Experiment 10. Zeeman Effect. Introduction. Zeeman Effect Physics 244

Size: px
Start display at page:

Download "Experiment 10. Zeeman Effect. Introduction. Zeeman Effect Physics 244"

Transcription

1 Experiment 10 Zeeman Effect Introduction You are familiar with Atomic Spectra, especially the H-atom energy spectrum. Atoms emit or absorb energies in packets, or quanta which are photons. The orbital motion of electrons in an atom, gives rise to tiny magnetic dipoles, each having a magnetic moment, μ = (e/2m) L, Where, e and m are charge and rest mass of an electron and L is its orbital angular momentum. Since the charge on an electron is negative, μ and L are anti-parallel. You know that L has (2l+1) Page 10-1

2 orientations in space. Thus μ too has (2l+1) orientations in space. This is shown in the diagram below: Fig. shows the allowed values of L z, for l = 1,2 and 10. The numbers on the z-axis are the values of the magnetic quantum number m l. The figures are drawn to different scales. In the absence of an external magnetic field, there is spherical symmetry to the electron distributions (circular orbits of electrons revolving round the nucleus). If we apply an external magnetic field, however, this spherical symmetry gets broken because the magnetic field gives a unique direction, say, along the z-axis, which gives rise to the Zeeman Effect. The figure below shows the Zeeman Effect. In the absence of field B, an atomic level with l = 2 (and no spin moment) becomes 5-fold degenerate with energy E 0. When B is switched on the level splits in a multiplet of 5 equally spaced levels. Page 10-2

3 In the picture below, a transition between an excited state of Helium (l = 1) and the ground state (l = 0) is depicted with field off and on. With B on, there are 3 distinct transitions possible due to the Zeeman splitting and hence 3 distinct spectral lines (triplet) as shown, with different frequencies. Page 10-3

4 An Additional Complication: The Lande g Factor Again, as an atomic electron orbits around the nucleus, it produces a magnetic moment: μ l = -(e/2m) L An atomic electron also has a spin angular momentum S, and so we would expect it to also have a spin magnetic moment, μ s. This magnetic moment due to the spin motion is proportional to S, or, μ s = - g S, g is a constant called the spin gyromagnetic ratio, or the Lande g-factor. In the case of orbital motion, the gyromagnetic ratio is seen to be e/2m. The spin g-factor will not have necessarily this same value, since it would depend upon the distribution of charge and mass within the electron. Experiment shows that the spin gyromagnetic ratio is e/m, or just twice the value of the orbital ratio (orbital g-factor), e/2m. That is: μ s = -( e/m) S The total magnetic moment of any electron is just the sum of its orbital and spin magnetic moments: μ total = μ l + μ s = -e/2m { L + 2S } Page 10-4

5 For historical reasons, the splitting of levels and spectral lines due to the various orbital m values (ignoring the effect of spin) is called the normal Zeeman effect. In cases where spin does contribute, we have the anomalous Zeeman effect. For example, the splitting of the He line (transition from l=1 to l=0 level shown in the bottom figure on the previous page) of energy 21.0 ev in to a triplet is an example of normal Zeeman effect, since spin plays no part in it. On the other hand the Zeeman pattern that you are studying for the 546 nm transition in mercury is an example of the anomalous Zeeman effect, where spin does play an important role. Consequently, we do need to take into account the g-factors for the two levels involved in the transition. The anomalous Zeeman effect in a mercury atom By applying an external magnetic field B, one can change an atom s energy level by an amount equal to the work done by the field B in rotating these tiny magnetic dipoles until they become parallel to the field B. The work done is W= - μ.b This implies that the energies of the photons emitted or absorbed by the atom will change by putting an atom in a magnetic field; we change its energy spectrum! This effect was first observed by the Netherlands physicist Pieter Zeeman, who received the 1902 Nobel Prize in Physics. Zeeman s is one of the landmark experiments in Modern Physics and it brings in to focus quantum nature of atomic and subatomic world. Not only is the energy of such bound systems quantized (shows spectrum ), but the angular momentum has a set of possible orientations in space the space is also quantized. Keeping things simple for the moment, in order to appreciate this very important and somewhat abstract concept of space quantization, let us consider He-atom: there are 2 electrons and the spins cancel out. These are known as singlet states. For He, one of the electrons has zero orbital angular momentum and so the magnetic moment μ= - (e/2m)l is due Page 10-5

