PHYSICS 2150 EXPERIMENTAL MODERN PHYSICS. Lecture 3 Rejection of Data; Weighted Averages

Size: px
Start display at page:

Download "PHYSICS 2150 EXPERIMENTAL MODERN PHYSICS. Lecture 3 Rejection of Data; Weighted Averages"

Transcription

1 PHYSICS 15 EXPERIMENTAL MODERN PHYSICS Lecture 3 Rejection of Data; Weighted Averages

2 PREVIOUS LECTURE: GAUSS DISTRIBUTION 1.5 p(x µ, )= 1 e 1 ( x µ ) µ=, σ=.5 1. µ=3, σ=.5.5 µ=4, σ=

3 WE CAN NOW ANSWER WHY ERRORS ADD IN QUADRATURE Measure independent quantities A and B and calculate sum 1. p(a µa, σa).8.6 p(b µb, σb)

4 WHAT IS p(a + B µ A+B, A+B)? Probability to measure A AND B simultaneously: p(a µ A, A) p(b µ B, B) e 1 ( A µ A A ) e 1 ( B µ B B ) e 1 h ( A µ A A ) +( B µ B B )i We now have in fact probability density for A+B and Z: p(a + B,Z µ A + µ B, ( A + B ) 1 ) e 1 x e o + y p 1 = (x + y) o + p + (px oy) op(o + p) (A+B µ A µ B ) A + B e 1 Z (A+B µ A µ B ) A + B e 1 Z

5 HOW ABOUT Z? We only care about A+B, so we integrate over all values of Z: p(a + B) = p(a + B,z)dz e 1 (A+B µ A µ B ) A + B e 1 Z dz Probability density for A+B is also a Gaussian p(a + B) = 1 A + B e with the standard deviation A+B = A + B 1 (A+B µ A µ B ) A + B

6 WE CAN NOW ANSWER WHY ERRORS ADD IN QUADRATURE 1. p(a µa, σa) A+B = A + B p(b µb, σb) p(a+b µa+µb, (σb +σb ) 1/ )

7 WE CAN ALSO JUSTIFY THE MEAN BEING THE BEST ESTIMATE Obtain data finite data set x1, x,...,xn and want to find the true value X 6 p(x)? V -5V -4V -3V -V -1V Electrostatic Grain Potential If we would know the limiting distribution p(x), we would also know X, but we don t!

8 DO WE REALLY NEED THE LIMITING DISTRIBUTION? Let s assume that the deviation of an individual measurement xi from X follows a Gaussian distribution p(x i )= 1 x e 1 ( xi X ) The probability to obtain the data set x1,...,xn is then p(x 1,x,..., x N )=p(x 1 ) p(x )... p(x N ) 1 N e 1 ( x 1 X )... e 1 xn X 1 N e P 1 N i (x 1 X)

9 MAXIMUM LIKELIHOOD PRINCIPLE p(x 1,x,..., x N ) 1 N e P 1 N i (x 1 X) Which is the most likeliest values for X for our data set x1, x,..., xn? the X for which p(x1, x,..., xn) is maximum p(x1, x,..., xn) is maximum if the exponent is minimum Need to find minimum of chi square : d or dx = N i (x i X)= X = 1 N The mean is the best estimate for X N i=1 N = i=1 x (x i X)

10 REJECTING DATA DON T!!!!!!! Best way is to take more data!

11 REJECTING DATA We often find suspicious data points Different way the data was collected? 4 Error during data recording? - It is ever legitimate to discard them?

12 REJECTING DATA Be 1 very careful - you are treading in the footsteps of a long line of practitioners of pathological science! 8 There should be an external reason for rejecting data! 6 But 4 even this may not been enough: The data may just be in conflict with our expectation By rejecting data we may bias the data set and produce bogus results

13 REJECTING DATA 1 8 There are no general recipes for rejecting data! All procedures for removing suspicious data are controversial! Will describe one which is popular in textbooks (but not in real life): Chauvenet s criterion

14 A CAUTIONARY TALE: HOW TO LOOK FOR A PARTICLE 1.Look in high-energy collisions for events with multiple output particles that could be decay products (displaced from primary interaction, if particle is longlived as with the K ). Those of you doing the K meson experiment have already seen this.reconstruct a relativistic invariant mass from the momenta of the decay products.

