Numerical Programming I (for CSE)

Size: px
Start display at page:

Download "Numerical Programming I (for CSE)"

Transcription

1 Technische Universität München WT / Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer February 7, Numerical Programming I (for CSE) Repetition ) Floating Point Numbers and Rounding a) Let f : R R be a mapping defined by f(x) 5e x 5. Compute the relative rounding error rd(f(x)) f(x) f(x), where rd(f(x)) takes the rounding errors into account when evaluating f(x). Negation does not produce any rounding errors. Is the computer-based evaluation of f stable? b) Consider the following two Matlab programs: function x function A(p,q) x -p/ + sqrt(p^-4*q)/; end function x function B(p,q) z -p/ - sqrt(p^-4*q)/; x q/z; end Both programs return a solution of the quadratic equation x + px + q. Evaluating the formulas analytically, you would get the same result x in both cases. Evaluating the formulas with Matlab, you get: input output output p q x x*x+p*x+q x x*x+p*x+q In the second column of both outputs, you can see whether the solution x fulfills x +px+q. Assign the outputs and to the programs function A and function B (give reasons for your decision!) and state which program you would choose for solving the equation x + px for some p.

2 Numerical Programming I (for CSE) Repetition, page a) rd(f(x)) (5(e x ( + ε ))( + ε ) 5)( + ε ). (5e x ( + ε + ε ) 5)( + ε ) (5e x 5)( + ε ) + 5e x (ε + ε )( + ε ). (5e x 5)( + ε ) + 5e x (ε + ε ) f(x)( + ε ) + 5e x (ε + ε ) rd(f(x)) f(x) f(x). [f(x)( + ε ) + 5e x (ε + ε )] f(x) f(x) ( ε + e x e x (ε + ε ) e x ) (ε + ε + ε ) ε e x ε M + e x e x ε M ε M ( + e x ) e x b) with ε i ε M (ε M machine accuracy) not stable! program output A B choose function B lim x (e x ) reason: For p q, we have p/ rd(f(x)) f(x) f(x) x p 4q so that we get cancellation in function A.

3 Numerical Programming I (for CSE) Repetition, page ) Interpolation Consider the mapping f : R R +, f(x) x6. a) Let p(x) be the polynomial interpolant of f with the support points P (x, y ), P (x, y ), and P (x, y ) and support abscissas x, x, x. Use the scheme of Aitken-Neville to compute p( ). b) Find the coefficients a i (i,,..., 5) of the polynomial interpolant q(x) a + a x + a x + a x + a 4 x 4 that interpolates the mapping f at the support points P i (x i, y i ) (i,,..., 4) with support abscissas x i {,,,, }. Hint: Think first! With a special ansatz, you can reduce the effort for computing q(x) significantly. a) in a triangular scheme (for x ): long version: k : x i i\k y / 9/4 p( ) y 6/ y 64 p, p, + x x (p, p, ) + / x x ( ) p, p, + x x (p, p, ) + / x x (64 ) 6.5 k : p, p, + x x x x (p, p, ) + / ( 6 ) b) We have f(x) f(x) and f(), so we can use the ansatz q(x) a x + a 4 x 4. x : x : a + a 4 f() a + 4 a 4 6 f()

4 Numerical Programming I (for CSE) Repetition, page 4 solve the linear system ( ) ( ) a 4 a 4 ( ) ( ) a a 4 ) ( a a 4 ( ) 6 ( ) 5 ( ) 4 5 ) Numerical Quadrature Consider the integral where f is a function f : R R. a) Formulate a Matlab program b a f(x)dx, function y simpson sum(f,a,b,n) that computes an approximation of the value of the integral based on the Simpson sum with n subintervals, i.e. with n + function evaluations of f. b) What does the Simpson sum with n 4 subintervals return for f(x) x, a, and b 4? c) Approximating the integral with the trapezoidal sum leads to I : 4 I T 4 in case of n subintervals, I T in case of n 4 subintervals. x dx Compute an extrapolation step to get a better approximation! d) How many partitions (subintervals) n are at least necessary to compute the integral cos(x)dx with the trapezoidal sum with an error of not greater than 75? You may use the estimates sin(x), cos(x). a) function y int simpson(f,a,b,n) h (b-a)/n; xi a:h:b; y feval(f,a) + feval(f,b) *sum( feval(f,xi(::n)) )... + *sum( feval(f,xi(::n-)) ); y h/ * y; end