6 to the orbital motion of the second electron alone. For this second electron, the angular momentum quantum number, l, can take the values, l = 0, 1, 2, 3, L has (2l+1) possible different orientations, corresponding to (2l+1)-values of L z = z-component of L = m l ħ, with m l = l, l-1, -l. In the absence of the magnetic field B, the energy is same for all these states with different m-values. The energy level, say, E 0 is (2l+1)-fold degenerate. When the field is switched on, the degeneracy is lifted and the energy E 0 now becomes, E = E 0 + Δ E Where, ΔE = - μ.b = (e/2m)l.b = (e/2m) L z B = (eħ/2m) m l B The Green line transition of mercury at nm splits in to nine transitions (see figures below) when the field is turned on. The experiment is performed with the magnetic field normal to the direction of propagation of light (Transverse position), as shown in the diagram at the beginning. In particular the pi-component Zeeman splitting will be studied it is the most intense pattern of lines in the Zeeman spectrum. Page 10-6

7 The figures below show the appearance of the patterns observed on the monitor for viewing transverse to the magnetic field in various states. Fig a: The first figure shows the initial appearance of pattern with no imposed magnetic field. Fig b: The magnet power supply is now turned on, starting with lowest field. The polarizer mounted behind the lens is now rotated until a pattern shown in Fig. (b) is observed. This shows the full range of Zeeman split lines emitted in the transverse direction. Page 10-7

8 Fig c: Rotation of the polarizer is continued until the triple fringes shown in Fig (c) are seen. These are the strong π-polarized components that are used for measurements. Fig d: Rotating polarizer further by 90 degrees yields the pattern shown in Fig (d). These fringes arise from the σ-polarized components and are noticeably less intense. Page 10-8

9 Experimental and Theoretical Formula Derivations The figure below shows a schematic of the ray paths in the Fabry-Perot etalon and the focused image at the camera. If the separation of the mirrors in d, the optical path difference between 2 adjacent light rays at an angle θ is, Δ = 2d cos θ For constructive interference with light of wavelength λ, Δ = kλ, and so Page 10-9

10 Δ = 2d cos θ = kλ Near the center of the pattern, cos θ ~ 1. The order of the interference k is highest at the center of the pattern, and subsequent rings going outward are k-1, k-2, and so on. From the figure, clearly, the diameter of an interference ring for small value of θ at the center of the pattern is, D = 2fθ So for the kth order ring, we get, 2d ( 1 D k 2 /8f 2 ) = kλ If the spectral line under study at frequency ν is produced by an electron transition between two energy levels E 1 and E 2, we have, hν = E 2 E 1 Page 10-10

11 Theoretically, when the magnetic field B is applied, the additional energy ΔE shifts the energy levels E 1 and E 2 to E 1 +ΔE 1 and E 2 +ΔE 2. The new frequency ν is : hν = (E 2 +ΔE 2 ) (E 1 +ΔE 1 ) The frequency shift Δν of the line is: Δν = ν-ν = (1/h) (ΔE 1 ΔE 2 ) Since λ = c/ν, Δν = - (c/λ 2 )Δλ, and ΔE = (eħ/2m) MgB, where M is the magnetic quantum number and g is the Lande factor, we can now write, Δλ = (-λ 2 /c) Δν = (M 2 g 2 -M 1 g 1 ).(λ 2 /4πc).(e/m).B Page 10-11

12 Here M 1,M 2 & g 1, g 2 are the magnetic quantum numbers & g-factors of the upper (3S1) and lower (5P2) states, between which the transition leading to the green line (546.1nm) takes place (see fig depicting relevant transition in mercury). Table above gives the Lande g-factors for π-polarized ΔM = 0 transitions which lead to the observed triplet fringe set. Lande g-factor for upper state (n=7, j=1) = 2 and lower state (n=6, j=2) = 3/2. M values (π-component) for the two states are 1,0,-1. Using these values g and M, we can now write the expression for the theoretical change in wavelength: 2 Δλ = (½).(λ 2 /4πc).(e/m)B *theoretical expression Experimentally, it can be shown that, 2 2 Δλ = ( λ 2 /2d ). (D k 2 -D 2 k /Dk-1 2 D 2 k ) *experimental expression where d = separation of Fabry-Perot mirrors, D k = Diameter of the kth ring, D k = diameter of k th ring, D k-1 = diameter of (k-1)th ring of the interference pattern. Page 10-12

13 Procedure Recall that e = x C and m e = 9.11 x kg. The wavelength of the mercury line we will be studying is nm (green light). 1. Your TA will use a Hall probe to measure the applied field magnitude, B. 2. Calculate the expected (theoretical) value of Δλ, the wavelength shift. Show your work: Page 10-13

