Micro-perforates in vibro-acoustic systems Li CHENG

Size: px
Start display at page:

Download "Micro-perforates in vibro-acoustic systems Li CHENG"

Transcription

1 Micro-perforates in vibro-acoustic systems Li CHENG Chair Professor and Director Consortium for Sound and Vibration research Department of Mechanical Engineering The Hong Kong Polytechnic University CAV Workshop 2014

2 Overview Introduction of MPP and its conventional applications MPP for interior noise control MPP absorber with irregular-shaped cavities PTF formulation and compound panel treatment Application examples Conclusions

3 What is Micro-perforated Panel (MPP)? MPP were developed by Daa-You Maa (1975) to satisfy the need of incorporating sound absorption material in tough working conditions. Unlike ordinary perforated panels where the perforations are in millimeters or centimeters, the diameters of the holes in MPP were reduced to submillimeter size (diameter mm). Perforated Panel Micro-Perforated Panel High reactance Low resistance Only used as protective facing for porous material Low reactance High resistance Provide sufficient absorption without extra porous material

4 Maa s MPP impedance formula Impedance of a single tube divided by perforation Resistance r = 32m t s c d Z MPP = Z hole sr 0 c = r + jwm é ê ëê 1+ x x d t ù ú ûú σ: porosity r: resistance m: effective mass per unit area d: hole diameter f: frequency t: hole depth c: speed of sound μ: kinematic viscosity of air End correction (sound radiation from the ends of the tube) Reactance m = 32m s c é ê t ê s c 1+ 1 ê ê ë 9 + x d t ù ú ú ú ú û

5 MPP absorber A typical MPP absorber takes the form of a MPP fitted in front of a backing wall. According to Maa s theory, an equivalent circuit method can be used to predict the sound absorption performance (Maa, 1975). MPP Z mpp ρ 0 c CBMPPA Z cavity,θ 2 p i Backing air cavity Absorption coefficient 4r a = (1+ r) 2 + (wm - cot(w D / c)) 2

6 Absorption coefficient Magnitude Helmholtz absorption of MPP absorber The equivalent circuit model is analogous to a lumped parameter system å Mw 0 + Cw 0 + K lx =0,l y w 0 l x =0,l y = F MPP Cavity (-) Cavity (+) Reactance term of the system Peak Dip Frequency (Hz) Absorption curve using Maa s formula

7 Advantages of Maa s model Easy to use Clear working principle Experimental validation through impedance tube test (absorption curve, impedance), or reverberation room test (reverberation time) Flexibility and convenience of accounting for more complex MPP configuration (double or multiple MPPs, flexible MPP, etc) Double MPPs Flexible MPP

8 Absorption coefficient Complex acoustic behavior of MPP absorber An example 1 MPP absorber flush mounted in an infinite baffle Depth mode θ 0.4 Lateral mode θ=0 θ= Lateral modes Depths modes

9 Absorption coefficient Complex acoustic behavior of MPP absorber An example Nature of surrounding acoustic media Backing cavity forms a sound field Lateral modes Depths modes 1k 2k (Yang, Cheng and Pan, JASA 2013)

10 Modeling MPP absorber in compact vibro-acoustic system Boundary integration: 1 p 1 = - jrwò G 1 v 1 ds + ò G 1 QdV Vs p 2 = - jrw s a ò sa G 2 v 2 ds Green s function 2 G(r,r 0 ) = å n j n (r)j n (r 0 ) L n (k 2 - k n 2 ) Boundary conditions 3 v 1 = ( p 1 - p 2 ) / Z mpp v 1 = -v 2 Coupled equations (k 1m 2 - k 2 (1) )L 1m A m + jkc mpp å L m,m' A m' - jkc mpp å R m,n B n = jrckqf m (r s ) m' (k 2 2n - k 2 )L 2n B n + jkc mpp å L (1) n,n' B n' - jkc mpp å R m,n A m = 0 n' m n 4 Domain 1 Domain 2 (1) L m,m' (2) L n,n' R m,n = = ò f m f m' ds Sa a = ò y n y n' ds Sa a f m y n ds a ò Sa Effect of impedance boundary Sound field interaction Backing Domain 2 Domain 1 Q(r s ) MPP Cavity

11 Sound pressure level Locally reactive model vs coupled model (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0) (9,0) Mode (3,0) Performance overestimated! 80 without MPP absorber 60 R S Local reactive model Coupled model Frequency (Hz)

12 Experimental validation MPP with a backing cavity MPP Mic Speaker Experimental setup MPP with a backing cavity

13 Experimental validation MPP with a backing cavity Model validation Effect of MPP backing cavity (Yang and Cheng, 2014) Locally reactive model cannot characterize MPP absorber in complex vibro-acoustic environment The sound field of backing cavity makes considerable influence to the absorption of MPP The involvement of lateral modes usually degrades control performance

14 Abs coeff Further improve absorption performance irregular shaped cavity The sound field of backing cavity has great impact to the absorption performance of MPP absorber, which leaves large space for further improvement through backing cavity design Frequency (Hz) Rectangular Trapezoidal Use geometrical effect to distort the cavity modes Alter the coupling between air mass and cavity modes Enhance the coupling strength at poor absorption region