15 A CAUTIONARY TALE: HOW TO LOOK FOR A PARTICLE 3.Make a histogram of the masses from candidate events 4.Look for a peak, indicating a state of well-defined mass

16 A CAUTIONARY TALE: ONE PEAK OR TWO? MeV using their background and resonance assumptions, one obtains an acceptable confidence level for the dipole. One also obtains an acceptable dipole fit over the whole mass spectrum if one assumes a second-order background. Furthermore, one has to note that the extremely crucial background behavior at both ends of the spectrum is based on -6 events per 1-MeV bin. The same procedures increase the confidence level for a dipole in the p ir+ events by a considerable amount. Aside from statistics and background considerations, one must bear in mind the very general fact that it is much easier not to see a splitting than to see it, because of a variety of resolution-killing effects that are normally hard to track down, both in counter and bubble-chamber experiments. Exciting new results on the neutral A were reported, at the Kiev International High Energy Conference in September, by T. Massam of the group at CERN headed by A. Zichichi. In the first reported observation of the splitting in An, the CERN counter group measured the recoil neutron in the chargeexchange reaction CERN experiment in late 196s observed A mesons 5 - Particle appeared to be a a. a. doublet o UJ CO Statistical significance of split is 4 - very high 7I-- + p - * n + A at a beam momentum of 3. GeV/c. They saw a marked dip at the center of the Afl. Confidence levels for a single peak, incoherent double peak and dipole were 1%, 3% and 67% respectively. There is really only one particle!! Dependence of splitting MISSING MASS (GEV) Fits to the two-peak structure of data from the CERN missing-mass and boson spectrometer group for the A, The black curve is the fit for two coherent To arrive at some conclusions concerning the A splitting we will look for variables the effect may depend on. The dependence or independence might give a clue to the nature of the A. We will discuss the possible dependence of the A splitting on four quantities: bombarding energy, final state, production reaction and momentum transfer. The effect of symmetric splitting has

17 A CAUTIONARY TALE: HOW DID THIS HAPPEN? MeV using their background and resonance assumptions, one obtains an acceptable confidence level for the dipole. One also obtains an acceptable dipole fit over the whole mass spectrum if one assumes a second-order background. Furthermore, one has to note that the extremely crucial background behavior at both ends of the spectrum is based on -6 events per 1-MeV bin. The same procedures increase the confidence level for a dipole in the p ir+ events by a considerable amount. Aside from statistics and background considerations, one must bear in mind the very general fact that it is much easier not to see a splitting than to see it, because of a variety of resolution-killing effects that are normally hard to track down, both in counter and bubble-chamber experiments. Exciting new results on the neutral A were reported, at the Kiev International High Energy Conference in September, by T. Massam of the group at CERN headed by A. Zichichi. In the first reported observation of the splitting in An, the CERN counter group measured the recoil neutron in the chargeexchange reaction In an early run, a dip showed up. It was a statistical fluctuation, but people noticed it and suspected it might be real. 5 - a. a. Subsequent runs were looked at as o UJ CO 4 - they came in. If no dip showed up, the run was investigated for problems. There s usually a minor problem somewhere in a complicated experiment, so most of these runs were cut from the sample. 7I-- + p - * n + A at a beam momentum of 3. GeV/c. They saw a marked dip at the center of the Afl. Confidence levels for a single peak, incoherent double peak and dipole were 1%, 3% and 67% respectively. Dependence of splitting MISSING MASS (GEV) Fits to the two-peak structure of data from the CERN missing-mass and boson spectrometer group for the A, The black curve is the fit for two coherent To arrive at some conclusions concerning the A splitting we will look for variables the effect may depend on. The dependence or independence might give a clue to the nature of the A. We will discuss the possible dependence of the A splitting on four quantities: bombarding energy, final state, production reaction and momentum transfer. The effect of symmetric splitting has

18 A CAUTIONARY TALE: HOW DID THIS HAPPEN? MeV using their background and resonance assumptions, one obtains an acceptable confidence level for the dipole. One also obtains an acceptable dipole fit over the whole mass spectrum if one assumes a second-order background. Furthermore, one has to note that the extremely crucial background behavior at both ends of the spectrum is based on -6 events per 1-MeV bin. The same procedures increase the confidence level for a dipole in the p ir+ events by a considerable amount. Aside from statistics and background considerations, one must bear in mind the very general fact that it is much easier not to see a splitting than to see it, because of a variety of resolution-killing effects that are normally hard to track down, both in counter and bubble-chamber experiments. Exciting new results on the neutral A were reported, at the Kiev International High Energy Conference in September, by T. Massam of the group at CERN headed by A. Zichichi. In the first reported observation of the splitting in An, the CERN counter group measured the recoil neutron in the chargeexchange reaction When a dip appeared, they didn t 5 - look as carefully for a problem. a. So an insignificant fluctuation was a. o boosted into a completely wrong discovery. UJ CO 4-7I-- + p - * n + A at a beam momentum of 3. GeV/c. They saw a marked dip at the center of the Afl. Confidence levels for a single peak, incoherent double peak and dipole were 1%, 3% and 67% respectively. Lesson: Don t let result influence which data sets you use/want. Dependence of splitting MISSING MASS (GEV) Fits to the two-peak structure of data from the CERN missing-mass and boson spectrometer group for the A, The black curve is the fit for two coherent To arrive at some conclusions concerning the A splitting we will look for variables the effect may depend on. The dependence or independence might give a clue to the nature of the A. We will discuss the possible dependence of the A splitting on four quantities: bombarding energy, final state, production reaction and momentum transfer. The effect of symmetric splitting has

