Rotation of Rigid Bodies

Size: px
Start display at page:

Download "Rotation of Rigid Bodies"

Transcription

1 Chapter 9 Rotation of Rigid Bodies PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson

2 Goals for Chapter 9 To describe rotation in terms of angular coordinate, angular velocity, and angular acceleration To analyze rotation with constant angular acceleration To relate rotation to the linear velocity and linear acceleration of a point on a body To understand moment of inertia and how it relates to rotational kinetic energy To calculate moment of inertia

3 Introduction A wind turbine, a CD, a ceiling fan, and a Ferris wheel all involve rotating rigid objects. Real-world rotations can be very complicated because of stretching and twisting of the rotating body. But for now we ll assume that the rotating body is perfectly rigid.

4 Angular coordinate A car s speedometer needle rotates about a fixed axis, as shown at the right. The angle that the needle makes with the +x-axis is a coordinate for rotation.

5 Units of angles An angle in radians is = s/r, as shown in the figure. One complete revolution is 360 = 2π radians.

6 Angular velocity The angular displacement of a body is = 2 1. The average angular velocity of a body is av-z = / t. The subscript z means that the rotation is about the z-axis. The instantaneous angular velocity is z = d /dt. A counterclockwise rotation is positive; a clockwise rotation is negative.

7 Calculating angular velocity We first investigate a flywheel. Follow Example 9.1.

8 Angular velocity is a vector Angular velocity is defined as a vector whose direction is given by the right-hand rule shown in Figure 9.5 below.

9 Angular acceleration The average angular acceleration is av-z = z / t. The instantaneous angular acceleration is z = d z /dt = d 2 /dt 2. Follow Example 9.2.

10 Angular acceleration as a vector For a fixed rotation axis, the angular acceleration and angular velocity vectors both lie along that axis.

11 Rotation with constant angular acceleration The rotational formulas have the same form as the straight-line formulas, as shown in Table 9.1 below.

12 Rotation of a Blu-ray disc A Blu-ray disc is coming to rest after being played. Follow Example 9.3 using Figure 9.8 as shown at the right.

13 Relating linear and angular kinematics For a point a distance r from the axis of rotation: its linear speed is v = r its tangential acceleration is a tan = r its centripetal (radial) acceleration is a rad = v 2 /r = r

14 An athlete throwing a discus Follow Example 9.4 and Figure 9.12.

15 Designing a propeller Follow Example 9.5 and Figure 9.13.

16 Rotational kinetic energy The moment of inertia of a set of particles is I = m 1 r m 2 r = m i r i 2 The rotational kinetic energy of a rigid body having a moment of inertia I is K = 1/2 I 2. Follow Example 9.6 using Figure 9.15 below.

17 Moments of inertia of some common bodies Table 9.2 gives the moments of inertia of various bodies.

18 An unwinding cable Follow Problem-Solving Strategy 9.1. Follow Example 9.7.

19 More on an unwinding cable Follow Example 9.8 using Figure 9.17 below.

20 Gravitational potential energy of an extended body The gravitational potential energy of an extended body is the same as if all the mass were concentrated at its center of mass: U grav = Mgy cm.

21 The parallel-axis theorem The parallel-axis theorem is: I P = I cm + Md 2. Follow Example 9.9 using Figure 9.20 below.

22 Moment of inertia of a hollow or solid cylinder Follow Example 9.10 using Figure 9.22.

23 Moment of inertia of a uniform solid sphere Follow Example 9.11 using Figure 9.23.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

Midterm 3 Review (Ch 9-14)

Midterm 3 Review (Ch 9-14) Midterm 3 Review (Ch 9-14) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing as Pearson

More information

PHY 001 (Physics I) Lecture 7

PHY 001 (Physics I) Lecture 7 PHY 001 (Physics I) Instructor: Dr. Mohamed Fouad Salem mohamed.salem@gmail.com Textbook University Physics, 12 th edition, Young and Freedman Course Material Website http://meryesk.wordpress.com/phy001/

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

PHYS 111 HOMEWORK #11

PHYS 111 HOMEWORK #11 PHYS 111 HOMEWORK #11 Due date: You have a choice here. You can submit this assignment on Tuesday, December and receive a 0 % bonus, or you can submit this for normal credit on Thursday, 4 December. If

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Rotation. EMU Physics Department. Ali ÖVGÜN.