14 3. Convert this expected value of Δλ in to Zeeman energy shift in electron volts. Careful: ΔE hc/δλ! Show your work: 4. You will be using software to analyze the images collected by your TA using the experimental apparatus. For the most part, this software should be fairly intuitive. However, you may need help at some point, so please refer to this lab s appendix for details on how to use the software. Use the Zeeman Effect software on the computer to measure the diameters of the appropriate rings (7 total see the analysis tab in the software for the labeling conventions for the relevant rings), and place these diameter values (measure in # of pixels) in the appropriate boxes on the analysis tab. 5. Once you have filled in the boxes, the software will automatically calculate the experimental value of Δλ for you, as given by the experimental expression on the previous page. You may have noticed that the expression only involves 3 values D k, D k, and D k-1, even though you just measured 7 diameters. The 7 values are all used to acquire more experimentally precise values of these 3 diameters. This is done behindthe-scenes by the software, according to the formulas on the analysis tab. 6. Compare the values of Δλ here: Δλ experimental = Δλ theoretical = Percent Difference = Page 10-14

15 Question 1 The SI units of magnetic moment are ampere.meter 2. Verify that μ = -(e/2m) L has the correct units. Question 2 Explain: The application of the magnetic field in the z-direction destroys the spherical symmetry in atoms and lifts the degeneracy of an atomic energy level. Question 3 How does the Zeeman effect study bring out the rather abstract concept of space quantization? Explain by a suitable diagram showing the orientation of the angular momentum vector in space in a magnetic field. Page 10-15

16 Question 4 As you go away from the center of the Zeeman pattern, the order of the circular fringes (the k-value) decreases explain briefly. Question 5 Write about 10 lines explaining the features of the software developed for you to analyze the data. Page 10-16

17 Appendix 1: Using the Zeeman Effect Software Introduction The program we will be using to analyze the data from the Zeeman Effect apparatus is currently in beta. The program consists of three separate pages, or tabs. The three pages can be accessed by clicking on the name of the page along to top edge of the program interface. They are listed as Fit Data, Analysis, and Data. The first page will be where you do the bulk of your work. It is here that you will load a JPG image of the rings and determine the diameters of the rings in arbitrary units (in this case, number of pixels). The second page will assist you with determining the change in wavelength using the data you determined on the first page. The third and final page is simply a list of the raw data you have collected, and can be ignored. As the program is still in its beta, be sure to follow these operating instructions closely. Should something go wrong, know that you cannot in any way hurt the program itself, and simply closing and reopening the program will return you to the initial state. Opening the Image With the program open, first select the JPG you wish to analyze by clicking on the folder icon to the right of the text box on the Fit Data page. This will open the browser, where you can locate and select the image. With the image path loaded into the File Path text box, you can run the program. To run the program, click the right arrow located on the top of the program window just below the menu selection items. This will be the left most button just below 'Edit'. With the program running, you should see an image appear in the center of the program. If it does not, stop the program (by clicking the stop button on that same row as the run button), reset the file path, and try again. Image Adjustments On the far left side of the image screen there are four buttons. These are the magnify, select, pan, and cursor buttons. With the magnify button selected, you can click anywhere on the image and the image will center and magnify about that point. The select button will allow you to select different circles you have drawn, and will be used later. The pan button allows you to grab and drag the image. Finally the cursor button will allow you to place markers on the image. The markers you place will define the points that the program will fit a circle to, which is how the graph will be analyzed. Page 10-17

18 Before we start drawing circles, we should discuss the buttons on the right side of the Fit Data page. Starting from the bottom and working our way up, we see a filter selection box with the colors Red, Green, and Blue. The wavelength of the emission for this particular transition lies in the green, so we will want to filter out the red and blue. Do this by clicking on the appropriate buttons. Notice that if you filter all three you see nothing, and if you only let red or blue pass through you see only noise. Above the filter selection box is the maximize contrast button, along with the max brightness. Turning this on may help to make the darks darker and the brights brighter. The Zoom to Fit button will resize the image so that you can see it in its entirety. Above this button is the readout for the Diameter of the circle selected in pixels. (We are only concerned with the relative diameters between rings, so the units of the diameter are not important, as long as they are always the same). Next up is the button to remove this circle, which will remove the selected circle from the list. Remove last point is useful if you place a point and then realize that the point is not where you want it to be. Continuing upward we have the Show/Hide Selected Circle button, which may be useful in determining the quality of the circle fit. The drop down list labeled Circle will list the circles you are working with. When you begin there will be only one circle. When you have defined this circle pressing the button to the right labeled Next Circle will allow you to set the current circle and begin defining the next. At the very top are two color selection boxes, which, if you like, will let you to define the colors for circles you have placed and/or the one you are currently creating. Fitting the Circular Data Click on the analysis tab; on this page you ll see an image of the ring structure along with a number of data entry boxes. Take note of the rings of interest. Back on the Fit Data tab, you should have already set the filters and contrast to a convenient setting. Magnify and pan your image so that you can see the first set important rings clearly. Now select the cursor tool (the bottom one which looks like crosshairs). With this tool selected, begin clicking on the image where you can best see one of the rings clearly. Every click you make will leave a dot on the image with the color you have defined for the selected circle. Once you have four dots placed, a circle will appear. Be sure that this circle best represents the ring by adding dots around the ring. Try to keep your dots evenly spaced. With practice, it will likely Page 10-18