19 CHAUVENET S CRITERION Assume that your data points (xi; i=1,...,n) are normally distributed, i.e. p(x µ x, x) = 1 x e 1 ( x µx x ) Find the number of standard deviations by which a suspicious data point xsus differs from t sus = x sus µ x x Calculate probability for a legitimate measurement to deviate by that much from = µ x x = µ x P rob(outside t sus x )=1 erf t sus Calculate the expected number of data points as deviant as xsus N P rob(outside t sus x ) <.5 xsus may be rejected

20 CHAUVENET S CRITERION: EXAMPLE Student makes 1 measurements of length (in mm): 46, 48, 44, 38, 45, 47, 58, 44, 45, mm value looks suspicious, so we compute x = 45.8 x =5.1 Number of standard deviations and probability of xsus: t sus = =.4 P rob(outside.4 x )=.16 Thus, in 1 measurements he expects only 1*.16=.16 measurements as deviant as xsus, which is <.5. If he rejects xsus=58, the mean and standard deviation need to be recomputed: x = 44.4 x =.9

21 CHAUVENET S CRITERION: PROBLEMS Can not be used iteratively, i.e. recalculate mean and sigma with remaining data and throw out some more points Most experimental data have non-gaussian tails V -5V -4V -3V -V -1V Electrostatic Grain Potential

22 FINAL COMMENT ON REJECTING DATA Rejecting data is a last resort measure! You should try first: Take more data Ask what could have gone wrong Was there a problem with data recording or calibration? Document everything (including the rejected data) in your report! Never reject data points because you don t like the answer!

23 WEIGHTED AVERAGE From previous lecture: Data for the e/m example Entry V (V) e/m (1 11 C/kg) sys stat ( sys + stat) ±.1 ± ±.1 ± ±.9 ± ±.8 ± ±.9 ± ±.5 ± ±.7 ±.7 ± ±.6 ± ±.8 ± ±.7 ± ±.1 ± ±.9 ± ±.8 ± ±.4 ±.4

24 e/m (1 11 C/kg) E/M EXAMPLE Entry How to deal with different errors and what do they mean?

25 WEIGHTED AVERAGES If you measure the same thing twice and the errors are different, how do you combine the results? A proper averaging gives more weight to measurements with smaller uncertainties. The reported error on the average must reflect this.

26 WHICH IS THE BEST ESTIMATE FOR X IN THIS CASE? we again employ the maximum likelihood principle : p(x 1,x,..., x N ) e 1 x1 X i... e 1 xn X N now the chi square is = N i=1 x 1 which is minimum if X = N i=1 1 i x i N i=1 1 i i X = 1 w i N i=1 Weighted Average w i x i with weights w i = 1 i

27 e/m (1 11 C/kg) E/M EXAMPLE weighted average for e/m Entry

Uncertainty and Bias UIUC, 403 Advanced Physics Laboratory, Fall 2014

Uncertainty and Bias UIUC, 403 Advanced Physics Laboratory, Fall 2014 Uncertainty and Bias UIUC, 403 Advanced Physics Laboratory, Fall 2014 Liang Yang* There are three kinds of lies: lies, damned lies and statistics. Benjamin Disraeli If your experiment needs statistics,

More information

Discovery and Significance. M. Witherell 5/10/12

Discovery and Significance. M. Witherell 5/10/12 Discovery and Significance M. Witherell 5/10/12 Discovering particles Much of what we know about physics at the most fundamental scale comes from discovering particles. We discovered these particles by

More information

Direct Measurement of the W Total Decay Width at DØ. Outline

Direct Measurement of the W Total Decay Width at DØ. Outline Direct Measurement of the W Total Decay Width at DØ Introduction Junjie Zhu University of Maryland On behalf of the DØ Collaboration Monte Carlo Simulation Event Selection Outline Determination of the

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture V (12.11.07) Contents: Central Limit Theorem Uncertainties: concepts, propagation and properties Central Limit Theorem Consider the sum X of n independent variables,

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIa (19.11.07) Contents: Uncertainties (II): Re: error propagation Correlated uncertainties Systematic uncertainties Re: Error Propagation (I) x = Vi,j and µi known