15 Absorption coefficient Further improve absorption performance irregular shaped cavity Geometry γ= Volume controlled (i.e. zero mode) Dominating cavity mode Frequency Rectangular cav Trapezoidal cav Maa

16 Application of MPP with irregular backing cavity Wave Trapping Barrier Geometrical effect Sound absorption effect Reflecting wall WTB MPP Noise source Willowdale mining site in Western Australia (Pan, Ming and Guo, 2004)

17 Insertion Loss (db) Application of MPP with irregular backing cavity Wave Trapping Barrier Insertion loss comparison (Yang, Pan and Cheng, 2013) 50 No reflecting wall 40 With reflecting wall WTB With reflecting wall Wavelength vs wedge dimension Frequency(Hz)

18 Application of MPP with irregular backing cavity Wave Trapping Barrier Sound pressure distribution 80dB Below 1000Hz Rectangular WTB Rectangular Above 1000Hz WTB 110dB

19 Application of MPP with irregular backing cavity Wave Trapping Barrier Barrier performance comparison of different profiles Poor Medium Best Rectangular(dB) Tilted(dB) WTB(dB) R R Rectangular Barrier (RB) Layout Reflecting wall S1 2m R0 Tilted Barrier (TB) Noise barrier R1 Wave Trapping Barrier (WTB) R7 R8 R9 R4 R5 R6 R2 R3 5m 1m R R R R R R m 10m 20m 50m R

20 Remarks In complex vibro-acoustic system, the acoustic behavior of MPP absorber cannot be characterized in conventional manner The influence of the backing cavity leaves large room for performance optimization

21 Application of MPP in compact systems MRI (Li and Mechefske, 2010) Auto (Cackley and Bolton, 2013) Boat engine (Herrin et al, 2011) Truck engine (Corin and Wester, 2005)

22 Patch Transfer Function (PTF) Formulation Open acoustic medium Cavity S c Open acoustic medium S i Patches 1 - Coupling surfaces divided into elementary surfaces called patches Mechanical Structure (a) Internal partition 2 - PTFs definition for each subsystem: Structural: Y s ij V F s i s j Acoustical: Z a ij F V a i a j Calculation: FEM, BEM, analytical, (b) 3 Assembling using continuity relations and superposition principle PTF substructuring

23 PTF of MPP Equation of motion for a hole: Re 0 s Z u u i Im Z u p p where 0 u 1 u u u 1 s 0 1 Z 0 u s p 1 0 p 2 c is the complex acoustic impedance of the hole Mean velocity of the surrounding air particle (homogeneization): 0 Suppressing the air velocity in the hole u, with 1 Re Z Z 0cZ (MPP transmissibility) (equivalent mobility of the perforation) s MPP equivalent mobility: Y = Y + eqij p ij Description of pressure and velocity variables for the MPP

24 Coupling treatment Superposition principle for linear passive systems: N s s s s ui ui Yij f j j 1 N i i ij j j 1 f f Z u, 1,2 1 Patch velocities obtained by introducing these relations in the continuity conditions in the presence of a micro-perforated structure: u I Ψ 1 Y s Z Z u s Ψ 1 Y s f f Resulting pressure inside the fluid domain: p M N ~ pm ZiM i 1 u 1 i

25 MPP in Complex Environment Rigid duct Partial plate Micro-perforations 1. Typical applications: ventilation window, duct silencer, partition inside enclosure, etc 2. Mixed separation interface: rigid or flexible structure, air aperture, MPP Rigid Structure Domain I n D2 Flexible Structure n D1 Aperture Domain II 3. Parallel structural and acoustic sound transmission paths between acoustic media

26 Compound Panel Subsystem Aperture with thin thickness assumption: - Taylor series expansion: pa pa( x, y, z) pa( x, y, z0) ( z z0) z - Cross-thickness velocity: Virtual panel treatment of an air aperture V z n 1 p ( x, y, z ) a (1 ˆ ) n a j z c a 0 a 0 n 0 z - Aperture mobility: a V i j 1 aij ( ) a 2 2 a i a j F j 0Lz s n N a S S Y ds ds i j Virtual Panel p V i j 1 - Panel mobility: Y p ds ds F php( m ) s m N p pij p i p j j s s i j

27 Compound Panel Subsystem Y 0 0 F a V a a 0 Yp Yp-mpp Fp Vp 0 F mpp V Ympp- p Ympp mpp Mobility matrix Excitation Response A compound panel surrounded by two acoustic media Description of a compound panel Combine rigid/flexible structure, aperture, MPP into a single structural interface

28 Compound Panel Subsystem Thickness Criterion Rectangular cavity with enclosed partial structure Validation against FEM Effective thickness criterion test: Percentage error between the proposed approach and exact value: PE ( P P ) / P vp bt bt Criterion of s /4 provides satisfactory accuracy Criterion of s /16 fully guarantees the accuracy

