ES2A7 - Fluid Mechanics Example Classes Example Questions (Set IV)

Size: px
Start display at page:

Download "ES2A7 - Fluid Mechanics Example Classes Example Questions (Set IV)"

Transcription

1 ESA7 - Flui Mechanics Eample Classes Eample Quesions (Se IV) Quesion : Dimensional analysis a) I is observe ha he velociy V of a liqui leaving a nozzle epens upon he pressure rop P an is ensiy ρ. Show ha he relaionship beween hem is of he form V= C Pρ b) I is observe ha he frequency of oscillaion of a guiar sring f epens upon he mass m, he lengh l an ension F. Show ha he relaionship beween hen is f= C F ml c) Fin he imension of he bulk moulus K, knowing is relaionship wih he spee of he soun a in a liqui an he ensiy ρ : a= C Kρ a) Dimension: V = L T, P = M LT, ρ = M L [ ] [ ] [ ] The relaionship shoul verify: [ ][ ][ ρ] a b c V P = a b 3c b+ c b a L M T = 3 This leas o he following sysem: a b 3c b b 3b = + = a= b+ c= b= c b= b a b a = = c= The relaion is hus verifie b) Dimension: f = T, m= M, l= L, T = ML T [ ] [ ] [] [ ] The relaionship shoul verify: [ ][ ][][ ] a b c f m l T = c+ b+ a L M T = This leas o he following sysem: a= c+ = = c b b b = + = = c= a a = = = The relaion is hus verifie c) From he relaion, we have : K= ρa C M L M = = = L T LT so [ K] [ ρ][ a] 3

2 Quesion : Dimensional analysis Waer flows hrough a cm iameer pipe a.6m/s. Calculae he Reynols number an fin also he velociy require o give he same Reynols number when he pipe is ransporing air. For he waer he kinemaic viscosiy was.3-6 m/s an he ensiy was kg/m3. For air hose quaniies were m/s an.9kg/m3. Kinemaic viscosiy is ynamic viscosiy over ensiy = ν = µ/ρ. The Reynols number is : ρu U Re= = µ ν Reynols number when carrying waer: 6. Rewaer= = To calculae Re air we know: Re = Re air waer Uair = 5 U = 8.44m.s air Quesion 3: Momenum conservaion The figure below shows a smooh curve vane aache o a rigi founaion. The je of waer, recangular in secion, 75mm wie an 5mm hick, srike he vane wih a velociy of 5m/s. Calculae he verical an horizonal componens of he force eere on he vane an inicae in which irecion hese componens ac. 3 From he quesion: a.875 = m, u= 5m.s Since he je secion is consan a =a, he velociy is also consan u =u (Mass conservaion in he case of an incompressible flow) 3 The bulk flow is hus Q= a.u = a.u =.469m.s Calculaion of he oal force using he momenum equaion: F= ρq(v V )

3 Projecing his relaion along an y: F = ρqu(cos5 cos 45) = (cos5 cos 45) = 33N F = ρqu(sin5 sin45) y = (sin5 sin45) = 35N Boy force an pressure force are. F is hus equal o he reacion force applie on he flui. F= F + F+ F = F R B P R So force on vane: R = F = 33N y R = F = 35N y R is irece owar he lef an R y owar he boom. Quesion 4: Momenum conservaion A 6mm iameer pipeline carries waer uner a hea of 3m wih a velociy of 3m/s. This waer main is fie wih a horizonal ben which urns he ais of he pipeline hrough 75 (i.e. he inernal angle a he ben is 5). Calculae he resulan force on he ben an is angle o he horizonal.

4 From he quesion: P= P = ρgh= 9.8 3= 94.3 kn/m a = a = π.6 =.83m u= u= 3m.s The bulk flow is hus 3 Q= a.u = a.u =.848m.s Calculaion of he oal force using he momenum equaion: F= ρq(v V ) Projecing his relaion along an y: F = ρqu(cos75 cos) = (cos75 ) = 886N F = ρqu(sin75 sin) y = (sin75 ) = 457N Calculaion of he pressure force: F = F + F P P P Projecing his relaion along an y: F = ap(cos cos75) P = ( cos75) = 6N F = ap(sin sin75) Py = ( sin75) = 8376N There is no boy force in he or y irecions. F is hus equal o sum of he reacion force an he pressure force applie on he flui. F= FR+ FB+ FP= FR+ FP so FR = F FP So force on ben: R = F = F + F = = 63886N R P R = F = F + F = = 8833N y Ry y Py R is irece owar he righ an R y owar he boom. R= R + R = 4kN y R θ= = R y an 5