More information

Lecture 6-4 momentum transfer and the kinematics of two body scattering

Lecture 6-4 momentum transfer and the kinematics of two body scattering Lecture 6-4 momentum transfer and the kinematics of two body scattering E. Daw March 26, 2012 1 Review of Lecture 5 Last time we figured out the physical meaning of the square of the total 4 momentum in

More information

Searches at the LHC and the discovery of the Higgs Boson

Searches at the LHC and the discovery of the Higgs Boson Searches at the LHC and the discovery of the Higgs Boson Christos Leonidopoulos, University of Edinburgh March 18, 2014 Producing the Higgs boson at a hadron collider One of the most characteristic features

More information

E. Santovetti lesson 4 Maximum likelihood Interval estimation

E. Santovetti lesson 4 Maximum likelihood Interval estimation E. Santovetti lesson 4 Maximum likelihood Interval estimation 1 Extended Maximum Likelihood Sometimes the number of total events measurements of the experiment n is not fixed, but, for example, is a Poisson

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

PHYSICS 2150 LABORATORY

PHYSICS 2150 LABORATORY PHYSICS 2150 LABORATORY Instructors: John Cumalat Jiayan Pheonix Dai Lab Coordinator: Jerry Leigh Lecture 2 September 2, 2008 PHYS2150 Lecture 2 Need to complete the Radiation Certification The Gaussian

More information

Charged Particle Identification in GLUEX

Charged Particle Identification in GLUEX Outline E.Chudakov JLab GLUEX PID 1 Charged Particle Identification in GLUEX E.Chudakov for GLUEX Collaboration JLab GLUEX PID Review, March 2008 http://www.jlab.org/~gen/gluex/talk_pid_rev.pdf Outline

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VII (26.11.07) Contents: Maximum Likelihood (II) Exercise: Quality of Estimators Assume hight of students is Gaussian distributed. You measure the size of N students.

More information

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011 Normal Distributions Rejection of Data + RLC Circuits Lecture 4 Physics 2CL Summer 2011 Outline Reminder of simple uncertainty propagation formulae Hidden useful formula for estimating uncertainties More

More information

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6.

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Neutral Current Single Photon Production (NCγ) Outline physics ν Z ν N ω γ Teppei Katori Queen Mary University of London INT workshop, Seattle, USA, Dec. 12, 2013 N 1 2 NuSTEC protocol - way to avoid Donkey

More information

Heavy Hadron Production and Spectroscopy at ATLAS

Heavy Hadron Production and Spectroscopy at ATLAS Heavy Hadron Production and Spectroscopy at ALAS Carlo Schiavi on behalf of the ALAS Collaboration INFN Sezione di Genova ALAS has studied heavy flavor production and measured the production cross sections

More information

Case Study: Analyzing Elementary Particle Trajectories

Case Study: Analyzing Elementary Particle Trajectories Case Study: Analyzing Elementary Particle Trajectories 13.6 The Bubble Chamber The bubble chamber was developed in 1952 by Donald Glaser (Figure 1), who won the Nobel Prize in physics in 1960 for his invention.

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-4 February 20, 2012 Al Goshaw 1 HEP 101 Today Introduction to HEP units Particles created in high energy collisions What can be measured in

More information

Hypothesis testing. Chapter Formulating a hypothesis. 7.2 Testing if the hypothesis agrees with data

Hypothesis testing. Chapter Formulating a hypothesis. 7.2 Testing if the hypothesis agrees with data Chapter 7 Hypothesis testing 7.1 Formulating a hypothesis Up until now we have discussed how to define a measurement in terms of a central value, uncertainties, and units, as well as how to extend these

More information

Event Reconstruction: Tracking

Event Reconstruction: Tracking Event Reconstruction: Tracking Few points Most everyone did not get the randomness part of homework one correctly. If you want to generate a random number from a distribution you can just generate a random

More information

The CMS Particle Flow Algorithm

The CMS Particle Flow Algorithm PROCEEDINGS of CHEF 13 he CMS Particle Flow Algorithm Laboratoire Leprince-Ringuet, INP3-CNRS E-mail: Florian.Beaudette@cern.ch A particle flow event-reconstruction algorithm has been successfully deployed

More information

Recent Results from 7 GeV proton proton running at CMS

Recent Results from 7 GeV proton proton running at CMS Recent Results from 7 GeV proton proton running at CMS Will E. Johns Vanderbilt University (for the CMS collaboration) SESAPS 2011 CMS Detector Detector pulled Apart for work 2 CMS Detector CMS Detector

More information

Evidence for formation of a narrow K 0 Sp resonance with mass near 1533 MeV in neutrino interactions

