents

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:

ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: Depletion Approximation Step Junction Things you should know when you leave Key Questions What is the space charge region? What are the

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

L03: pn Junctions, Diodes

L03: pn Junctions, Diodes 8/30/2012 Page 1 of 5 Reference:C:\Users\Bernhard Boser\Documents\Files\Lib\MathCAD\Default\defaults.mcd L03: pn Junctions, Diodes Intrinsic Si Q: What are n, p? Q: Is the Si charged? Q: How could we make

More information

(Refer Slide Time: 03:41)

(Refer Slide Time: 03:41) Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 25 PN Junction (Contd ) This is the 25th lecture of this course

More information

Semi-Conductors insulators semi-conductors N-type Semi-Conductors P-type Semi-Conductors

Semi-Conductors insulators semi-conductors N-type Semi-Conductors P-type Semi-Conductors Semi-Conductors In the metal materials considered earlier, the coupling of the atoms together to form the material decouples an electron from each atom setting it free to roam around inside the material.

More information

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 15 Excess Carriers This is the 15th lecture of this course

More information

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor: 16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

ECE 340 Lecture 39 : MOS Capacitor II

ECE 340 Lecture 39 : MOS Capacitor II ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS Capacitance-Voltage Analysis Things you should know when you leave Key Questions What are the effects

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

ECE 440 Lecture 28 : P-N Junction II Class Outline:

ECE 440 Lecture 28 : P-N Junction II Class Outline: ECE 440 Lecture 28 : P-N Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

Semiconductor Module

Semiconductor Module Semiconductor Module Optics Seminar July 18, 2018 Yosuke Mizuyama, Ph.D. COMSOL, Inc. The COMSOL Product Suite Governing Equations Semiconductor Schrödinger Equation Semiconductor Optoelectronics, FD Semiconductor

More information

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 4-1 Contents: Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

Modeling and Analysis of Full-Chip Parasitic Substrate Currents

Modeling and Analysis of Full-Chip Parasitic Substrate Currents Modeling and Analysis of Full-Chip Parasitic Substrate Currents R. Gillon, W. Schoenmaker September 11, 2017 Rev. 2.0 1 Outline Objectives Challenges SPX solver Solutions l Compact Modeling (ONSEMI) l

More information

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Outline 1. Overview of MOS electrostatics under bias 2. Depletion regime 3. Flatband 4. Accumulation regime

More information

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg Course in Nonlinear FEM Geometric nonlinearity Nonlinear FEM Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity it continued

More information

Reduction of Self-heating effect in LDMOS devices

Reduction of Self-heating effect in LDMOS devices Reduction of Self-heating effect in LDMOS devices T.K.Maiti * and C. K. Maiti ** Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur-721302, India

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it. Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

ECE 340 Lecture 27 : Junction Capacitance Class Outline:

ECE 340 Lecture 27 : Junction Capacitance Class Outline: ECE 340 Lecture 27 : Junction Capacitance Class Outline: Breakdown Review Junction Capacitance Things you should know when you leave M.J. Gilbert ECE 340 Lecture 27 10/24/11 Key Questions What types of

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007

More information

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 4-1 Contents: Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium February 13, 2003

More information

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction 4- P-N Junction We begin our study of semiconductor devices with the junction for three reasons. (1) The device finds application in many electronic systems, e.g., in adapters that charge the batteries

More information

Choice of V t and Gate Doping Type

Choice of V t and Gate Doping Type Choice of V t and Gate Doping Type To make circuit design easier, it is routine to set V t at a small positive value, e.g., 0.4 V, so that, at V g = 0, the transistor does not have an inversion layer and

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

an introduction to Semiconductor Devices

an introduction to Semiconductor Devices an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor -

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/18/2007 P Junctions Lecture 1 Reading: Chapter 5 Announcements For THIS WEEK OLY, Prof. Javey's office hours will be held on Tuesday, Sept 18 3:30-4:30

More information

Today we begin the first technical topic related directly to the course that is: Equilibrium Carrier Concentration.

Today we begin the first technical topic related directly to the course that is: Equilibrium Carrier Concentration. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 3 Equilibrium and Carrier Concentration Today we begin the

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Fabrication of semiconductor sensor

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

Semiconductor Integrated Process Design (MS 635)

Semiconductor Integrated Process Design (MS 635) Semiconductor Integrated Process Design (MS 635) Instructor: Prof. Keon Jae Lee - Office: 응용공학동 #4306, Tel: #3343 - Email: keonlee@kaist.ac.kr Lecture: (Tu, Th), 1:00-2:15 #2425 Office hour: Tues & Thur

More information

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation Journal of Engineering Science and Technology Review 2 (1) (2009) 157-164 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org A study of the silicon Bulk-Barrier Diodes

More information

ECE 340 Lecture 21 : P-N Junction II Class Outline:

ECE 340 Lecture 21 : P-N Junction II Class Outline: ECE 340 Lecture 21 : P-N Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The Metal-Semiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)

More information

Chapter 7. The pn Junction

Chapter 7. The pn Junction Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a P-type substrate such that a layer of semiconductor is converted into N type. Converting

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

Model of power InAlN/GaN HEMT for 3-D Electrothermal Simulations

Model of power InAlN/GaN HEMT for 3-D Electrothermal Simulations Faculty of Electrical Engineering and Information Technology Model of power InAlN/GaN HEMT for 3-D Electrothermal Simulations Aleš Chvála, Juraj Marek, Patrik Príbytný, Alexander Šatka and Daniel Donoval