Rotation. EMU Physics Department. Ali ÖVGÜN. Rotation Ali ÖVGÜN EMU Physics Department www.aovgun.com Rotational Motion Angular Position and Radians Angular Velocity Angular Acceleration Rigid Object under Constant Angular Acceleration Angular and

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Copyright 2012 Pearson Education Inc. To use

More information

Chapter 10.A. Rotation of Rigid Bodies

Chapter 10.A. Rotation of Rigid Bodies Chapter 10.A Rotation of Rigid Bodies P. Lam 7_23_2018 Learning Goals for Chapter 10.1 Understand the equations govern rotational kinematics, and know how to apply them. Understand the physical meanings

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket.

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket. Recap Classical rocket propulsion works because of momentum conservation. Exhaust gas ejected from a rocket pushes the rocket forwards, i.e. accelerates it. The bigger the exhaust speed, ve, the higher

More information

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable Rigid Object Chapter 10 Rotation of a Rigid Object about a Fixed Axis A rigid object is one that is nondeformable The relative locations of all particles making up the object remain constant All real objects

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Chapter 9 Rotation of Rigid Bodies

Chapter 9 Rotation of Rigid Bodies Chapter 9 Rotation of Rigid Bodies 1 Angular Velocity and Acceleration θ = s r (angular displacement) The natural units of θ is radians. Angular Velocity 1 rad = 360o 2π = 57.3o Usually we pick the z-axis

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 9: ROTATION OF RIGID BODIES Section 9.1: Angular velocity and acceleration Section

More information

Chapter 8. Rotational Kinematics

Chapter 8. Rotational Kinematics Chapter 8 Rotational Kinematics 8.1 Rotational Motion and Angular Displacement In the simplest kind of rotation, points on a rigid object move on circular paths around an axis of rotation. 8.1 Rotational

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Rotational Motion and Angular Displacement

Rotational Motion and Angular Displacement Physics 20 AP - Assignment #5 Angular Velocity and Acceleration There are many examples of rotational motion in everyday life (i.e. spinning propeller blades, CD players, tires on a moving car ). In this

More information

Work and Kinetic Energy

Work and Kinetic Energy Chapter 6 Work and Kinetic Energy PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 6 To understand and calculate

More information

Q9.1. A. t = 1 s B. t = 2 s C. t = 3 s D. t = 4 s E. t = 5 s Pearson Education, Inc.

Q9.1. A. t = 1 s B. t = 2 s C. t = 3 s D. t = 4 s E. t = 5 s Pearson Education, Inc. Q9.1 The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate? A. t = 1 s B. t = 2

More information

Physics 1A. Lecture 10B

Physics 1A. Lecture 10B Physics 1A Lecture 10B Review of Last Lecture Rotational motion is independent of translational motion A free object rotates around its center of mass Objects can rotate around different axes Natural unit

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

10 FIXED-AXIS ROTATION

10 FIXED-AXIS ROTATION Chapter 10 Fixed-Axis Rotation 483 10 FIXED-AXIS ROTATION Figure 10.1 Brazos wind farm in west Texas. As of 2012, wind farms in the US had a power output of 60 gigawatts, enough capacity to power 15 million

More information

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics Lecture 17 Chapter 10 Physics I 11.13.2013 otational Motion Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Rotation Basics. I. Angular Position A. Background