19 take no more than 4 to 6 dots to define the circle properly. If you place a bad dot, click the Remove Last Point button. Once your first ring is fitted, press the next circle button. You should see the previous circle change color. Now you can start placing points on the second ring, just as you had the first. Continue this process until you have fit all of the rings of interest (7 total). The Analysis Tab Now that you ve done all the fitting, you can change to your select tool and select individual rings; the diameter will appear in the box to the right. You will use these values on the analysis page. When you insert numbers into the appropriate data entry boxes, you will see the value for Δλ update. Once you are certain that you have the correct diameters from your analysis on the first page entered here, and that the constants are correct, you can take your resulting value for the change in wavelength and finish the calculations on your own. The mathematical formula used in the derivation of the change in wavelength is listed, as well as the derivation of the formula. Page 10-19

Zeeman Effect Physics 481

Zeeman Effect Physics 481 Zeeman Effect Introduction You are familiar with Atomic Spectra, especially the H- atom energy spectrum. Atoms emit or absorb energies in packets, or quanta which are photons. The orbital motion of electrons

More information

UNITED SCIENTIFIC SUPPLIES, INC. OPERATION AND EXPERIMENT GUIDE

UNITED SCIENTIFIC SUPPLIES, INC. OPERATION AND EXPERIMENT GUIDE UNITED SCIENTIFIC SUPPLIES, INC. OPERATION AND EXPERIMENT GUIDE ZEEMAN EFFECT APPARATUS 1. Introduction This apparatus was designed for modern physics labs at universities and colleges. It demonstrates

More information

THE ZEEMAN EFFECT v3 R. A. Schumacher, May 2017 B. B. Luokkala, January 2001

THE ZEEMAN EFFECT v3 R. A. Schumacher, May 2017 B. B. Luokkala, January 2001 THE ZEEMAN EFFECT v3 R. A. Schumacher, May 2017 B. B. Luokkala, January 2001 I. INTRODUCTION The goal of this experiment is to measure the Bohr magneton using the normal Zeeman effect of the 643.8 nm (red)

More information

Zeeman Effect. Alex Povilus Physics 441- Fall 2003 December 20, 2003

Zeeman Effect. Alex Povilus Physics 441- Fall 2003 December 20, 2003 Zeeman Effect Alex Povilus Physics 441- Fall 2003 December 20, 2003 Abstract The Zeeman Effect is observed by application of a strong magnetic field to a mercury vapor cell and exciting transitions by

More information

Department of Physics, Colorado State University PH 425 Advanced Physics Laboratory The Zeeman Effect. 1 Introduction. 2 Origin of the Zeeman Effect

Department of Physics, Colorado State University PH 425 Advanced Physics Laboratory The Zeeman Effect. 1 Introduction. 2 Origin of the Zeeman Effect Department of Physics, Colorado State University PH 425 Advanced Physics Laboratory The Zeeman Effect (a) CAUTION: Do not look directly at the mercury light source. It is contained in a quartz tube. The

More information

THE ZEEMAN EFFECT PHYSICS 359E

THE ZEEMAN EFFECT PHYSICS 359E THE ZEEMAN EFFECT PHYSICS 359E INTRODUCTION The Zeeman effect is a demonstration of spatial quantization of angular momentum in atomic physics. Since an electron circling a nucleus is analogous to a current

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Atomic Spectra HISTORY AND THEORY

Atomic Spectra HISTORY AND THEORY Atomic Spectra HISTORY AND THEORY When atoms of a gas are excited (by high voltage, for instance) they will give off light. Each element (in fact, each isotope) gives off a characteristic atomic spectrum,

More information

Zeeman Effect. Rabia Aslam Chaudary Roll no: LUMS School of Science and Engineering. Friday May 20, 2011

Zeeman Effect. Rabia Aslam Chaudary Roll no: LUMS School of Science and Engineering. Friday May 20, 2011 Zeeman Effect Rabia Aslam Chaudary Roll no: 2012-10-0011 LUMS School of Science and Engineering Friday May 20, 2011 1 Abstract In this experiment, we will observe the Zeeman effect which is defined as

More information

The Zeeman Effect refers to the splitting of spectral

The Zeeman Effect refers to the splitting of spectral Calculation of the Bohr Magneton Using the Zeeman Effect Robert Welch Abstract The Zeeman Effect was predicted by Hendrik Lorentz and first observed by Pieter Zeeman in 1896. It refers to the splitting

More information

The Bohr Atom. PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98. Introduction

The Bohr Atom. PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98. Introduction 1 The Bohr Atom PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98 Introduction In this week's computer simulation, we will examine the behavior of a simplified model of the hydrogen atom. This model, the

More information

Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone

Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone Energy (ev) Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone Eugene T. Smith, PhD Goals: 1. Calibrate spectroscope using mercury emission source or fluorescent bulb. 2.