5 Quesion 5: Mass conservaion + Bernoulli A waer clock is an aisymmeric vessel wih a small ei pipe in he boom. Fin he shape for which he waer level falls equal heighs in equal inervals of ime. ɺ ɺ ou in There is no inflow an he flui is incompressible. Le a be he cross-secion of he ei pipe: ( υ ( ) ) ρ = mɺ ou = ρau ( ), Coninuiy equaion: ( ρυ ) + m m = ( ) υ = a U Bernoulli equaion beween he upper free surface an he ei secion: () ρu ρ gh() + = + () = gh() U So using he firs relaion: = υ a gh = υ a g h From he quesion, we know ha he variaion of h is linear in ime: h = h So () υ = a g h a 3 υ ( ) = g ( h ) 3 a 3 υ ( ) = g ( h( ) ) 3 The volume of flui can always be wrien as π R z h h υ = rrθz = π R z z h So h a a R z z = g ( h( ) ) R h( ) = g h 3π π R ( ) 3

6 Quesion 6: Momenum conservaion Because he flui is conrace a he nozzle forces are inuce in he nozzle. Anyhing holing he nozzle (e.g. a fireman) mus be srong enough o wihsan hese forces. Deermine hese forces. The analysis akes he following proceure: ) Draw a conrol volume ) Decie on co-orinae ais sysem 3) Calculae he oal force 4) Calculae he pressure force 5) Calculae he boy force 6) Calculae he resulan force & Conrol volume an Co-orinae ais have been one for you an are shown in he figure below. Noice how his is a one imensional sysem which grealy simplifies maers. 3) Calculaion of he oal force: F= F = ρq( u u) From he coninuiy equaion, he bulk flow is : Q= Au = Au so F= ρq A A 4) Calculaion of he pressure force F = F + F P P P F = F = F F P P P P We use he Bernoulli equaion o calculae he pressure P u P u + + z= + + z ρg g ρg g The nozzle is horizonal ( z =z ) an he pressure ousie is amospheric (P =). Wih coninuiy, i gives : ρq p= A A

7 ρq A FP= A 5) Calculaion of he boy force The only boy force is he weigh ue o graviy in he y-irecion - bu we nee no consier his as he only forces we are consiering are in he -irecion. 6) Calculaion of he resulan force F= F + F R P ρq A F = F F = Q R P ρ A A A ρq A F R= + A A A So he fireman mus be able o resis he force of ρq A R= FR = + A A A This force increases when A increase or A ecrease, which correspon o he epece behaviour. Quesion 7: Momenum conservaion Consier a rocke of mass m r raveling a a spee u r as measure from he groun. Ehaus gases leave he engine nozzle (area A e ) a a spee U e relaive o he nozzle of he rocke, an wih a pressure ha is higher han local amospheric pressure by an amoun p e. The aeroynamic rag force on he rocke is D. Derive an equaion for he acceleraion of he rocke.

8 We selece a conrol volume enclosing he rocke an moving wih he rocke. Because a reference frame aache o he rocke woul be noninerial, we chose a saionary reference frame fie o he launch pa. We selece he y-irecion momenum equaion. The force iagram shows hree forces: weigh, aeroynamic rag force, an he pressure force acing a he nozzle ei. From he force iagram F = P A D W y e e The momenum iagram shows an accumulaion erm an an ouflow erm. The momenum accumulaion erm is no zero because he momenum of he rocke is changing wih ime as he rocke acceleraes. The momenum of he rocke is he mass of he rocke imes he velociy of he rocke, an he accumulaion erm is given by (/)(m r u r ). This can be formally evelope by using inegraion: uyρv ur ρv = (mru r) = CV CV In his evelopmen, we assume ha all pars of he rocke were raveling a he same spee u r. The ouwar momenum flow is mu ɺ, where u o is relaive o he saionary reference frame: u = ( U u) So : mu ɺ = mɺ ( U u) o e r From he momenum iagram CV o e r u V m u mu = (m u )+ m( U u) ρ + ɺ ɺ ɺ y o oy i iy r r e r cs cs Subsiuing force an momenum erms ino he momenum equaion gives: PeA e D W= (mu r r)+ mɺ ( Ue ur) The accumulaion erm can be epane using he prouc rule for iffereniaion. This erm may be evaluae by applying coninuiy o he conrol volume: m r m = ɺ Combining he wo previous equaions gives: (mu r r)=m r (u r) ɺ mur Subsiuing his resul ino he momenum equaion yiels: m r (u r) = mu ɺ e+ PeA e D W The mass flow rae eiing he rocke nozzle is: mɺ =ρeaeue Combining he above wo equaions resuls in: m r (u r)= ρ eaeue+ PeA e D W The acceleraion of he rocke (u r /) epens on he insananeous mass of he rocke an he 4 erms on he righ sie of he righ sie of his equaion. The erm T= ρeaeue+ PeA e is known as he hrus of he rocke moor. The ei pressure of he ehaus je (P e ) is ofen epresse using absolue pressure, so he hrus is T= ρ A U + P A P P, where P is he local amospheric pressure, given by e e e e e e which will change wih aliue as a rocke ascens. o