5 Numerical Programming I (for CSE) Repetition, page 5 b) Simpson sum is exact for polynomials of order 4 x dx [ ] 4 x or, alternatively: 4 x dx 4 4 (f() + 4 f() + f() + 4 f() + f(4)) ( ) 64 c) h, h I(f) T (h ) + T (h ) T (h ) 4 (h + /h ) ( / + ) 64 d) R T S h H f () (ξ) (b a) n (b a) 4 cos(ξ) n! n n 5 f () (ξ) 4) Solving Systems of Linear Equations Consider the linear system of equations A x b, A, b (,, ) T. a) Solve the linear system directly, using forward and backward substitution! b) Does the Jacobi method converge when applying it to solve the linear system A x b? a) LU factorization: L L L, A, U A 4 Foward-/backward substitution:...

6 Numerical Programming I (for CSE) Repetition, page 6 b) iteration matrix C with M D C M (A M) D (D A) eigenvalues of C: λ det(c λi) λ λ ( λ λ ) λ + λ λ( λ )! λ λ, λ, λ ρ(c) < Jacobi method converges since spectral radius of iteration matrix C is <

7 Numerical Programming I (for CSE) Repetition, page 7 5) Symmetric Eigenvalue Problem Consider the following Matlab code: function eigv qr iteration(a, rtol) nsize(a,); while( code ) 4 A A(:n,:n); 5 while( code ) 6 [Q,R] qr(a(:n, :n)); 7 A code 8 end 9 eigv(n) code 4a n n-; end eigv() code 4b end The function qr iteration returns a vector eigv of length n N that contains the eigenvalues of the n n input matrix A. The input parameter rtol is a positive real value and denotes the relative tolerance ε rtol of the stop criterion a n,n ε rtol a n,n that is used in the QR iteration. What has to stand in the five boxes of the given code so that the Matlab function qr iteration works properly? code : n> code : abs(a(n,n-)) > rtol*abs(a(n,n)) code : R*Q; code 4a : A(n,n); code 4b : A(,);

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

5 Numerical Integration & Dierentiation

5 Numerical Integration & Dierentiation 5 Numerical Integration & Dierentiation Department of Mathematics & Statistics ASU Outline of Chapter 5 1 The Trapezoidal and Simpson Rules 2 Error Formulas 3 Gaussian Numerical Integration 4 Numerical

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx,

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx, Panel integration Week 12: Monday, Apr 16 Suppose we want to compute the integral b a f(x) dx In estimating a derivative, it makes sense to use a locally accurate approximation to the function around the

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

Numerical Integration

Numerical Integration Numerical Integration Sanzheng Qiao Department of Computing and Software McMaster University February, 2014 Outline 1 Introduction 2 Rectangle Rule 3 Trapezoid Rule 4 Error Estimates 5 Simpson s Rule 6

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

Extrapolation in Numerical Integration. Romberg Integration

Extrapolation in Numerical Integration. Romberg Integration Extrapolation in Numerical Integration Romberg Integration Matthew Battaglia Joshua Berge Sara Case Yoobin Ji Jimu Ryoo Noah Wichrowski Introduction Extrapolation: the process of estimating beyond the

More information

Additional exercises with Numerieke Analyse

Additional exercises with Numerieke Analyse Additional exercises with Numerieke Analyse March 10, 017 1. (a) Given different points x 0, x 1, x [a, b] and scalars y 0, y 1, y, z 1, show that there exists at most one polynomial p P 3 with p(x i )

More information

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Polynomial Interpolation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 24, 2013 1.1 Introduction We first look at some examples. Lookup table for f(x) = 2 π x 0 e x2

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 17, 2017 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