More information

Erik Lind

Erik Lind High-Speed Devices, 2011 Erik Lind (Erik.Lind@ftf.lth.se) Course consists of: 30 h Lectures (H322, and Fys B check schedule) 8h Excercises 2x2h+4h Lab Excercises (2 Computer simulations, 4 RF measurment

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 2 Semiconductors Topics Covered in Chapter 2 Conductors Semiconductors Silicon crystals Intrinsic semiconductors Two types of flow Doping a

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

Simulating Hydrogen Transport and Single-Event Transients. Mark E. Law Dan Cummings, Nicole Rowsey And a Host of Collaborators

Simulating Hydrogen Transport and Single-Event Transients. Mark E. Law Dan Cummings, Nicole Rowsey And a Host of Collaborators Simulating Hydrogen Transport and Single-Event Transients Mark E. Law Dan Cummings icole Rowsey And a Host of Collaborators Objectives and Outline Provide device simulation environment for rad-hard applications

More information

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions Author manuscript, published in "Microelectronics Reliability vol.47 (7) pp.173-1734" Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Characteristics Optimization of Sub-10 nm Double Gate Transistors

Characteristics Optimization of Sub-10 nm Double Gate Transistors Characteristics Optimization of Sub-10 nm Double Gate Transistors YIMING LI 1,,*, JAM-WEM Lee 1, and HONG-MU CHOU 3 1 Departmenet of Nano Device Technology, National Nano Device Laboratories Microelectronics

More information

Introduction to Power Semiconductor Devices

Introduction to Power Semiconductor Devices ECE442 Power Semiconductor Devices and Integrated Circuits Introduction to Power Semiconductor Devices Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Semiconductor Devices Applications System Ratings

More information

1 cover it in more detail right away, 2 indicate when it will be covered in detail, or. 3 invite you to office hours.

1 cover it in more detail right away, 2 indicate when it will be covered in detail, or. 3 invite you to office hours. 14 1 8 6 IBM ES9 Bipolar Fujitsu VP IBM 39S Pulsar 4 IBM 39 IBM RY6 CDC Cyber 5 IBM 4381 IBM RY4 IBM 381 Apache Fujitsu M38 IBM 37 Merced IBM 36 IBM 333 Vacuum Pentium II(DSIP) 195 196 197 198 199 NTT

More information

ECE PN Junctions and Diodes

ECE PN Junctions and Diodes ECE 342 2. PN Junctions and iodes Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10

More information

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Module No. #05 Lecture No. #02 FETS and MOSFETS (contd.) In the previous lecture, we studied the working

More information

The 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities:

The 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities: 6.012 - Electronic Devices and Circuits Solving the 5 basic equations - 2/12/08 Version The 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities: n(x,t),

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Fundamentals of Semiconductor Physics

Fundamentals of Semiconductor Physics Fall 2007 Fundamentals of Semiconductor Physics 万 歆 Zhejiang Institute of Modern Physics xinwan@zimp.zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Transistor technology evokes new physics The objective of

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Enhanced lateral drift sensors: concept and development. TIPP2017, Beijing

Enhanced lateral drift sensors: concept and development. TIPP2017, Beijing Enhanced lateral drift sensors: concept and development. TIPP2017, Beijing Anastasiia Velyka, Hendrik Jansen DESY Hamburg How to achieve a high resolution? > Decrease the size of the read-out cell, i.e.

More information

Effective masses in semiconductors

Effective masses in semiconductors Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse

More information

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic LECTURE 23 Lecture 16-20 Digital Circuits, Logic 1 We need a smart switch, i.e., an electronically controlled switch 2 We need a gain element for example, to make comparators. The device of our dreams

More information

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 2018 Homework 4 Due on March 01, 2018 at 7:00 PM Suggested Readings: a) Lecture notes Important Note:

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 Contents: 1. Second-order and

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

Modelling of Diamond Devices with TCAD Tools

Modelling of Diamond Devices with TCAD Tools RADFAC Day - 26 March 2015 Modelling of Diamond Devices with TCAD Tools A. Morozzi (1,2), D. Passeri (1,2), L. Servoli (2), K. Kanxheri (2), S. Lagomarsino (3), S. Sciortino (3) (1) Engineering Department

More information

ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University

ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University NAME: PUID: : ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University This is a closed book exam You may use a calculator and the formula sheet Following the ECE policy, the calculator

More information

Electronic Devices & Circuits

Electronic Devices & Circuits Electronic Devices & Circuits For Electronics & Communication Engineering By www.thegateacademy.com Syllabus Syllabus for Electronic Devices Energy Bands in Intrinsic and Extrinsic Silicon, Carrier Transport,

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Effects of Scaling on Modeling of Analog RF MOS Devices

Effects of Scaling on Modeling of Analog RF MOS Devices Effects of Scaling on Modeling of Analog RF MOS Devices Y. Liu, S. Cao, T.-Y. Oh 1, B. Wu, O. Tornblad 2, R. Dutton Center for Integrated Systems, Stanford University 1 LG Electronics 2 Infineon Technologies

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Lecture 22 Field-Effect Devices: The MOS Capacitor

Lecture 22 Field-Effect Devices: The MOS Capacitor Lecture 22 Field-Effect Devices: The MOS Capacitor F. Cerrina Electrical and Computer Engineering University of Wisconsin Madison Click here for link to F.C. homepage Spring 1999 0 Madison, 1999-II Topics

More information