More information

The Zeeman Effect in Atomic Mercury (Taryl Kirk )

The Zeeman Effect in Atomic Mercury (Taryl Kirk ) The Zeeman Effect in Atomic Mercury (Taryl Kirk - 2001) Introduction A state with a well defined quantum number breaks up into several sub-states when the atom is in a magnetic field. The final energies

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics Atomic shell Normal Zeeman effect LEYBOLD Physics Leaflets Observing the normal Zeeman effect in transverse and longitudinal configuration Spectroscopy with a Fabry-Perot etalon

More information

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8 CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates 8.2 Schrödinger's Equation in Spherical Coordinate 8.3 Separation of Variables 8.4 Three Quantum Numbers 8.5 Hydrogen Atom Wave Function 8.6 Electron Spin

More information

Measuring Planck s Constant By Martin Hackworth

Measuring Planck s Constant By Martin Hackworth Measuring Planck s Constant By Martin Hackworth Historical Perspective and Physics Theory Max Planck (1858-1947) was born in Kiel Germany and attended schools in Munich and Berlin. Planck was an early

More information

Zeeman Effect - Lab exercises 24

Zeeman Effect - Lab exercises 24 Zeeman Effect - Lab exercises 24 Pieter Zeeman Franziska Beyer August 2010 1 Overview and Introduction The Zeeman effect consists of the splitting of energy levels of atoms if they are situated in a magnetic

More information

The Zeeman Effect. Oisin De Conduin /2/2011

The Zeeman Effect. Oisin De Conduin /2/2011 The Zeeman Effect Oisin De Conduin 07379510 2/2/2011 Abstract The purpose of this experiment was to study the splitting of a spectral line due to a magnetic field, known as the Zeeman effect. Specifically

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

The Anomalous Zeeman Splitting of the Sodium 3P States

The Anomalous Zeeman Splitting of the Sodium 3P States Advanced Optics Laboratory The Anomalous Zeeman Splitting of the Sodium 3P States David Galey Lindsay Stanceu Prasenjit Bose April 5, 010 Objectives Calibrate Fabry-Perot interferometer Determine the Zeeman

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Physics 476LW Advanced Physics Laboratory Atomic Spectroscopy

Physics 476LW Advanced Physics Laboratory Atomic Spectroscopy Physics 476LW Atomic Spectroscopy 1 Introduction The description of atomic spectra and the Rutherford-Geiger-Marsden experiment were the most significant precursors of the so-called Bohr planetary model

More information

CHEMISTRY SEMESTER ONE

CHEMISTRY SEMESTER ONE EMISSION SPECTROSCOPY Lab format: this lab is a remote lab activity Relationship to theory: This activity covers the relationship between colors and absorbed/emitted light, as well as the relationship

More information

Student Exploration: Bohr Model: Introduction

Student Exploration: Bohr Model: Introduction Name: Date: Student Exploration: Bohr Model: Introduction Vocabulary: absorption spectrum, Bohr model, electron volt, energy level, laser, orbital, photon Prior Knowledge Questions (Do these BEFORE using

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

CHEMISTRY SEMESTER ONE

CHEMISTRY SEMESTER ONE BEER-LAMBERT LAW Lab format: this lab is a remote lab activity Relationship to theory: This activity quantitatively relates the concentration of a lightabsorbing substance to the absorbance of light. LEARNING

More information

ATOMIC SPECTRA. Objective:

ATOMIC SPECTRA. Objective: 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Normal and anomalous Zeeman effect

Normal and anomalous Zeeman effect Normal and anomalous Zeeman effect LEP Related topics Quantization of energy levels, Bohr s atomic model, vector model of atomic states, orbital angular moment, electron spin, Bohr s magneton, interference

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Phys316 Exploration 2: Verifying Stefan-Boltzmann Relationship Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Where A is the effective radiating area,

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics Atomic shell Normal Zeeman effect LEYBOLD Physics Leaflets Observing the normal Zeeman effect in transverse and longitudinal Objects of the experiment Observing the line triplet

More information

Photoelectric Effect

Photoelectric Effect PHYS 201 LAB 02 Photoelectric Effect 1. Objectives The objectives of this experiment is to show that that light behaves like a particle when it interacts with matter, such as electrons on a metal surface.