Mathematics for Engineers. Numerical mathematics

Mathematics for Engineers. Numerical mathematics Mathematics for Engineers Numerical mathematics Integers Determine the largest representable integer with the intmax command. intmax ans = int32 2147483647 2147483647+1 ans = 2.1475e+09 Remark The set

More information

Neville s Method. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Neville s Method

Neville s Method. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Neville s Method Neville s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Motivation We have learned how to approximate a function using Lagrange polynomials and how to estimate

More information

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error In this method we assume initial value of x, and substitute in the equation. Then modify x and continue till we

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

Numerical Methods. King Saud University

Numerical Methods. King Saud University Numerical Methods King Saud University Aims In this lecture, we will... find the approximate solutions of derivative (first- and second-order) and antiderivative (definite integral only). Numerical Differentiation

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 20, 2014 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0.

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0. > 5. Numerical Integration Review of Interpolation Find p n (x) with p n (x j ) = y j, j = 0, 1,,..., n. Solution: p n (x) = y 0 l 0 (x) + y 1 l 1 (x) +... + y n l n (x), l k (x) = n j=1,j k Theorem Let

More information

In numerical analysis quadrature refers to the computation of definite integrals.

In numerical analysis quadrature refers to the computation of definite integrals. Numerical Quadrature In numerical analysis quadrature refers to the computation of definite integrals. f(x) a x i x i+1 x i+2 b x A traditional way to perform numerical integration is to take a piece of

More information

Numerical Mathematics

Numerical Mathematics Alfio Quarteroni Riccardo Sacco Fausto Saleri Numerical Mathematics Second Edition With 135 Figures and 45 Tables 421 Springer Contents Part I Getting Started 1 Foundations of Matrix Analysis 3 1.1 Vector

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points CE 05 - Lecture 5 LECTURE 5 UMERICAL ITEGRATIO COTIUED Simpson s / Rule Simpson s / rule assumes equispaced data/interpolation/integration points Te integration rule is based on approximating fx using

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

Lecture 28 The Main Sources of Error

Lecture 28 The Main Sources of Error Lecture 28 The Main Sources of Error Truncation Error Truncation error is defined as the error caused directly by an approximation method For instance, all numerical integration methods are approximations

More information

8.3 Numerical Quadrature, Continued

8.3 Numerical Quadrature, Continued 8.3 Numerical Quadrature, Continued Ulrich Hoensch Friday, October 31, 008 Newton-Cotes Quadrature General Idea: to approximate the integral I (f ) of a function f : [a, b] R, use equally spaced nodes

More information

MA 3021: Numerical Analysis I Numerical Differentiation and Integration

MA 3021: Numerical Analysis I Numerical Differentiation and Integration MA 3021: Numerical Analysis I Numerical Differentiation and Integration Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

Chapter 3 Interpolation and Polynomial Approximation

Chapter 3 Interpolation and Polynomial Approximation Chapter 3 Interpolation and Polynomial Approximation Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128A Numerical Analysis Polynomial Interpolation

More information

Numerical techniques to solve equations

Numerical techniques to solve equations Programming for Applications in Geomatics, Physical Geography and Ecosystem Science (NGEN13) Numerical techniques to solve equations vaughan.phillips@nateko.lu.se Vaughan Phillips Associate Professor,

More information

Introductory Numerical Analysis

Introductory Numerical Analysis Introductory Numerical Analysis Lecture Notes December 16, 017 Contents 1 Introduction to 1 11 Floating Point Numbers 1 1 Computational Errors 13 Algorithm 3 14 Calculus Review 3 Root Finding 5 1 Bisection

More information

Exercises given in lecture on the day in parantheses.