Evidence for formation of a narrow K 0 Sp resonance with mass near 1533 MeV in neutrino interactions Evidence for formation of a narrow K Sp resonance with mass near 1533 MeV in neutrino interactions arxiv:hep-ex/39v3 1 Apr A.E. Asratyan, A.G. Dolgolenko, and M.A. Kubantsev Institute of Theoretical and

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Relativistic Kinematics Cont d

Relativistic Kinematics Cont d Phy489 Lecture 5 Relativistic Kinematics Cont d Last time discussed: Different (inertial) reference frames, Lorentz transformations Four-vector notation for relativistic kinematics, invariants Collisions

More information

Intermediate Lab PHYS 3870

Intermediate Lab PHYS 3870 Intermediate Lab PHYS 3870 Lecture 3 Distribution Functions References: Taylor Ch. 5 (and Chs. 10 and 11 for Reference) Taylor Ch. 6 and 7 Also refer to Glossary of Important Terms in Error Analysis Probability

More information

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration LCS2014 International Workshop LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration Outline Overview of the LEPS&LEPS2 beamlines Recent results from LEPS Search

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Leszek Adamczyk On behalf of STAR Collaboration September 7, 2016 RHIC AA: Au+Au, Cu+Cu,

More information

A ON THE USE OF A HYBRID BUBBLE CHAMBER IN THE 100-BeV REGION. W. D. Walker University of Wisconsin ABSTRACT

A ON THE USE OF A HYBRID BUBBLE CHAMBER IN THE 100-BeV REGION. W. D. Walker University of Wisconsin ABSTRACT ON THE USE OF A HYBRID BUBBLE CHAMBER IN THE 100-BeV REGION W. D. Walker University of Wisconsin ABSTRACT An analysis has been made of 1OO-BeV interactions in a bubble chamber hybrid spectrometer. The

More information

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions.

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions. Line Broadening Spectral lines are not arbitrarily sharp. There are a variety of mechanisms that give them finite width, and some of those mechanisms contain significant information. We ll consider a few

More information

Wave Packet with a Resonance

Wave Packet with a Resonance Wave Packet with a Resonance I just wanted to tell you how one can study the time evolution of the wave packet around the resonance region quite convincingly. This in my mind is the most difficult problem

More information

Analysis of Z ee with the ATLAS-Detector

Analysis of Z ee with the ATLAS-Detector DESY Summer Student Programme 2008 Hamburg Analysis of Z ee with the ATLAS-Detector Maximilian Schlupp ATLAS Group 11.09.2008 maximilian.schlupp@desy.de maximilian.schlupp@tu-dortmund.de Supervisor: Karsten

More information

Test of Lepton Flavour Universality with semitauonic decays of b-hadrons at LHCb

Test of Lepton Flavour Universality with semitauonic decays of b-hadrons at LHCb Test of Lepton Flavour Universality with semitauonic decays of b-hadrons at LHCb Anna Lupato on behalf of the LHCb collaboration University of Padova & INFN XIIIth International Conference on Heavy Quarks

More information

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions ASTR 511/O Connell Lec 6 1 STATISTICS OF OBSERVATIONS & SAMPLING THEORY References: Bevington Data Reduction & Error Analysis for the Physical Sciences LLM: Appendix B Warning: the introductory literature

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Lecture - 5 Semi empirical Mass Formula So, nuclear radius size we talked and

More information

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 15 Momentum Energy Four Vector We had started discussing the concept of four vectors.

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

UNIVERSITY OF TORONTO Faculty of Applied Science and Engineering. December 19, 2017

UNIVERSITY OF TORONTO Faculty of Applied Science and Engineering. December 19, 2017 UNIVERSITY OF TORONTO Faculty of Applied Science and Engineering December 19, 2017 PHY293F (Waves and Modern Physics Solutions ) Instructor: Professors N. Grisouard and W. Trischuk Duration: 2.5 hours

More information

The Unit Electrical Matter Substructures of Standard Model Particles. James Rees version

The Unit Electrical Matter Substructures of Standard Model Particles. James Rees version The Unit Electrical Matter Substructures of Standard Model Particles version 11-7-07 0 Introduction This presentation is a very brief summary of the steps required to deduce the unit electrical matter

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 7 1. Relativistic Mechanics Charged particle in magnetic field 2. Relativistic Kinematics

More information

Charm Baryon Studies at BABAR

Charm Baryon Studies at BABAR W.Mader@Physik.TU-Dresden.de Institut für Kern- und Teilchenphysik Technische Universität Dresden Institutsseminar IKTP 15. Juni 006 Outline 1 Introduction The BABAR Detector and PEP-II 3 Reconstruction

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Some Statistics. V. Lindberg. May 16, 2007