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

The law of conservation of mass: Mass can be neither created nor destroyed. It can only be transported or stored.

The law of conservation of mass: Mass can be neither created nor destroyed. It can only be transported or stored. UDMETL COCEPTS OR LOW LYSIS We covere mehos of analysis of nonflowing fluis in he previous chaper. In his chaper, we evelop he funamenal conceps of flow analysis, incluing he way o escribe flui flow, naural

More information

( ) ( ) ( ) ( u) ( u) = are shown in Figure =, it is reasonable to speculate that. = cos u ) and the inside function ( ( t) du

( ) ( ) ( ) ( u) ( u) = are shown in Figure =, it is reasonable to speculate that. = cos u ) and the inside function ( ( t) du Porlan Communiy College MTH 51 Lab Manual The Chain Rule Aciviy 38 The funcions f ( = sin ( an k( sin( 3 38.1. Since f ( cos( k ( = cos( 3. Bu his woul imply ha k ( f ( = are shown in Figure =, i is reasonable

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

= + t ] can be used to calculate the angular

= + t ] can be used to calculate the angular WEEK-7 Reciaion PHYS 3 Mar 8, 8 Ch. 8 FOC:, 4, 6,, 3 &5. () Using Equaion 8. (θ = Arc lengh / Raius) o calculae he angle (in raians) ha each objec subens a your eye shows ha θ Moon = 9. 3 ra, θ Pea = 7.

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5)

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5) Physics 18 Exam 1 wih Soluions Fall 1, Secions 51-54 Fill ou he informaion below bu o no open he exam unil insruce o o so! Name Signaure Suen ID E-mail Secion # ules of he exam: 1. You have he full class

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Variable acceleration, Mixed Exercise 11

Variable acceleration, Mixed Exercise 11 Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018 UCLA: Mah 3B Problem se 3 (soluions) Fall, 28 This problem se concenraes on pracice wih aniderivaives. You will ge los of pracice finding simple aniderivaives as well as finding aniderivaives graphically

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Chapter 5: Control Volume Approach and Continuity Principle Dr Ali Jawarneh

Chapter 5: Control Volume Approach and Continuity Principle Dr Ali Jawarneh Chaper 5: Conrol Volume Approach and Coninuiy Principle By Dr Ali Jawarneh Deparmen of Mechanical Engineering Hashemie Universiy 1 Ouline Rae of Flow Conrol volume approach. Conservaion of mass he coninuiy

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example Thurs Sep 10 Assign 2 Friday SI Sessions: Moron 227 Mon 8:10-9:10 PM Tues 8:10-9:10 PM Thur 7:05-8:05 PM Read Read Draw/Image lay ou coordinae sysem Wha know? Don' know? Wan o know? Physical Processes?

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Linear Motion I Physics

Linear Motion I Physics Linear Moion I Physics Objecives Describe he ifference beween isplacemen an isance Unersan he relaionship beween isance, velociy, an ime Describe he ifference beween velociy an spee Be able o inerpre a

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

Chapter Three Systems of Linear Differential Equations

Chapter Three Systems of Linear Differential Equations Chaper Three Sysems of Linear Differenial Equaions In his chaper we are going o consier sysems of firs orer orinary ifferenial equaions. These are sysems of he form x a x a x a n x n x a x a x a n x n

More information

Conceptual Physics Review (Chapters 2 & 3)

Conceptual Physics Review (Chapters 2 & 3) Concepual Physics Review (Chapers 2 & 3) Soluions Sample Calculaions 1. My friend and I decide o race down a sraigh srech of road. We boh ge in our cars and sar from res. I hold he seering wheel seady,

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Answers to 1 Homework

Answers to 1 Homework Answers o Homework. x + and y x 5 y To eliminae he parameer, solve for x. Subsiue ino y s equaion o ge y x.. x and y, x y x To eliminae he parameer, solve for. Subsiue ino y s equaion o ge x y, x. (Noe:

More information

Viscoelastic Catenary

Viscoelastic Catenary Viscoelasic Caenary Anshuman Roy 1 Inroducion This paper seeks o deermine he shape of a hin viscoelasic fluid filamen as i sags under is own weigh. The problem is an exension of he viscous caenary [1]

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

PHYS 1401 General Physics I Test 3 Review Questions

PHYS 1401 General Physics I Test 3 Review Questions PHYS 1401 General Physics I Tes 3 Review Quesions Ch. 7 1. A 6500 kg railroad car moving a 4.0 m/s couples wih a second 7500 kg car iniially a res. a) Skech before and afer picures of he siuaion. b) Wha

More information

total distance cov ered time int erval v = average speed (m/s)

total distance cov ered time int erval v = average speed (m/s) Physics Suy Noes Lesson 4 Linear Moion 1 Change an Moion a. A propery common o eeryhing in he unierse is change. b. Change is so imporan ha he funamenal concep of ime woul be meaningless wihou i. c. Since

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out.

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out. Chaper The Derivaive Applie Calculus 107 Secion 4: Prouc an Quoien Rules The basic rules will le us ackle simple funcions. Bu wha happens if we nee he erivaive of a combinaion of hese funcions? Eample

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

Physics Equation List :Form 4 Introduction to Physics

Physics Equation List :Form 4 Introduction to Physics Physics Equaion Lis :Form 4 Inroducion o Physics Relaive Deviaion Relaive Deviaion Mean Deviaion 00% Mean Value Prefixes Unis for Area and Volume Prefixes Value Sandard form Symbol Tera 000 000 000 000

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 Giambaisa, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 9. Sraeg Le be direced along he +x-axis and le be 60.0 CCW from Find he magniude of 6.0 B 60.0 4.0 A x 15. (a) Sraeg Since he angle

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus FunamenalTheorems.nb 1 The Funamenal Theorems of Calculus You have now been inrouce o he wo main branches of calculus: ifferenial calculus (which we inrouce wih he angen line problem) an inegral calculus

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Advanced Integration Techniques: Integration by Parts We may differentiate the product of two functions by using the product rule:

Advanced Integration Techniques: Integration by Parts We may differentiate the product of two functions by using the product rule: Avance Inegraion Techniques: Inegraion by Pars We may iffereniae he prouc of wo funcions by using he prouc rule: x f(x)g(x) = f (x)g(x) + f(x)g (x). Unforunaely, fining an anierivaive of a prouc is no

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO CONCEPTS CHAPTER 3 SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

More information

1998 Calculus AB Scoring Guidelines

1998 Calculus AB Scoring Guidelines AB{ / BC{ 1999. The rae a which waer ows ou of a pipe, in gallons per hour, is given by a diereniable funcion R of ime. The able above shows he rae as measured every hours for a {hour period. (a) Use a

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water. Name Exam I 1) A hole is punched in a full milk caron, 10 cm below he op. Wha is he iniial veloci of ouflow? a. 1.4 m/s b. 2.0 m/s c. 2.8 m/s d. 3.9 m/s e. 2.8 m/s Answer: a 2) In a wind unnel he pressure

More information

(c) Several sets of data points can be used to calculate the velocity. One example is: distance speed = time 4.0 m = 1.0 s speed = 4.

(c) Several sets of data points can be used to calculate the velocity. One example is: distance speed = time 4.0 m = 1.0 s speed = 4. Inquiry an Communicaion 8. (a) ensiy eermine by Group A is he mos reasonable. (b) When roune off o wo significan igis, Group B has he same alue as Group A. Howeer, saing an experimenal measuremen o six

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Work Power Energy. For conservaive orce ) Work done is independen o he pah ) Work done in a closed loop is zero ) Work done agains conservaive orce is sored is he orm o poenial energy 4) All he above.