Exercises given in lecture on the day in parantheses. A.Miller M22 Fall 23 Exercises given in lecture on the day in parantheses. The ɛ δ game. lim x a f(x) = L iff Hero has a winning strategy in the following game: Devil plays: ɛ > Hero plays: δ > Devil plays:

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

Lösning: Tenta Numerical Analysis för D, L. FMN011,

Lösning: Tenta Numerical Analysis för D, L. FMN011, Lösning: Tenta Numerical Analysis för D, L. FMN011, 090527 This exam starts at 8:00 and ends at 12:00. To get a passing grade for the course you need 35 points in this exam and an accumulated total (this

More information

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES No. of Printed Pages : 5 BCS-054 BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 058b9 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES Time : 3 hours Maximum Marks

More information

Lectures 9-10: Polynomial and piecewise polynomial interpolation

Lectures 9-10: Polynomial and piecewise polynomial interpolation Lectures 9-1: Polynomial and piecewise polynomial interpolation Let f be a function, which is only known at the nodes x 1, x,, x n, ie, all we know about the function f are its values y j = f(x j ), j

More information

INTRODUCTION, FOUNDATIONS

INTRODUCTION, FOUNDATIONS 1 INTRODUCTION, FOUNDATIONS ELM1222 Numerical Analysis Some of the contents are adopted from Laurene V. Fausett, Applied Numerical Analysis using MATLAB. Prentice Hall Inc., 1999 2 Today s lecture Information

More information

Scientific Computing: Numerical Integration

Scientific Computing: Numerical Integration Scientific Computing: Numerical Integration Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Fall 2015 Nov 5th, 2015 A. Donev (Courant Institute) Lecture

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

Computing Integrals. Lectures INF2320 p. 1/48

Computing Integrals. Lectures INF2320 p. 1/48 Computing Integrals Lectures INF2320 p. 1/48 Lectures INF2320 p. 2/48 Bagels We study a simple example of scientific computing. Assume that you run a Bagel&Juice cafè Each night you have to decide how

More information

We consider the problem of finding a polynomial that interpolates a given set of values:

We consider the problem of finding a polynomial that interpolates a given set of values: Chapter 5 Interpolation 5. Polynomial Interpolation We consider the problem of finding a polynomial that interpolates a given set of values: x x 0 x... x n y y 0 y... y n where the x i are all distinct.

More information

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012.

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012. Math 5620 - Introduction to Numerical Analysis - Class Notes Fernando Guevara Vasquez Version 1990. Date: January 17, 2012. 3 Contents 1. Disclaimer 4 Chapter 1. Iterative methods for solving linear systems

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

Chapter 5: Numerical Integration and Differentiation

Chapter 5: Numerical Integration and Differentiation Chapter 5: Numerical Integration and Differentiation PART I: Numerical Integration Newton-Cotes Integration Formulas The idea of Newton-Cotes formulas is to replace a complicated function or tabulated

More information

Numerical solutions of nonlinear systems of equations

Numerical solutions of nonlinear systems of equations Numerical solutions of nonlinear systems of equations Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan E-mail: min@math.ntnu.edu.tw August 28, 2011 Outline 1 Fixed points

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 5 Chapter 17 Numerical Integration Formulas PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

5.3 The Power Method Approximation of the Eigenvalue of Largest Module

5.3 The Power Method Approximation of the Eigenvalue of Largest Module 192 5 Approximation of Eigenvalues and Eigenvectors 5.3 The Power Method The power method is very good at approximating the extremal eigenvalues of the matrix, that is, the eigenvalues having largest and

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations Numerical Methods for Ordinary Differential Equations Answers of the exercises C Vuik, S van Veldhuizen and S van Loenhout 08 Delft University of Technology Faculty Electrical Engineering, Mathematics

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

Section 6.6 Gaussian Quadrature

Section 6.6 Gaussian Quadrature Section 6.6 Gaussian Quadrature Key Terms: Method of undetermined coefficients Nonlinear systems Gaussian quadrature Error Legendre polynomials Inner product Adapted from http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_p/node44.html

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon's method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

MATH 235: Inner Product Spaces, Assignment 7

MATH 235: Inner Product Spaces, Assignment 7 MATH 235: Inner Product Spaces, Assignment 7 Hand in questions 3,4,5,6,9, by 9:3 am on Wednesday March 26, 28. Contents Orthogonal Basis for Inner Product Space 2 2 Inner-Product Function Space 2 3 Weighted

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Numerical methods. Examples with solution

Numerical methods. Examples with solution Numerical methods Examples with solution CONTENTS Contents. Nonlinear Equations 3 The bisection method............................ 4 Newton s method.............................. 8. Linear Systems LU-factorization..............................