Some Statistics. V. Lindberg. May 16, 2007 Some Statistics V. Lindberg May 16, 2007 1 Go here for full details An excellent reference written by physicists with sample programs available is Data Reduction and Error Analysis for the Physical Sciences,

More information

The ATLAS Experiment and the CERN Large Hadron Collider. HEP101-6 March 12, 2012

The ATLAS Experiment and the CERN Large Hadron Collider. HEP101-6 March 12, 2012 The ATLAS Experiment and the CERN Large Hadron Collider HEP101-6 March 12, 2012 Al Goshaw Duke University 1 HEP 101 to date Jan. 23: Overview of CERN and the LHC Feb. 6: Review of elementary particles

More information

Particle Physics with Electronic Detectors

Particle Physics with Electronic Detectors Particle Physics with Electronic Detectors This experiment performed by the Oxford group on the 7 GeV proton synchrotron, NIMROD, at the Rutherford Laboratory in 1967 gave the first usefully accurate measurement

More information

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced) PC 3 Foundations of Particle Physics Lecturer: Dr F. Loebinger Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

More information

PHYSICS 2150 LABORATORY

PHYSICS 2150 LABORATORY PHYSICS 2150 LABORATORY Instructors: Noel Clark James G. Smith Eric D. Zimmerman Lab Coordinator: Jerry Leigh Lecture 2 January 22, 2008 PHYS2150 Lecture 2 Announcements/comments The Gaussian distribution

More information

Search for b Ø bz. CDF note Adam Scott, David Stuart UCSB. 1 Exotics Meeting. Blessing

Search for b Ø bz. CDF note Adam Scott, David Stuart UCSB. 1 Exotics Meeting. Blessing Search for b Ø bz CDF note 8465 Adam Scott, David Stuart UCSB Exotics Meeting Blessing 1 Exotics Meeting Analysis in a Nutshell Looking for new particles decaying to Z+jets Select Z s in the dielectron

More information

Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection

Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection DESY Summer School 24 9 September, 24 Author: Ibles Olcina Samblàs* Supervisor: Carmen Diez Pardos Abstract A study

More information

The ATLAS Detector at the LHC

The ATLAS Detector at the LHC The ATLAS Detector at the LHC Results from the New Energy Frontier Cristina Oropeza Barrera Experimental Particle Physics University of Glasgow Somewhere near the Swiss Alps... A Toroidal LHC ApparatuS

More information

Confidence Intervals and Hypothesis Tests

Confidence Intervals and Hypothesis Tests Confidence Intervals and Hypothesis Tests STA 281 Fall 2011 1 Background The central limit theorem provides a very powerful tool for determining the distribution of sample means for large sample sizes.

More information

arxiv:nucl-ex/ v1 21 Dec 2004

arxiv:nucl-ex/ v1 21 Dec 2004 φ meson production in d + Au collisions at s NN = 00 GeV arxiv:nucl-ex/041048v1 1 Dec 004 1. Introduction Dipali Pal for the PHENIX collaboration Department of Physics & Astronomy, Vanderbilt University,

More information

Physics 225 Relativity and Math Applications. Fall Unit 7 The 4-vectors of Dynamics

Physics 225 Relativity and Math Applications. Fall Unit 7 The 4-vectors of Dynamics Physics 225 Relativity and Math Applications Fall 2011 Unit 7 The 4-vectors of Dynamics N.C.R. Makins University of Illinois at Urbana-Champaign 2010 Physics 225 7.2 7.2 Physics 225 7.3 Unit 7: The 4-vectors

More information

Reconstructing low mass boosted A bb at LHCb

Reconstructing low mass boosted A bb at LHCb Summer student report - CERN 2014 Summer student: Petar Bokan Supervisor: Victor Coco Reconstructing low mass boosted A bb at LHCb ABSTRACT: LHCb has the ability to trigger low mass objects with high efficiency.

More information

Lecture 9 - Applications of 4 vectors, and some examples

Lecture 9 - Applications of 4 vectors, and some examples Lecture 9 - Applications of 4 vectors, and some examples E. Daw April 4, 211 1 Review of invariants and 4 vectors Last time we learned the formulae for the total energy and the momentum of a particle in

More information

Module 1: Introduction to Experimental Techniques Lecture 6: Uncertainty analysis. The Lecture Contains: Uncertainity Analysis

Module 1: Introduction to Experimental Techniques Lecture 6: Uncertainty analysis. The Lecture Contains: Uncertainity Analysis The Lecture Contains: Uncertainity Analysis Error Propagation Analysis of Scatter Table A1: Normal Distribution Table A2: Student's-t Distribution file:///g /optical_measurement/lecture6/6_1.htm[5/7/2012