More information

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination Uppsala University Department of Physics and Astronomy Laboratory exercise X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

2. OPERATIONAL CONDITIONS

2. OPERATIONAL CONDITIONS 1. INTRODUCTION This device was designed for modern physics labs of colleges and graduate schools. It demonstrates the influence of a magnetic field on light, known as Zeeman Effect, and reveals the behavior

More information

( J s)( m/s)

( J s)( m/s) Ch100: Fundamentals for Chemistry 1 LAB: Spectroscopy Neon lights are orange. Sodium lamps are yellow. Mercury lights are bluish. Electricity is doing something to the electrons of these elements to produce

More information

Problem Set 8 Solutions

Problem Set 8 Solutions University of Alabama Department of Physics and Astronomy PH 253 / LeClair Spring 21 Problem Set 8 Solutions 1. Multiplicity of atomic magnetic moments. Calculate the magnetic moments that are possible

More information

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Introduction Molecular orbitals result from the mixing of atomic orbitals that overlap during the bonding process allowing the delocalization

More information

Connect the Vernier spectrometer to your lap top computer and power the spectrometer if necessary. Start LoggerPro on your computer.

Connect the Vernier spectrometer to your lap top computer and power the spectrometer if necessary. Start LoggerPro on your computer. Connect the Vernier spectrometer to your lap top computer and power the spectrometer if necessary. Start LoggerPro on your computer. The screen shown in Fig. 1 may be displayed. If status line displays

More information

298 Chapter 6 Electronic Structure and Periodic Properties of Elements

298 Chapter 6 Electronic Structure and Periodic Properties of Elements 98 Chapter 6 Electronic Structure and Periodic Properties of Elements 6. The Bohr Model By the end of this section, you will be able to: Describe the Bohr model of the hydrogen atom Use the Rydberg equation

More information

B = 8 0 NI/[r (5) 3/2 ],

B = 8 0 NI/[r (5) 3/2 ], ELECTRON BEAM IN A MAGNETIC FIELD Introduction: A charged body moving relative to a magnetic field experiences a force which is perpendicular to both the velocity of the particle and to the magnetic field.

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp.

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp. ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify elements through

More information

PHYS-1050 Hydrogen Atom Energy Levels Solutions Spring 2013

PHYS-1050 Hydrogen Atom Energy Levels Solutions Spring 2013 1 Introduction Read through this information before proceeding on with the lab. 1.1 Energy Levels 1.1.1 Hydrogen Atom A Hydrogen atom consists of a proton and an electron which are bound together the proton

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Electrons in Atoms Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Click a hyperlink or folder tab to view the corresponding slides. Exit

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 11, 016 (8:30 a.m. - 9:45 a.m.) PLACE: RB 306 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions:

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

UNIT : QUANTUM THEORY AND THE ATOM

UNIT : QUANTUM THEORY AND THE ATOM Name St.No. Date(YY/MM/DD) / / Section UNIT 102-10: QUANTUM THEORY AND THE ATOM OBJECTIVES Atomic Spectra for Hydrogen, Mercury and Neon. 1. To observe various atomic spectra with a diffraction grating

More information

Physical Structure of Matter /07 Zeeman effect/ normal and anomalous version. Physics of the Electron. What you need:

Physical Structure of Matter /07 Zeeman effect/ normal and anomalous version. Physics of the Electron. What you need: Physical tructure of Matter Physics of the Electron /07 Zeeman effect/ normal and anomalous version What you can learn about Bohr s atom ic model Quan tisa tion of ener gy lev els Elec tron spin Bohr s

More information

Login -the operator screen should be in view when you first sit down at the spectrometer console:

Login -the operator screen should be in view when you first sit down at the spectrometer console: Lab #2 1D 1 H Double Resonance (Selective Decoupling) operation of the 400 MHz instrument using automated sample insertion (robot) and automated locking and shimming collection of 1D 1 H spectra retrieving

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

The Photoelectric E ect

The Photoelectric E ect Physics Topics The Photoelectric E ect If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Electric Potential and

More information

Project 3: Molecular Orbital Calculations of Diatomic Molecules. This project is worth 30 points and is due on Wednesday, May 2, 2018.