More information

Applied Numerical Analysis Quiz #2

Applied Numerical Analysis Quiz #2 Applied Numerical Analysis Quiz #2 Modules 3 and 4 Name: Student number: DO NOT OPEN UNTIL ASKED Instructions: Make sure you have a machine-readable answer form. Write your name and student number in the

More information

Math-3315 & CSE-3365, exam 2 answer sheet

Math-3315 & CSE-3365, exam 2 answer sheet Math-3315 & CSE-3365, exam 2 answer sheet Oct. 23, 2012 Problem 1. (20 points) Given a vector z that contains all distinct elements z 1,z 2,,z n. The first task is to generate an n n Vandermonde-type matrix

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Study 4.10 #465, 471, , 487, , , 515, 517, 521, 523

Study 4.10 #465, 471, , 487, , , 515, 517, 521, 523 Goals: 1. Understand that antiderivatives are the functions from which the present derivative was found. 2. The process of finding an antiderivative or indefinite integral requires the reverse process

More information

Fall 2014 MAT 375 Numerical Methods. Numerical Differentiation (Chapter 9)

Fall 2014 MAT 375 Numerical Methods. Numerical Differentiation (Chapter 9) Fall 2014 MAT 375 Numerical Metods (Capter 9) Idea: Definition of te derivative at x Obviuos approximation: f (x) = lim 0 f (x + ) f (x) f (x) f (x + ) f (x) forward-difference formula? ow good is tis

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

6 Lecture 6b: the Euler Maclaurin formula

6 Lecture 6b: the Euler Maclaurin formula Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 March 26, 218 6 Lecture 6b: the Euler Maclaurin formula

More information

Chap. 19: Numerical Differentiation

Chap. 19: Numerical Differentiation Chap. 19: Numerical Differentiation Differentiation Definition of difference: y x f x x i x f x i As x is approaching zero, the difference becomes a derivative: dy dx lim x 0 f x i x f x i x 2 High-Accuracy

More information

Polynomial Interpolation with n + 1 nodes

Polynomial Interpolation with n + 1 nodes Polynomial Interpolation with n + 1 nodes Given n + 1 distinct points (x 0, f (x 0 )), (x 1, f (x 1 )),, (x n, f (x n )), Interpolating polynomial of degree n P(x) = f (x 0 )L 0 (x) + f (x 1 )L 1 (x) +

More information

On the positivity of linear weights in WENO approximations. Abstract

On the positivity of linear weights in WENO approximations. Abstract On the positivity of linear weights in WENO approximations Yuanyuan Liu, Chi-Wang Shu and Mengping Zhang 3 Abstract High order accurate weighted essentially non-oscillatory (WENO) schemes have been used

More information

CAAM 454/554: Stationary Iterative Methods

CAAM 454/554: Stationary Iterative Methods CAAM 454/554: Stationary Iterative Methods Yin Zhang (draft) CAAM, Rice University, Houston, TX 77005 2007, Revised 2010 Abstract Stationary iterative methods for solving systems of linear equations are

More information

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems.

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems. COURSE 9 4 Numerical methods for solving linear systems Practical solving of many problems eventually leads to solving linear systems Classification of the methods: - direct methods - with low number of

More information

Section 1.1 Algorithms. Key terms: Algorithm definition. Example from Trapezoidal Rule Outline of corresponding algorithm Absolute Error

Section 1.1 Algorithms. Key terms: Algorithm definition. Example from Trapezoidal Rule Outline of corresponding algorithm Absolute Error Section 1.1 Algorithms Key terms: Algorithm definition Example from Trapezoidal Rule Outline of corresponding algorithm Absolute Error Approximating square roots Iterative method Diagram of a general iterative

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

Numerical methods, midterm test I (2018/19 autumn, group A) Solutions

Numerical methods, midterm test I (2018/19 autumn, group A) Solutions Numerical methods, midterm test I (2018/19 autumn, group A Solutions x Problem 1 (6p We are going to approximate the limit 3/2 x lim x 1 x 1 by substituting x = 099 into the fraction in the present form