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

AP CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES. Question 1. 1 : estimate = = 120 liters/hr

AP CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES. Question 1. 1 : estimate = = 120 liters/hr AP CALCULUS AB/CALCULUS BC 16 SCORING GUIDELINES Quesion 1 (hours) R ( ) (liers / hour) 1 3 6 8 134 119 95 74 7 Waer is pumped ino a ank a a rae modeled by W( ) = e liers per hour for 8, where is measured

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

Physics 30: Chapter 2 Exam Momentum & Impulse

Physics 30: Chapter 2 Exam Momentum & Impulse Physics 30: Chaper 2 Exam Momenum & Impulse Name: Dae: Mark: /29 Numeric Response. Place your answers o he numeric response quesions, wih unis, in he blanks a he side of he page. (1 mark each) 1. A golfer

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

3. Mathematical Modelling

3. Mathematical Modelling 3. Mahemaical Moelling 3.1 Moelling principles 3.1.1 Moel ypes 3.1.2 Moel consrucion 3.1.3 Moelling from firs principles 3.2 Moels for echnical sysems 3.2.1 Elecrical sysems 3.2.2 Mechanical sysems 3.2.3

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1 ACCUMULATION Secion 7.5 Calculus AP/Dual, Revised 2019 vie.dang@humbleisd.ne 12/26/2018 7:27 PM 7.5A: Accumulaion 1 APPLICATION PROBLEMS A. Undersand he quesion. I is ofen no necessary o as much compuaion

More information

Chapter 15 Oscillatory Motion I

Chapter 15 Oscillatory Motion I Chaper 15 Oscillaory Moion I Level : AP Physics Insrucor : Kim Inroducion A very special kind of moion occurs when he force acing on a body is proporional o he displacemen of he body from some equilibrium

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V.

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V. Secions 1,,4,5, I. Oulook II. Wha is wave? III.Kinemaics & Eamples IV. Equaion of moion Wave equaions V. Eamples Oulook Translaional and Roaional Moions wih Several phsics quaniies Energ (E) Momenum (p)

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y PHYSICS 1. If and Le. The correc order of % error in (a) (b) x = y > z x < z < y x > z < y. A hollow verical cylinder of radius r and heigh h has a smooh inernal surface. A small paricle is placed in conac

More information

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2 PhysicsndMahsTuor.com 7 car is ravelling wih uniform acceleraion along a sraigh road. The road has marker poss every 1 m. When he car passes one pos, i has a speed of 1 m s 1 and, when i passes he nex

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

Introduction to continuum mechanics-ii

Introduction to continuum mechanics-ii Ioan R. IONESCU LSPM, Universiy Paris 3 (Sorbonne-Paris-Cié) July 3, 27 Coninuum kinemaics B uneforme/reference configuraion, B eforme/acual configuraion Moion: x(, X ) = X + u(, X ) wih x(, B ) = B. Maerial/Lagrangian

More information

FLUID MECHANICS UNIVERSITY OF LEEDS. May/June Examination for the degree of. BEng/ MEng Civil Engineering. Time allowed: 2 hours

FLUID MECHANICS UNIVERSITY OF LEEDS. May/June Examination for the degree of. BEng/ MEng Civil Engineering. Time allowed: 2 hours This question paper consists of printe pages, each of which is ientifie by the Coe Number CIVE 4 UNIVERSITY OF LEEDS May/June Examination for the egree of BEng/ MEng Civil Engineering FLUID MECANICS Time

More information

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June 2010.

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June 2010. Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 224 FINAL EXAMINATION June 21 Value: 1% General Insrucions This examinaion consiss of wo pars. Boh

More information

University Physics with Modern Physics 14th Edition Young TEST BANK

University Physics with Modern Physics 14th Edition Young TEST BANK Universi Phsics wih Modern Phsics 14h Ediion Young SOLUTIONS MANUAL Full clear download (no formaing errors) a: hps://esbankreal.com/download/universi-phsics-modern-phsics- 14h-ediion-oung-soluions-manual-/

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Turbulence in Fluids. Plumes and Thermals. Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College

Turbulence in Fluids. Plumes and Thermals. Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College Turbulence in Fluids Plumes and Thermals enoi Cushman-Roisin Thayer School of Engineering Darmouh College Why do hese srucures behave he way hey do? How much mixing do hey accomplish? 1 Plumes Plumes are

More information

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 =

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 = Name Secion Phsics 1210 Final Exam Ma 2011 v1.0 This es is closed-noe and closed-book. No wrien, prined, or recorded maerial is permied. Calculaors are permied bu compuers are no. No collaboraion, consulaion,

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCING GUIDELINES (Form B) Quesion 4 A paricle moves along he x-axis wih velociy a ime given by v( ) = 1 + e1. (a) Find he acceleraion of he paricle a ime =. (b) Is he speed of he paricle increasing a ime

More information

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry Acceleraion Team: Par I. Uniformly Acceleraed Moion: Kinemaics & Geomery Acceleraion is he rae of change of velociy wih respec o ime: a dv/d. In his experimen, you will sudy a very imporan class of moion

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information