29 Various Applications Rigid/flexible and micro-perforated partition: 128Hz 128Hz 1. MPP brings a noticeable pressure balance across the partition 2. MPP adds system damping by means of energy dissipation through the holes 63Hz

30 Various Applications Radiation from a partially covered enclosure Semi-infinite acoustic domain Partial flexible plate Receiving point Rigid baffle Rigid baffle Point source Acoustic enclosure z y x 1. The interface being treated as compound panel can be any combination of structure and aperture 2. Sound scattering pattern can be clearly observed

31 Various Applications Effect of adding MPP absorbers: Internal MPP absorbers improve TL Absorption behavior is very complicated Require fully-coupled modeling tools

32 Various Applications Interior and Exterior domains are infinite duct 0.36m Exterior domain Interior domain 0.84m Double-glazed ventilation window system Validation of the model against FEM

33 Various Applications Baffle MPP Solid Empty MPP Baffle 0.3m Effect of additional MPPs Solid MPP

34 Application to Duct Silencer Empty expansion chamber Reactive expansion chamber silencer 1. The proposed approach is more computational efficient than FEM 2. Numerical studies provide silencer design guidance Complex internal partitions

35 Application to Duct Silencer Complex silencer configuration with rigid/mpp internal partitions Hybrid silencers Effect of MPP

36 Application to Duct Silencer Experimental measurement: Vibration of internal partitions attributed to thin structures may deteriorate the silencing effect performance overestimated!

37 Remarks A sub-structuring approach to model complex vibro-acoustic systems involving cascade structures coupled with partially opened/closed acoustic cavities is developed. The proposed compound panel treatment allows a systematic handling of the mixed separations/interfaces comprising any combination of rigid/flexible structure, aperture and MPP, and converts the parallel sound transmission between acoustic media into a serial one. The proposed approach provides an efficient and versatile simulation tool to predicate the effect of multiple rigid/flexible partial partitions and micro-perforated elements inside complex acoustic systems, such as duct silencers or ventilation windows. Benefiting from the substructuring nature, numerical calculation and optimization is less time consuming compared with existing modeling techniques.

38 Concluding Remarks Micro-perforates provide a non-fibrous, environmental-friendly and effective sound absorption materials with great potential. Design, tuning and optimization are possible by making use of vibroacoustic principles Acoustic behavior of the MPP strongly depends on the vibroacoutic working environment. MPP should be regarded as an integrative part of the system Flexible tools, capable of dandling system complexities and conducive to system optimizations, are needed.

39 Micro-perforates in vibro-acoustic systems Li CHENG Chair Professor and Head Department of Mechanical Engineering The Hong Kong Polytechnic University Xiang Yu Cheng Yang Jean-Louis Guyader J. Pan Laurent Maxit

Modeling vibroacoustic systems involving cascade open cavities and micro-perforated panels

Modeling vibroacoustic systems involving cascade open cavities and micro-perforated panels Modeling vibroacoustic systems involving cascade open cavities and micro-perforated panels Xiang Yu and Li Cheng a) Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom,

More information

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS Proceedings of COBEM 007 Copyright 007 by ABCM 9th International Congress of Mechanical Engineering November 5-9, 007, Brasília, DF IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED

More information

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering D. W. Herrin, Ph.D., P.E. Department of Mechanical Engineering Reference 1. Ver, I. L., and Beranek, L. L. (2005). Control Engineering: Principles and Applications. John Wiley and Sons. 2. Sharp, B. H.

More information

Hybrid silencers with micro-perforated panels and internal partitions

Hybrid silencers with micro-perforated panels and internal partitions Hybrid silencers with micro-perforated panels and internal partitions Xiang Yu, Li Cheng, a) and Xiangyu You Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon,

More information

Acoustic coupling between cascade sub-chambers and its influence on overall transmission loss

Acoustic coupling between cascade sub-chambers and its influence on overall transmission loss Acoustic coupling between cascade sub-chambers and its influence on overall transmission loss Yuhui Tong School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley WA 6009,

More information

Noise in enclosed spaces. Phil Joseph

Noise in enclosed spaces. Phil Joseph Noise in enclosed spaces Phil Joseph MODES OF A CLOSED PIPE A 1 A x = 0 x = L Consider a pipe with a rigid termination at x = 0 and x = L. The particle velocity must be zero at both ends. Acoustic resonances

More information

CSVR in Hong Kong PolyU

CSVR in Hong Kong PolyU Research @ CSVR in Hong Kong PolyU Li Cheng ( Chair Professor and Head Director, Consortium for Sound and Vibration Research (CSVR) The Hong Kong Polytechnic University Department of Mechanical Engineering

More information

Absorption of oblique incidence sound by a finite micro-perforated panel absorber

Absorption of oblique incidence sound by a finite micro-perforated panel absorber Absorption of oblique incidence sound by a finite micro-perforated panel absorber Cheng Yang a) and Li Cheng b) Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon,

More information

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA)

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) Paresh Shravage, Dr. K.V. Desa Electro-acoustic Research Lab, N. Wadia College, Pune-4111 Email: pareshshravage@gmail.com ABSTRACT MPA s are becoming popular