Project 3: Molecular Orbital Calculations of Diatomic Molecules. This project is worth 30 points and is due on Wednesday, May 2, 2018. Chemistry 362 Spring 2018 Dr. Jean M. Standard April 20, 2018 Project 3: Molecular Orbital Calculations of Diatomic Molecules In this project, you will investigate the molecular orbitals and molecular

More information

The Zeeman Effect in Mercury Vapor and the Determination e/m by Fabry-Perot Interferometry

The Zeeman Effect in Mercury Vapor and the Determination e/m by Fabry-Perot Interferometry The Zeeman Effect in Mercury Vapor and the Determination e/m by Fabry-Perot Interferometry Edwin Ng MIT Department of Physics (Dated: March 17, 2012) We analyze the Zeeman fine structure of mercury vapor

More information

ACTIVITY 5. Figure 5-1: Simulated electron interference pattern with your prediction for the next electron s position.

ACTIVITY 5. Figure 5-1: Simulated electron interference pattern with your prediction for the next electron s position. Name: WAVES of matter Class: Visual Quantum Mechanics ACTIVITY 5 Interpr preting Wave Functions Goal We will return to the two- slit experiment for electrons. Using this experiment we will see how matter

More information

Obtain an optical "bench" setup (there should be three sliding mounts on the calibrated horizontal bar. The setup is shown in the diagram below.

Obtain an optical bench setup (there should be three sliding mounts on the calibrated horizontal bar. The setup is shown in the diagram below. Astronomy 100 Name(s): Exercise 4: Telescopes and spectroscopy Once the various focal issues are resolved, magnification of a small image is a significant consideration for a telescope. Though a planet

More information

Optical Pumping in 85 Rb and 87 Rb

Optical Pumping in 85 Rb and 87 Rb Optical Pumping in 85 Rb and 87 Rb John Prior III*, Quinn Pratt, Brennan Campbell, Kjell Hiniker University of San Diego, Department of Physics (Dated: December 14, 2015) Our experiment aimed to determine

More information

Student Exploration: Bohr Model of Hydrogen

Student Exploration: Bohr Model of Hydrogen Name: Date: Student Exploration: Bohr Model of Hydrogen Vocabulary: absorption spectrum, Bohr model, electron volt, emission spectrum, energy level, ionization energy, laser, orbital, photon [Note to teachers

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

PhET Light Emission and Lasers (27 points available x 2/3 = 18 points max score)

PhET Light Emission and Lasers (27 points available x 2/3 = 18 points max score) IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS GETTING STARTED: PhET Light Emission and Lasers (27 points available x 2/3 = 18 points max score) Go to https://phet.colorado.edu/ Click

More information

L z L L. Think of it as also affecting the angle

L z L L. Think of it as also affecting the angle Quantum Mechanics and Atomic Physics Lecture 19: Quantized Angular Momentum and Electron Spin http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last time Raising/Lowering angular momentum

More information

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Name Section Return this spreadsheet to your TA that will use it to score your lab. To receive full credit you must use complete sentences and

More information

PH104 Lab 1 Light and Matter Pre-lab

PH104 Lab 1 Light and Matter Pre-lab Name: Lab Time: PH04 Lab Light and Matter Pre-lab. Goals Since this is the first lab, we don t want to try to do things that are too complex. We would like to get used to the lab room and some of the steps

More information

Relativistic Electrons

Relativistic Electrons Relativistic Electrons Physics 300 1 Introduction In this experiment you will make independent measurements of the momentum and kinetic energy of electrons emitted from a β source. You will use these data

More information

Lesson Plan 2 - Middle and High School Land Use and Land Cover Introduction. Understanding Land Use and Land Cover using Google Earth

Lesson Plan 2 - Middle and High School Land Use and Land Cover Introduction. Understanding Land Use and Land Cover using Google Earth Understanding Land Use and Land Cover using Google Earth Image an image is a representation of reality. It can be a sketch, a painting, a photograph, or some other graphic representation such as satellite

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

AP Chemistry. Chapter 6 Electronic Structure of Atoms

AP Chemistry. Chapter 6 Electronic Structure of Atoms AP Chemistry Chapter 6 Electronic Structure of Atoms Section 6.1 Wave Nature of Light When we say "light," we generally are referring to visible light a type of electromagnetic radiation But actually Visible

More information

A Determination of Planck s Constant with LED s written by Mark Langella

A Determination of Planck s Constant with LED s written by Mark Langella A Determination of Planck s Constant with LED s written by Mark Langella The purpose of this experiment is to measure Planck s constant, a fundamental physical constant in nature, by studying the energy

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton PERIODICITY AND ATOMIC STRUCTURE CHAPTER 5 How can we relate the structure of the atom to the way that it behaves chemically? The process of understanding began with a realization that many of the properties

More information

Atomic Spectra. d sin θ = mλ (1)

Atomic Spectra. d sin θ = mλ (1) Atomic Spectra Objectives: To measure the wavelengths of visible light emitted by atomic hydrogen and verify that the measured wavelengths obey the empirical Rydberg formula. To observe emission spectra