Rotation Basics. I. Angular Position A. Background Rotation Basics I. Angular Position A. Background Consider a student who is riding on a merry-go-round. We can represent the student s location by using either Cartesian coordinates or by using cylindrical

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Torque Rotational Dynamics Current assignments Prelecture Thursday, Nov 20th at 10:30am HW#13 due this Friday at 5 pm. Clicker.1 What is the center of mass of

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration: Recap I Angular position: Angular displacement: s Angular velocity: Angular Acceleration: Every point on a rotating rigid object has the same angular, but not the same linear motion! Recap II Circular

More information

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Study Questions/Problems Week 7

Study Questions/Problems Week 7 Study Questions/Problems Week 7 Chapters 10 introduces the motion of extended bodies, necessitating a description of rotation---something a point mass can t do. This chapter covers many aspects of rotation;

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning? 1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 10 Looking forward

More information

PHYS-2010: General Physics I Course Lecture Notes Section VIII

PHYS-2010: General Physics I Course Lecture Notes Section VIII PHYS-2010: General Physics I Course Lecture Notes Section VIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.4 Abstract These class notes are designed for use of the instructor and

More information

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION Chapter 4 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight CHAPTER4_LECTURE4_2 1 QUICK REVIEW What we ve done so far A quick review: So far, we ve looked

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today:

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today: Physics 121. March 18, 2008. Physics 121. March 18, 2008. Course Information Topics to be discussed today: Variables used to describe rotational motion The equations of motion for rotational motion Course

More information

8 Rotational motion of solid objects

8 Rotational motion of solid objects 8 Rotational motion of solid objects Kinematics of rotations PHY166 Fall 005 In this Lecture we call solid objects such extended objects that are rigid (nondeformable) and thus retain their shape. In contrast

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A. Chapter 9 [ Edit ] Chapter 9 Overview Summary View Diagnostics View Print View with Answers Due: 11:59pm on Sunday, October 30, 2016 To understand how points are awarded, read the Grading Policy for this

More information

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM.

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM. !! www.clutchprep.com EXAMPLE: HOLDING WEIGHTS ON A SPINNING STOOL EXAMPLE: You stand on a stool that is free to rotate about an axis perpendicular to itself and through its center. Suppose that your combined

More information

Fundamentals Physics. Chapter 10 Rotation

Fundamentals Physics. Chapter 10 Rotation Fundamentals Physics Tenth Edition Halliday Chapter 10 Rotation 10-1 Rotational Variables (1 of 15) Learning Objectives 10.01 Identify that if all parts of a body rotate around a fixed axis locked together,

More information

PHYSICS I RESOURCE SHEET

PHYSICS I RESOURCE SHEET PHYSICS I RESOURCE SHEET Cautions and Notes Kinematic Equations These are to be used in regions with constant acceleration only You must keep regions with different accelerations separate (for example,

More information

Dynamics: Forces. Lecture 7. Chapter 5. Course website:

Dynamics: Forces. Lecture 7. Chapter 5. Course website: Lecture 7 Chapter 5 Dynamics: Forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Some leftovers from rotational motion Ch.4 Force,

More information

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Lecture 5 Review. 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation.

Lecture 5 Review. 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation. PHYSICAL SCIENCES 1 Concepts Lecture 5 Review Fall 017 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation.. Angle θ: The angle at which the rigid body

More information

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics Lecture 17 Chapter 10 Physics I 04.0.014 otational Motion Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

APC PHYSICS CHAPTER 11 Mr. Holl Rotation

APC PHYSICS CHAPTER 11 Mr. Holl Rotation APC PHYSICS CHAPTER 11 Mr. Holl Rotation Student Notes 11-1 Translation and Rotation All of the motion we have studied to this point was linear or translational. Rotational motion is the study of spinning

More information

Angular Motion, General Notes

Angular Motion, General Notes Angular Motion, General Notes! When a rigid object rotates about a fixed axis in a given time interval, every portion on the object rotates through the same angle in a given time interval and has the same