More information

Chapter 1: Preliminaries and Error Analysis

Chapter 1: Preliminaries and Error Analysis Chapter 1: Error Analysis Peter W. White white@tarleton.edu Department of Tarleton State University Summer 2015 / Numerical Analysis Overview We All Remember Calculus Derivatives: limit definition, sum

More information

Virtual University of Pakistan

Virtual University of Pakistan Virtual University of Pakistan File Version v.0.0 Prepared For: Final Term Note: Use Table Of Content to view the Topics, In PDF(Portable Document Format) format, you can check Bookmarks menu Disclaimer:

More information

Numerical Methods I: Numerical Integration/Quadrature

Numerical Methods I: Numerical Integration/Quadrature 1/20 Numerical Methods I: Numerical Integration/Quadrature Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 30, 2017 umerical integration 2/20 We want to approximate the definite integral

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

3. Numerical Quadrature. Where analytical abilities end...

3. Numerical Quadrature. Where analytical abilities end... 3. Numerical Quadrature Where analytical abilities end... Numerisches Programmieren, Hans-Joachim Bungartz page 1 of 32 3.1. Preliminary Remarks The Integration Problem Numerical quadrature denotes numerical

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis Introduction to Numerical Analysis S. Baskar and S. Sivaji Ganesh Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai 400 076. Introduction to Numerical Analysis Lecture Notes

More information

Taylor Series and Numerical Approximations

Taylor Series and Numerical Approximations Taylor Series and Numerical Approximations Hilary Weller h.weller@reading.ac.uk August 7, 05 An introduction to the concept of a Taylor series and how these are used in numerical analysis to find numerical

More information

Numerical Methods. King Saud University

Numerical Methods. King Saud University Numerical Methods King Saud University Aims In this lecture, we will... Introduce the topic of numerical methods Consider the Error analysis and sources of errors Introduction A numerical method which

More information

Practice Exam 2 (Solutions)

Practice Exam 2 (Solutions) Math 5, Fall 7 Practice Exam (Solutions). Using the points f(x), f(x h) and f(x + h) we want to derive an approximation f (x) a f(x) + a f(x h) + a f(x + h). (a) Write the linear system that you must solve

More information

Differentiation and Integration

Differentiation and Integration Differentiation and Integration (Lectures on Numerical Analysis for Economists II) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 12, 2018 1 University of Pennsylvania 2 Boston College Motivation

More information

Midterm Review. Igor Yanovsky (Math 151A TA)

Midterm Review. Igor Yanovsky (Math 151A TA) Midterm Review Igor Yanovsky (Math 5A TA) Root-Finding Methods Rootfinding methods are designed to find a zero of a function f, that is, to find a value of x such that f(x) =0 Bisection Method To apply

More information

Integration by Undetermined Coefficients

Integration by Undetermined Coefficients Integration by Undetermined Coefficients Robert Dawson Mathematics and Computing Science Saint Mary s University A (moderately) fast, (often) useful, and (largely) ignored alternative to integration by

More information

APPM/MATH Problem Set 6 Solutions

APPM/MATH Problem Set 6 Solutions APPM/MATH 460 Problem Set 6 Solutions This assignment is due by 4pm on Wednesday, November 6th You may either turn it in to me in class or in the box outside my office door (ECOT ) Minimal credit will

More information

Numerical Algorithms. IE 496 Lecture 20

Numerical Algorithms. IE 496 Lecture 20 Numerical Algorithms IE 496 Lecture 20 Reading for This Lecture Primary Miller and Boxer, Pages 124-128 Forsythe and Mohler, Sections 1 and 2 Numerical Algorithms Numerical Analysis So far, we have looked

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number Math 227 Sample Final Examination 1 Name (print) Name (sign) Bing ID number (Your instructor may check your ID during or after the test) No books, notes, or electronic devices (calculators, cell phones,

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis Université de Liège Faculté des Sciences Appliquées Introduction to Numerical Analysis Edition 2015 Professor Q. Louveaux Department of Electrical Engineering and Computer Science Montefiore Institute

More information