More information

Oblique incidence sound absorption of parallel arrangement. of multiple micro-perforated panel absorbers in a periodic. pattern

Oblique incidence sound absorption of parallel arrangement. of multiple micro-perforated panel absorbers in a periodic. pattern Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern Wang Chunqi *, Huang Lixi, Zhang Yumin Lab of Aerodynamics and Acoustics, Zhejiang

More information

Experimental investigation of perforations interactions effects under high sound pressure levels

Experimental investigation of perforations interactions effects under high sound pressure levels Experimental investigation of perforations interactions effects under high sound pressure levels Rostand Tayong and Philippe Leclaire Laboratoire de Recherche en Mécanique et Acoustique Université de Bourgogne,

More information

Improved Method of the Four-Pole Parameters for Calculating Transmission Loss on Acoustics Silence

Improved Method of the Four-Pole Parameters for Calculating Transmission Loss on Acoustics Silence 7659, England, UK Journal of Information and Computing Science Vol., No., 7, pp. 6-65 Improved Method of the Four-Pole Parameters for Calculating Transmission Loss on Acoustics Silence Jianliang Li +,

More information

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES Chenxi Li, Ben Cazzolato and Anthony Zander School of Mechanical Engineering, The University of Adelaide,

More information

Chapter 10 Sound in Ducts

Chapter 10 Sound in Ducts Chapter 10 Sound in Ducts Slides to accompany lectures in Vibro-Acoustic Design in Mechanical Systems 01 by D. W. Herrin Department of Mechanical Engineering Lexington, KY 40506-0503 Tel: 859-18-0609 dherrin@engr.uky.edu

More information

Modeling and simulation of windows with noise mitigation and natural ventilation

Modeling and simulation of windows with noise mitigation and natural ventilation Modeling and simulation of windows with noise mitigation and natural ventilation Xiang YU ; Fangsen CUI ; ze-tiong TAN 2 ; Kui YAO 3 Institute of High Performance Computing, A*TAR, ingapore 2 Building

More information

PREDICTION OF ACOUSTIC NATURAL FREQUENCIES FOR TWO DIMENSIONAL SIMPLIFIED AIRCRAFT CABIN BY IMPEDANCE MOBILITY COMPACT MATRIX (IMCM) APPROACH

PREDICTION OF ACOUSTIC NATURAL FREQUENCIES FOR TWO DIMENSIONAL SIMPLIFIED AIRCRAFT CABIN BY IMPEDANCE MOBILITY COMPACT MATRIX (IMCM) APPROACH PREDICION OF ACOUSIC NAURAL FREQUENCIES FOR WO DIMENSIONAL SIMPLIFIED AIRCRAF CABIN BY IMPEDANCE MOBILIY COMPAC MARIX (IMCM) APPROACH Veerabhadra REDDY 1 ; Venkatesham B 2 1 Department of Mechanical and

More information

Design of Mufflers and Silencers. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Design of Mufflers and Silencers. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering D. W. Herrin, Ph.D., P.E. Department of Mechanical Engineering Types of Mufflers 1. Dissipative (absorptive) silencer: Duct or pipe Sound absorbing material (e.g., duct liner) Sound is attenuated due to

More information

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES P-7 THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES RYU, YUNSEON BRUEL & KJAER SOUND & VIBRATION MEASUREMENT A/S SKODSBORGVEJ 307 NAERUM 2850 DENMARK TEL : +45 77 41 23 87 FAX : +45 77

More information

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings Transmission loss of rectangular silencers using meso-porous and micro-perforated linings T.E.Vigran Acoustic Group, Department of Electronics and Telecommunications, Norwegian University of Science and

More information

ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT.

ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT. paper ID: 48 /p. ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT. J. Pfretzschner, F. Simón, C. de la Colina Instituto de Acústica, Serrano 44, 286 Madrid, España ABSTRACT: Usually, acoustic

More information

NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE

NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE 23 rd International Congress on Sound & Vibration Athens, Greece -4 July 26 ICSV23 NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE Muttalip Aşkın

More information

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica Sound radiation and transmission Professor Phil Joseph Departamento de Engenharia Mecânica SOUND RADIATION BY A PISTON The piston generates plane waves in the tube with particle velocity equal to its own.

More information

Engineering Noise Control

Engineering Noise Control Engineering Noise Control Theory and practice Second edition David A. Bies and Colin H. Hansen Department of Mechanical Engineering University of Adelaide South Australia E & FN SPON An Imprint of Chapman

More information

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method csnak, 014 Int. J. Nav. Archit. Ocean Eng. (014) 6:894~903 http://dx.doi.org/10.478/ijnaoe-013-00 pissn: 09-678, eissn: 09-6790 A simple formula for insertion loss prediction of large acoustical enclosures

More information

Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance

Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance Acoust. Sci. & Tech. 32, 5 (2) PAPER #2 The Acoustical Society of Japan Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance Motoki Yairi ;, Kimihiro