More information

arxiv: v3 [hep-ex] 11 Feb 2013

arxiv: v3 [hep-ex] 11 Feb 2013 q/p Measurement from B 0 D lν Partial Reconstruction arxiv:1301.0417v3 [hep-ex] 11 Feb 2013 Martino Margoni on behalf of the BaBar Collaboration Università di Padova and INFN sezione di Padova Padova,

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2018 EXAMINATIONS. PHY357H1S (Solutions) [grades] Duration 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2018 EXAMINATIONS. PHY357H1S (Solutions) [grades] Duration 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2018 EXAMINATIONS PHY357H1S (Solutions) [grades] Duration 3 hours Examination Aids: Non-Programmable scientific calculator, without text storage

More information

Introduction. The Standard Model

Introduction. The Standard Model Ph.D. Thesis in Engineering Physics Supervisor: Assoc. Prof. Dr. Ayda BEDDALL Co-supervisor: Assist. Prof. Dr. Andrew BEDDALL By Ahmet BNGÜL Page 1 Introduction Chapter 1-2 High energy collisions of sub-atomic

More information

CDF top quark " $ )(! # % & '

CDF top quark  $ )(! # % & ' $% CDF quark 7 3 5 ( "#! Tevatron Run II Started Spring 1. proton-antiproton collider with (Run I :. antiproton recycler commissioning electron cooling operational by Summer 5. increase in luminosity.

More information

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012)

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) 1 Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) Michael Dittmar (ETH-Zürich/CMS) 17.4.2012 1950ies From the messy world of hadrons to weak decays and neutrinos.

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

Particle Physics: Problem Sheet 5

Particle Physics: Problem Sheet 5 2010 Subatomic: Particle Physics 1 Particle Physics: Problem Sheet 5 Weak, electroweak and LHC Physics 1. Draw a quark level Feynman diagram for the decay K + π + π 0. This is a weak decay. K + has strange

More information

Hadronic vs e + e - colliders

Hadronic vs e + e - colliders Hadronic vs e + e - colliders Hadronic machines: enormous production of b-hadrons (σ bb ~ 50 µb) all b-hadrons can be produced trigger is challenging complicated many-particles events incoherent production

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Search for exotic charmonium states

Search for exotic charmonium states Search for exotic charmonium states on behalf of the BABAR and BELLE Collaborations August 25th, 2014 (*), Forschungszentrum Jülich (Germany) (Germany) 1 (*) Previously addressed at JGU University of Mainz

More information

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & QCD Part 1: First Encounter With Hadrons: Introduction to Mesons & Baryons, The Quark

More information

Tesi di Laurea Specialistica

Tesi di Laurea Specialistica Search for heavy particles decaying into ψ(2s)π + π produced in e + e collisions with Initial State Radiation. Tesi di Laurea Specialistica Candidato: Stefano Zambito Relatore: Prof. Fabrizio Bianchi1

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters:

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters: Lecture 2 & 3 Particles going through matter PDG chapter 27 Kleinknecht chapters: 1.2.1 for charged particles 1.2.2 for photons 1.2.3 bremsstrahlung for electrons Collider Detectors PDG chapter 28 Kleinknecht

More information

Systematic uncertainties in statistical data analysis for particle physics. DESY Seminar Hamburg, 31 March, 2009

Systematic uncertainties in statistical data analysis for particle physics. DESY Seminar Hamburg, 31 March, 2009 Systematic uncertainties in statistical data analysis for particle physics DESY Seminar Hamburg, 31 March, 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 10 December 17, 01 Silvia Masciocchi, GSI Darmstadt Winter Semester 01 / 13 Method of least squares The method of least squares is a standard approach to

More information

Search for heavy neutrinos in kaon decays

Search for heavy neutrinos in kaon decays Search for heavy neutrinos in kaon decays L. Littenberg (work mainly done by A.T.Shaikhiev INR RAS) HQL-2016 Outline Motivation Previous heavy neutrino searches Experiment BNL-E949 Selection criteria Efficiency

More information

Studies of CP Violation at BABAR

Studies of CP Violation at BABAR SLAC-PUB-878 BABAR-PROC-/32 hep-ex/1336 February, 21 Studies of CP Violation at BABAR Anders Ryd 1 California Institute of Technology, 356-48, Pasadena CA 91125 (for the BABAR Collaboration) Abstract BABAR

More information

Z-Path 2014 Event Displays Examples of l + l -, and 4-lepton events

Z-Path 2014 Event Displays Examples of l + l -, and 4-lepton events Z-Path 2014 Event Displays Examples of l + l -, and 4-lepton events This compilation goes through examples of events the students will be looking at. This includes events easy to interpret, as well as