More information

DYNAMICS OF RIGID BODIES

DYNAMICS OF RIGID BODIES DYNAMICS OF RIGID BODIES Measuring angles in radian Define the value of an angle θ in radian as θ = s r, or arc length s = rθ a pure number, without dimension independent of radius r of the circle one

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

SECTION A. 8 kn/m. C 3 m 3m

SECTION A. 8 kn/m. C 3 m 3m SECTION Question 1 150 m 40 kn 5 kn 8 kn/m C 3 m 3m D 50 ll dimensions in mm 15 15 Figure Q1(a) Figure Q1(b) The horizontal beam CD shown in Figure Q1(a) has a uniform cross-section as shown in Figure

More information

Rotation of Rigid Objects

Rotation of Rigid Objects Notes 12 Rotation and Extended Objects Page 1 Rotation of Rigid Objects Real objects have "extent". The mass is spread out over discrete or continuous positions. THERE IS A DISTRIBUTION OF MASS TO "AN

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Rotational Kinematics Notes 3rd.notebook. March 20, 2017

Rotational Kinematics Notes 3rd.notebook. March 20, 2017 1 2 3 4 Rotational Kinematics Objectives: Students will understand how the Big 4 apply to rotational motion Students will know the variables used to describe rotational motion Students will be able to

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

Holt Physics Chapter 7. Rotational Motion

Holt Physics Chapter 7. Rotational Motion Holt Physics Chapter 7 Rotational Motion Measuring Rotational Motion Spinning objects have rotational motion Axis of rotation is the line about which rotation occurs A point that moves around an axis undergoes

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

University Physics 226N/231N Old Dominion University Rotational Motion rolling

University Physics 226N/231N Old Dominion University Rotational Motion rolling University Physics 226N/231N Old Dominion University Rotational Motion rolling Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Monday October 22, 2012 Happy

More information

Chapter 9 Uniform Circular Motion

Chapter 9 Uniform Circular Motion 9.1 Introduction Chapter 9 Uniform Circular Motion Special cases often dominate our study of physics, and circular motion is certainly no exception. We see circular motion in many instances in the world;

More information

Unit 9 Rotational Motion & Torque

Unit 9 Rotational Motion & Torque Unit 9 Rotational Motion & Torque Essential Fundamentals of Rotational Motion & Torque 1. Torque is a twisting force that produces angular motion. Early E. C.: / 1 Total HW Points Unit 9: / 30 Total Lab

More information

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

Description: Using conservation of energy, find the final velocity of a yo yo as it unwinds under the influence of gravity. Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

Advanced Higher Physics. Rotational Motion

Advanced Higher Physics. Rotational Motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational Motion Solutions AH Physics: Rotational Motion Problems Solutions Page 1 013 TUTORIAL 1.0 Equations of motion 1. (a) v = ds, ds

More information

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Mechanics Topic D (Rotation) - 1 David Apsley

Mechanics Topic D (Rotation) - 1 David Apsley TOPIC D: ROTATION SPRING 2019 1. Angular kinematics 1.1 Angular velocity and angular acceleration 1.2 Constant-angular-acceleration formulae 1.3 Displacement, velocity and acceleration in circular motion

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angular Momentum Rotational Motion Every quantity that we have studied with translational motion has a rotational counterpart TRANSLATIONAL ROTATIONAL Displacement x Angular Displacement

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively A couple of house rules Be on time Switch off mobile phones Put away laptops Being present = Participating actively Het basisvak Toegepaste Natuurwetenschappen http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html

More information

2/27/2018. Relative Motion. Reference Frames. Reference Frames

2/27/2018. Relative Motion. Reference Frames. Reference Frames Relative Motion The figure below shows Amy and Bill watching Carlos on his bicycle. According to Amy, Carlos s velocity is (v x ) CA 5 m/s. The CA subscript means C relative to A. According to Bill, Carlos

More information