More information

A DECOUPLED VIBRO-ACOUSTIC EXTENSION OF NASTRAN

A DECOUPLED VIBRO-ACOUSTIC EXTENSION OF NASTRAN Twelfth International Congress on Sound and Vibration A DECOUPLED VIBRO-ACOUSTIC EXTENSION OF NASTRAN Philippe JEAN and Hugo SIWIAK Centre Scientifique et Technique du Bâtiment 24 rue Joseph Fourier F-

More information

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe Transmission Loss of a Dissipative Muffler with Perforated Central Pipe 1 Introduction This example problem demonstrates Coustyx ability to model a dissipative muffler with a perforated central pipe. A

More information

Sound radiation of a plate into a reverberant water tank

Sound radiation of a plate into a reverberant water tank Sound radiation of a plate into a reverberant water tank Jie Pan School of Mechanical and Chemical Engineering, University of Western Australia, Crawley WA 6009, Australia ABSTRACT This paper presents

More information

Microperforated Insertion Units in free field: A case study

Microperforated Insertion Units in free field: A case study Microperforated Insertion Units in free field: A case study J. Pfretzschner, A. Fernández, P. Cobo, M. Cuesta, Instituto de Acústica. CSIC. Serrano, 86 Madrid, Spain, iacjp36@ia.cetef.csic.es, iacf39@ia.cetef.csic.es,

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

Verification of Sound Absorption Characteristics Constituted Porous Structure

Verification of Sound Absorption Characteristics Constituted Porous Structure Verification of Sound Absorption Characteristics Constituted Porous Structure Toru Yoshimachi 1, Ryo Ishii 1, Kuniharu Ushijima 2, Naoki Masuda 2, Takao Yamaguchi 3, Yun Huang 4, Zhe Cui 4 1 JSOL Corporation,

More information

Modeling of cylindrical baffle mufflers for low frequency sound propagation

Modeling of cylindrical baffle mufflers for low frequency sound propagation Proceedings of the Acoustics 212 Nantes Conference 23-27 April 212, Nantes, France Modeling of cylindrical baffle mufflers for low frequency sound propagation R. Binois a, N. Dauchez b, J.-M. Ville c,

More information

Micro-perforated sound absorbers in stretched materials

Micro-perforated sound absorbers in stretched materials Paper Number 9, Proceedings of ACOUSTICS 011-4 November 011, Gold Coast, Australia Micro-perforated sound absorbers in stretched materials Christian Nocke (1), Catja Hilge (1) and Jean-Marc Scherrer ()

More information

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS Kento Hashitsume and Daiji Takahashi Graduate School of Engineering, Kyoto University email: kento.hashitsume.ku@gmail.com

More information

Helmholtz resonator with multi-perforated plate

Helmholtz resonator with multi-perforated plate Helmholtz resonator with multi-perforated plate Diogo Filipe Alves Cabral diogo.a.cabral@ist.utl.pt Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal November 2016 Abstract The present

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

The diagram below. to the by the. outlet into. calculation. Since TRANSMISSION VIA STRUCTURE. Vibration Via Supports Duct Breakout

The diagram below. to the by the. outlet into. calculation. Since TRANSMISSION VIA STRUCTURE. Vibration Via Supports Duct Breakout NOISE CONTROL IN VENTILATING SYSTEMS INTRODUCTION The diagram below shows the various noise sources and transmission paths of plant rooms and ventilation systems. For the ventilation system this can be

More information

Benefits of Reduced-size Reverberation Room Testing

Benefits of Reduced-size Reverberation Room Testing Benefits of Reduced-size Reverberation Room Testing Dr. Marek Kierzkowski (1), Dr. Harvey Law (2) and Jonathon Cotterill (3) (1) Acoustic Engineer, Megasorber Pty Ltd, Melbourne, Australia (2) Technical

More information

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS Honggang Zhao )), Yang Wang ), Dan Zhao ), and Jihong Wen ) email: zhhg963@sina.com Yiu Wai Lam ), Olga Umnova ) ) Vibration and Acoustics

More information

Holistic Acoustic Absorber Design: from modelling and simulation to laboratory testing and practical realization. Toulson, R. and Cirstea, S.

Holistic Acoustic Absorber Design: from modelling and simulation to laboratory testing and practical realization. Toulson, R. and Cirstea, S. WestminsterResearch http://www.westminster.ac.uk/westminsterresearch : from modelling and simulation to laboratory testing and practical realization. Toulson, R. and Cirstea, S. This paper was presented

More information

The Effect of Flexibility on the Acoustical Performance of Microperforated Materials

The Effect of Flexibility on the Acoustical Performance of Microperforated Materials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering -- The Effect of Flexibility on the Acoustical Performance of Microperforated Materials

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 13 http://acousticalsocietyorg/ ICA 13 Montreal Montreal, Canada - 7 June 13 Architectural Acoustics Session paab: Dah-You Maa: His Contributions and Life

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

Analytical and experimental study of single frame double wall

Analytical and experimental study of single frame double wall Analytical and experimental study of single frame double wall C. Guigou-Carter and M. Villot Center for Building Science and Technology Acoustics and Lighting Department Paper ID 203 Analytical and experimental