More information

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION NAME: ORBITAL MOTION What will you learn in this Lab? You will be using some special software to simulate the motion of planets in our Solar System and across the night sky. You will be asked to try and

More information

NMR Predictor. Introduction

NMR Predictor. Introduction NMR Predictor This manual gives a walk-through on how to use the NMR Predictor: Introduction NMR Predictor QuickHelp NMR Predictor Overview Chemical features GUI features Usage Menu system File menu Edit

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

Electric Field and Electric Potential

Electric Field and Electric Potential Electric Field and Electric Potential INTRODUCTION Physicists use the concept of a field 1 to explain the interaction of particles or bodies through space, i.e., the action-at-a-distance 2 force between

More information

Many-Electron Atoms. Thornton and Rex, Ch. 8

Many-Electron Atoms. Thornton and Rex, Ch. 8 Many-Electron Atoms Thornton and Rex, Ch. 8 In principle, can now solve Sch. Eqn for any atom. In practice, -> Complicated! Goal-- To explain properties of elements from principles of quantum theory (without

More information

Emission Spectroscopy

Emission Spectroscopy Objectives Emission Spectroscopy Observe spectral lines from a hydrogen gas discharge tube Determine the initial and final energy levels for the electronic transitions associated with the visible portion

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #9: Diffraction Spectroscopy Lab Writeup Due: Mon/Wed/Thu/Fri, April 30/ May 2/3/4, 2018 Background All

More information

MAG Magnetic Fields revised May 27, 2017

MAG Magnetic Fields revised May 27, 2017 MAG Magnetic Fields revised May 7, 017 (You will do two experiments; this one (in Rock 40) and the Magnetic Induction experiment (in Rock 403). Sections will switch rooms and experiments half-way through

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Experiment 7: Spectrum of the Hydrogen Atom

Experiment 7: Spectrum of the Hydrogen Atom Experiment 7: Spectrum of the Hydrogen Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30-6:30PM INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction The physics behind: The spectrum of

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

The Hydrogen Atom Student Guide

The Hydrogen Atom Student Guide Name: The Hydrogen Atom Student Guide Background Material Carefully read the background pages entitled Energy Levels, Light, and Transitions and answer the following questions to check your understanding.

More information

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s PHYS 1040 - General Physics II Lab The Balmer Series for Hydrogen Source Purpose: The purpose of this experiment is to analyze the emission of light from a hydrogen source and measure and the wavelengths

More information

PHYS 450 Spring semester Lecture 08: Optical Spectroscopy and Spectral Lines. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 08: Optical Spectroscopy and Spectral Lines. Ron Reifenberger Birck Nanotechnology Center Purdue University /4/01 PHYS 450 Spring semester 01 Lecture 08: Optical Spectroscopy and Spectral Lines Ron Reifenberger Birck Nanotechnology Center Purdue University Lecture 08 1 Roadmap: Where We ve Been and Where We

More information

Simple Harmonic Motion

Simple Harmonic Motion Physics Topics Simple Harmonic Motion If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Hooke s Law (Serway, Sec.

More information

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract OpenStax-CNX module: m51039 1 The Bohr Model OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will

More information

CLEA/VIREO PHOTOMETRY OF THE PLEIADES

CLEA/VIREO PHOTOMETRY OF THE PLEIADES CLEA/VIREO PHOTOMETRY OF THE PLEIADES Starting up the program The computer program you will use is a realistic simulation of a UBV photometer attached to a small (diameter=0.4 meters) research telescope.

More information

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Name Section This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit

More information

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar Modern Physics Laboratory Beta Spectroscopy Experiment In this experiment, electrons emitted as a result of the radioactive beta decay of Cs-137 are measured as a function of their momentum by deflecting

More information

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction Chapter 8 Spectroscopy 8.1 Purpose In the experiment atomic spectra will be investigated. The spectra of three know materials will be observed. The composition of an unknown material will be determined.

More information

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure This experiment has four parts: 1. Spectroscope Setup - Your lab

More information

Introduction to Quantum Mechanics. and Quantum Numbers

Introduction to Quantum Mechanics. and Quantum Numbers Introduction to Quantum Mechanics and Quantum Numbers The Quantum Mechanical Model quantum mechanics: the application of quantum theory to explain the properties of matter, particularly electrons in atoms

More information

Many-Electron Atoms. Thornton and Rex, Ch. 8

Many-Electron Atoms. Thornton and Rex, Ch. 8 Many-Electron Atoms Thornton and Rex, Ch. 8 In principle, can now solve Sch. Eqn for any atom. In practice, -> Complicated! Goal-- To explain properties of elements from principles of quantum theory (without

More information