More information

Search for a heavy gauge boson W e

Search for a heavy gauge boson W e Search for a heavy gauge boson W e Cornell University LEPP Journal Club Seminar April 1, 2011 The LHC Machine 2 The beginning of the LHC era First collisions at 7 TeV confirmed on March 30, 2010 There

More information

A beam line for schools

A beam line for schools A beam line for schools Great things can happen when high schools get involved with cutting edge science, and that s exactly what CERN is proposing with its new beam line for schools competition, which

More information

Invariant Mass, Missing Mass, jet reconstruction and jet flavour tagging

Invariant Mass, Missing Mass, jet reconstruction and jet flavour tagging 1 Experimentelle Methods of Particle Physics HS 215 http://www.physik.uzh.ch/lectures/empp/ Wednesday 16.12.15 and Thursday 17.12.15 Invariant Mass, Missing Mass, jet reconstruction and jet flavour tagging

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

The Discovery of the Tau lepton. Max Godsland and Samuel Sheldon

The Discovery of the Tau lepton. Max Godsland and Samuel Sheldon The Discovery of the Tau lepton Max Godsland and Samuel Sheldon Some context Why were the electron and muon different? Perl believed an answer to the e-μ problem might be found by looking for a new heavy

More information

Advanced Statistical Methods. Lecture 6

Advanced Statistical Methods. Lecture 6 Advanced Statistical Methods Lecture 6 Convergence distribution of M.-H. MCMC We denote the PDF estimated by the MCMC as. It has the property Convergence distribution After some time, the distribution

More information

Data analysis and Geostatistics - lecture VI

Data analysis and Geostatistics - lecture VI Data analysis and Geostatistics - lecture VI Statistical testing with population distributions Statistical testing - the steps 1. Define a hypothesis to test in statistics only a hypothesis rejection is

More information

Quarkonium LHCb

Quarkonium LHCb Quarkonium Studies @ LHCb Giacomo Graziani (INFN Firenze) on behalf of the LHCb Collaboration December 5th, 2008 QWG08, Nara G. Graziani slide 1 QWG08 The LHCb Experiment dedicated to CP violation and

More information

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO LECTURE NOTES FYS 4550/FYS9550 - EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I PROBABILITY AND STATISTICS A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO Before embarking on the concept

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

Matrices, Row Reduction of Matrices

Matrices, Row Reduction of Matrices Matrices, Row Reduction of Matrices October 9, 014 1 Row Reduction and Echelon Forms In the previous section, we saw a procedure for solving systems of equations It is simple in that it consists of only

More information

PoS(ICHEP2012)238. Search for B 0 s µ + µ and other exclusive B decays with the ATLAS detector. Paolo Iengo

PoS(ICHEP2012)238. Search for B 0 s µ + µ and other exclusive B decays with the ATLAS detector. Paolo Iengo Search for B s µ + µ and other exclusive B decays with the ATLAS detector. On behalf of the ATLAS Collaboration INFN Naples, Italy E-mail: paolo.iengo@cern.ch The ATLAS experiment, collecting data in pp

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

Searches for New Physics in quarkonium decays at BaBar/Belle

Searches for New Physics in quarkonium decays at BaBar/Belle 1 Searches for New Physics in quarkonium decays at BaBar/Belle Lucas Winstrom University of California Santa Cruz for the BaBar Collaboration Presented at QWG08 in Nara, Japan December 5, 2008 2 Outline

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

ATLAS EXPERIMENT : HOW THE DATA FLOWS. (Trigger, Computing, and Data Analysis)

ATLAS EXPERIMENT : HOW THE DATA FLOWS. (Trigger, Computing, and Data Analysis) ATLAS EXPERIMENT : HOW THE DATA FLOWS (Trigger, Computing, and Data Analysis) In order to process large volumes of data within nanosecond timescales, the trigger system is designed to select interesting

More information

PoS(BEAUTY2016)023. Heavy flavour production at CMS. Giulia Negro. CEA/IRFU,Centre d etude de Saclay Gif-sur-Yvette (FR)

PoS(BEAUTY2016)023. Heavy flavour production at CMS. Giulia Negro. CEA/IRFU,Centre d etude de Saclay Gif-sur-Yvette (FR) CEA/IRFU,Centre d etude de Saclay Gif-sur-Yvette (FR) E-mail: giulia.negro@cern.ch hree recent results in heavy flavour production at the experiment are addressed in this report. Measurements of the differential

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Experiment 2: Projectile motion and conservation of energy

Experiment 2: Projectile motion and conservation of energy Experiment 2: Projectile motion and conservation of energy Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1494/2699 Overview The physics

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10 Physics 509: Error Propagation, and the Meaning of Error Bars Scott Oser Lecture #10 1 What is an error bar? Someone hands you a plot like this. What do the error bars indicate? Answer: you can never be

More information