More information

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES 43.40r Philippe JEAN; Jean-François RONDEAU Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Architectural Acoustics Session 2aAAb: New Materials for Architectural

More information

Acoustic performance of industrial mufflers with CAE modeling and simulation

Acoustic performance of industrial mufflers with CAE modeling and simulation csnak, 214 Int. J. Nav. Archit. Ocean Eng. (214) 6:935~946 http://dx.doi.org/1.2478/ijnaoe-213-223 pissn: 292-6782, eissn: 292-679 Acoustic performance of industrial mufflers with CAE modeling and simulation

More information

On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation

On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation Rostand Tayong, Thomas Dupont, and Philippe Leclaire Laboratoire de Recherche en

More information

Acoustic Characterisation of Perforates using Non-linear System Identification Techniques

Acoustic Characterisation of Perforates using Non-linear System Identification Techniques 3th AIAA/CEAS Aeroacoustics Conference (8th AIAA Aeroacoustics Conference) AIAA 7-353 Acoustic Characterisation of Perforates using Non-linear System Identification Techniques Hans Bodén MWL, Aeronautical

More information

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Gil F. Greco* 1, Bernardo H. Murta 1, Iam H. Souza 1, Tiago B. Romero 1, Paulo H. Mareze 1, Arcanjo Lenzi 2 and Júlio A.

More information

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption L. Nicolas CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon BP63-693 Ecully cedex

More information

Porous Materials for Sound Absorption and Transmission Control

Porous Materials for Sound Absorption and Transmission Control Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 8-2005 Porous Materials for Sound Absorption and Transmission Control J Stuart Bolton, bolton@purdue.edu Follow this and additional

More information

Formulas of Acoustics

Formulas of Acoustics F. P. Mechel (Ed.) Formulas of Acoustics With contributions by M. L. Munjal M. Vorländer P. Költzsch M. Ochmann A. Cummings W. Maysenhölder W. Arnold O. V. Rudenko With approximate 620 Figures and 70 Tables

More information

Sound Absorption Measurements for Micro-Perforated Plates: The Effect of Edge Profile

Sound Absorption Measurements for Micro-Perforated Plates: The Effect of Edge Profile Sound Absorption Measurements for Micro-Perforated Plates: The Effect of Edge Profile Muttalip Aşkın Temiz Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

More information

SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW

SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW NSA-15 Goa National Symposium on Acoustics Acoustics for Ocean Environment SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW Paresh Shravage Alfa Acoustics Pune, Maharashtra 1133, India e-mail:

More information

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2013 The Influence of Boundary Conditions and Constraints on the Performance of Noise

More information

ADVANCED STUDIES ON SERIES IMPEDANCE IN WAVEGUIDES WITH AN EMPHASIS ON SOURCE AND TRANSFER IMPEDANCE

ADVANCED STUDIES ON SERIES IMPEDANCE IN WAVEGUIDES WITH AN EMPHASIS ON SOURCE AND TRANSFER IMPEDANCE University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School ADVANCED STUDIES ON SERIES IMPEDANCE IN WAVEGUIDES WITH AN EMPHASIS ON SOURCE AND TRANSFER IMPEDANCE Jinghao

More information

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box New materials can be permanently entered into the materials.txt file. This is a simple ASCII text file. See the section New Materials for details of how to enter new materials. If desired you can send

More information

Design of ParaMPA: a micro-perforated absorber

Design of ParaMPA: a micro-perforated absorber Design of ParaMPA: a micro-perforated absorber Onursal Onen and Mehmet Caliskan Department of Mechanical Engineering Middle East Technical University 06531 Ankara, Turkey ABSTRACT Perforated absorbers

More information

MODal ENergy Analysis

MODal ENergy Analysis MODal ENergy Analysis Nicolas Totaro, Jean-Louis Guyader To cite this version: Nicolas Totaro, Jean-Louis Guyader. MODal ENergy Analysis. RASD, Jul 2013, Pise, Italy. 2013. HAL Id: hal-00841467

More information

Acoustics of parallel baffles muffler with Micro-perforated panels. Xiaowan Su

Acoustics of parallel baffles muffler with Micro-perforated panels. Xiaowan Su Acoustics of parallel baffles muffler with Micro-perforated panels B Xiaowan Su MSc thesis in Technical Acoustics Stocholm 11-1-6 KTH Report TRITA AVE 11:84 Abstract Micro-perforated panels (MPP) have

More information

NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE

NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE G. Pradeep, T. Thanigaivel Raja, D.Veerababu and B. Venkatesham Department of Mechanical and Aerospace Engineering, Indian Institute of Technology

More information

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc.

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc. ecanum We build silence Acoustic aterials: Characterization ecanum Inc. info@mecanum.com www.mecanum.com otivation Sound quality in vehicles starts at the design stage odels are used to simulate the acoustics

More information

Acoustic design of lightweight cabin walls for cruise ships

Acoustic design of lightweight cabin walls for cruise ships Acoustic design of lightweight cabin walls for cruise ships A. Treviso 1, M. G. Smith 1 1 ISVR Consulting, University of Southampton University Road, SO17 BJ1, Southampton, United Kingdom e-mail: mgs@isvr.soton.ac.uk

More information

INFLUENCE OF FILL EFFECT ON PAYLOAD IN A LARGE LAUNCH VEHICLE FAIRING

INFLUENCE OF FILL EFFECT ON PAYLOAD IN A LARGE LAUNCH VEHICLE FAIRING INFLUENCE OF FILL EFFECT ON PAYLOAD IN A LARGE LAUNCH VEHICLE FAIRING Zheng Ling State Key Laboratory of Mechanical Transmission, College of Automotive Engineering, Chongqing University, Chongqing email:

More information

Modeling of Membrane Sound Absorbers

Modeling of Membrane Sound Absorbers Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 8- Modeling of Membrane Sound Absorbers J Stuart Bolton, bolton@purdue.edu Jinho Song Follow this and additional works at: http://docs.lib.purdue.edu/herrick

More information

Preprint. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls.

Preprint. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls J. Tournadre, M. A. Temiz 2, P. Martínez-Lera 3, W. De Roeck, W. Desmet,4 KU Leuven,

More information

Effect of effective length of the tube on transmission loss of reactive muffler

Effect of effective length of the tube on transmission loss of reactive muffler Effect of effective length of the tube on transmission loss of reactive muffler Gabriela Cristina Cândido da SILVA 1 ; Maria Alzira de Araújo NUNES 1 1 University of Brasilia, Brazil ABSTRACT Reactive

More information

Computational Acoustics by Means of Finite and Boundary Elements for Woofers, Tweeters, Horns and Small Transducers

Computational Acoustics by Means of Finite and Boundary Elements for Woofers, Tweeters, Horns and Small Transducers Computational Acoustics by Means of Finite and Boundary Elements for Woofers, Tweeters, Horns and Small Transducers Alfred J. Svobodnik NAD - Numerical Analysis and Design GmbH & Co KG as@nadwork.at http://www.nadwork.at

More information

EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS

EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS M. H. Zainulabidin 1, L. M. Wan 1, A. E. Ismail 1, M. Z. Kasron 1 and A. S. M. Kassim 2 1 Faculty of Mechanical

More information

DETAILED MODELING OF MUFFLERS WITH PERFORATED TUBES USING SUBSTRUCTURE BOUNDARY ELEMENT METHOD

DETAILED MODELING OF MUFFLERS WITH PERFORATED TUBES USING SUBSTRUCTURE BOUNDARY ELEMENT METHOD University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2004 DETAILED MODELING OF MUFFLERS WITH PERFORATED TUBES USING SUBSTRUCTURE BOUNDARY ELEMENT METHOD Balasubramanian

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 213 http://acousticalsociety.org/ ICA 213 Montreal Montreal, Canada 2-7 June 213 Noise Session 4pNSb: Noise Control 4pNSb7. Nonlinear effects of Helmholtz

More information

Effect of Circumferential Edge Constraint on the Transmission Loss of Glass Fiber Materials

Effect of Circumferential Edge Constraint on the Transmission Loss of Glass Fiber Materials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 12-1999 Effect of Circumferential Edge Constraint on the ransmission Loss of Glass Fiber

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 27 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE PACS: 43.2.Ks Juliá Sanchis, Ernesto 1 ; Segura Alcaraz,

More information

Reflection and absorption coefficients for use in room acoustic simulations

Reflection and absorption coefficients for use in room acoustic simulations Downloaded from orbit.dtu.dk on: May 1, 018 Reflection and absorption coefficients for use in room acoustic simulations Jeong, Cheol-Ho Published in: Proceedings of Spring Meeting of the Acoustical Society

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER The study on sound-absorbing properties of oblique micro-perforated panel

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER The study on sound-absorbing properties of oblique micro-perforated panel 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 The study on sound-absorbing properties of oblique micro-perforated panel Rong-Ping Lai 1, Chung-Chiech Chiang, Kai-Hua Liu 3 1 Professor,Department

More information

Materials and Systems for Noise Control: Categorization and Challenges

Materials and Systems for Noise Control: Categorization and Challenges Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 5-13-2010 Materials and Systems for Noise Control: Categorization and Challenges J Stuart

More information

Nonlinear parabolic equation model for finite-amplitude sound propagation in an inhomogeneous medium over a non-flat, finite-impedance ground surface

Nonlinear parabolic equation model for finite-amplitude sound propagation in an inhomogeneous medium over a non-flat, finite-impedance ground surface Nonlinear parabolic equation model for finite-amplitude sound propagation in an inhomogeneous medium over a non-flat, finite-impedance ground surface T. Leissing a, P. A H Jean a, J. Defrance a and C.

More information

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING Zhengqing Liu, Mohammad Fard, Xiaojing Liu RMIT University, School of Engineering (SENG), Melbourne, VIC 3083, Australia email:

More information

Fundamentals of noise and Vibration analysis for engineers

Fundamentals of noise and Vibration analysis for engineers Fundamentals of noise and Vibration analysis for engineers M.P.NORTON Department of Mechanical Engineering, University of Western Australia CAMBRIDGE UNIVERSITY PRESS Preface xii Acknowledgements xv Introductory

More information

Side branch resonators modelling with Green s function methods

Side branch resonators modelling with Green s function methods Side branch resonators modelling with Green s function methods E. Perrey-Debain, R. Maréchal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe Acoustique, Université de Technologie de Compiègne, France

More information

A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube

A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 2009 A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves

More information

ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA)

ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA) ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA) Panos Economou, Panagiotis Charalampous P.E. Mediterranean Acoustics Research & Development Ltd, Cyprus email: panos@pemard.com Geometrical

More information

Finite Element Method (FEM)

Finite Element Method (FEM) Finite Element Method (FEM) The finite element method (FEM) is the oldest numerical technique applied to engineering problems. FEM itself is not rigorous, but when combined with integral equation techniques

More information

Acoustic Radiation Modes of a Tire on a Reflecting Surface

Acoustic Radiation Modes of a Tire on a Reflecting Surface Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 3-2005 Acoustic Radiation Modes of a Tire on a Reflecting Surface Kiho Yum Purdue University

More information

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT:

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT: Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method Yun Hang, Mhamed Souli, Rogelio Perez Livermore Software Technology Corporation USA & University of Lille Laboratoire

More information

FDTD analysis on the sound insulation performance of wall system with narrow gaps

FDTD analysis on the sound insulation performance of wall system with narrow gaps FDTD analysis on the sound insulation performance of wall system with narrow gaps Takumi Asakura a Shinichi Sakamoto b Institute of Industrial Science, The University of Tokyo. Komaba 4-6-, Meguro-ku,

More information

Aircraft Cabin Acoustic Modeling

Aircraft Cabin Acoustic Modeling Penn State 2012 Center for Acoustics and Vibration Workshop Aircraft Cabin Acoustic Modeling 2012 Penn State Center for Acoustics and Vibration Workshop Adam Weston Senior Structural-Acoustics Specialist

More information

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES PACS REFERENCE: 43.40-Rj RADIATION FROM VIBRATING STRUCTURES INTO FLUID MEDIA Names of the authors: Kohrs, Torsten; Petersson, Björn

More information

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method 10 th International LS-DYNA Users Conference Simulation Technolog (2) Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundar Element Method Yun Huang Livermore Software Technolog Corporation

More information

American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 38-3491, ISSN (Online): 38-358, ISSN (CD-ROM): 38-369

More information

Prediction of Light Rail Vehicle Noise in Running Condition using SEA

Prediction of Light Rail Vehicle Noise in Running Condition using SEA Prediction of Light Rail Vehicle Noise in Running Condition using SEA Sebastian PREIS ; Gérard BORELLO Siemens AG Austria Urban Transport, Austria InterAC, France ABSTRACT A complete Light Rail vehicle

More information

Guided convected acoustic wave coupled with a membrane wall used as noise reduction device

Guided convected acoustic wave coupled with a membrane wall used as noise reduction device Buenos Aires 5 to 9 September, 016 Acoustics for the 1 st Century PROCEEDINGS of the nd International Congress on Acoustics Structural Acoustics and Vibration (others): Paper ICA016-516 Guided convected

More information

The acoustic characterization of porous media and its standards

The acoustic characterization of porous media and its standards The acoustic characterization of porous media and its standards Luc JAOUEN 1, François-Xavier BECOT, Fabien CHEVILLOTTE Matelys, France ABSTRACT While there is a growing number of methods for the acoustic

More information

INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS

INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS Ricardo Patraquim Castelhano & Ferreira S.A., Av. Colégio Militar, nº 24A Benfica, Lisboa, Portugal.

More information

Transmission Loss Assessment for a Muffler by Boundary Element Method Approach

Transmission Loss Assessment for a Muffler by Boundary Element Method Approach ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVII, NR. 1, 010, ISSN 1453-7397 Ovidiu Vasile Transmission Loss Assessment for a Muffler by Boundary Element Method Approach This paper investigates the

More information

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response Proceedings of the Acoustics 22 Nantes Conference 23-27 April 22, Nantes, France Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response C. Maury a and T.

More information

Fan Noise Control by Enclosure Modification

Fan Noise Control by Enclosure Modification Fan Noise Control by Enclosure Modification Moohyung Lee a, J. Stuart Bolton b, Taewook Yoo c, Hiroto Ido d, Kenichi Seki e a,b,c Ray W. Herrick Laboratories, Purdue University 14 South Intramural Drive,

More information

Sound attenuation analysis of waterfilled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach

Sound attenuation analysis of waterfilled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach Research Article Sound attenuation analysis of waterfilled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach Advances in Mechanical Engineering 2016, Vol.

More information

Effect of Length and Porosity on the Acoustic Performance of Concentric Tube Resonators

Effect of Length and Porosity on the Acoustic Performance of Concentric Tube Resonators Effect of Length and Porosity on the Acoustic Performance of Concentric Tube Resonators David Neihguk *1, and Abhinav Prasad 1 1 Mahindra Research Valley, Mahindra & Mahindra Ltd. *Corresponding author:

More information