Moment of inertia - Steiner's theorem

Size: px
Start display at page:

Download "Moment of inertia - Steiner's theorem"

Transcription

1 90 Cl von Ossietzky Univesity Olenbug Fculty V - Institute of Physics Moule Intouctoy lbotoy couse physics Pt I Moment of ineti - Steine's theoem Keywos: Rottionl motion, ngul velocity, ngul cceletion, moment of ineti, ottionl moment, ngul momentum, STEINER's theoem. Mesuing pogm: Mesuement of the moment of ineti of cicul isc, etemintion of the xis of gvity of n iegul shpe boy. Refeences: /1/ EICHLER, H. J., KRONFELDT, H.-D., SAHM, J.: Ds Neue Physiklische Gunpktikum, Spinge-Velg, Belin, mong othes 1 Intouction The im of this expeiment is to impove the unestning of the nlogy between tnsltionl n ottionl motion. Fo this pupose, set-up is use which enbles the mesuement of moments of ineti of boies with espect of optionl xes. Fist, the coesponing quntities of the tnsltionl n ottionl motion e clle to memoy by mens of Tble 1. Tble 1: Compison of tnsltionl n ottionl motion. Tnsltionl motion Rottionl motion Nme Symbol Unit Nme Symbol Unit Position vecto m Angle 1 ϕ 1 Velocity v = m s -1 Angul velocity 1 Acceletion = v m s - Angul cceletion 1 Mss m kg Moment of ineti Momentum Foce Theoy p= mv kg m s -1 Angul Momentum F= m= p N Toque ω = φ s -1 ω s - I = R m kg m L = Iω L= p= m v kg m s -1 T ω L = I = N m T= F We consie oty isk D of the ius, oun which thin the hs been woun ccoing to Fig. 1. The the is connecte to mss m vi pulley R. The isk is hel t est by the pin T of the mgnet B. Afte closing the switch S, cuent flows fom the powe supply U though the coil of the mgnet. The 1 The iection of the xil vectos ϕ, ωn ω/ is by efinition the iection of the xis of ottion. The sign obeys the ight-hn ule: the incuve finges show the iection of ottion, so the thumb shows the iection of ϕ, ωn ω/. Pol vectos (noml vectos), s e.g. the position vecto () n the velocity vecto (v), chnge sign upon pefoming point invesion of the coointe system, whees xil vectos (lso clle pseuo-vectos) o not. R is the istnce of mss element m fom the xis of ottion.

2 91 holing pin T is pulle bck by the esulting mgnetic fiel, theeby unlocking the isc. The flling mss m then cuses n ccelete ottion of the isk bout the oty xis H. R F H ω D T B l m S = U Fig. 1: Roty isk fo mesuing moments of ineti. Refe to the text fo lbels. Now we equie n eqution by mens of which we cn clculte the moment of ineti I D of the oty isk fom known o mesuble quntities. Fo this pupose we fist set up the eqution of motion fo the ottion of the oty isk. It is vey simple in this cse: the oty isk hs the ngul cceletion ω/ ue to the ottionl moment F. In nlogy to NEWTON s lw F = m we thus obtin (cf. Tble 1): (1) F = I D ω t Then it follows fom the chosen geomety ( F) fo the bsolute vlues: () F = I D ω t In this eqution we hve to eplce F n ω/ by known o mesuble quntities. In oe to fin n expession fo ω/, we fist obseve the motion of the mss m. If the time t is neee fo flling though istnce l, we obtin fo its cceletion : (3) l = t Becuse m n the oty isk e connecte vi the the, this must lso be the tngentil cceletion of mss point on the ege of the oty isk. Bse on the well-known eltionship between tngentil n ngul cceletion with Eq. (3), we thus obtin fo such point: (4) ω l = = t t Inseting Eq. (4) into Eq. () yiels: (5) l F = ID = I t D We still nee eltionship fo the foce F, which cceletes the isk, since it cnnot be mesue iectly. Fo this we look t the net foce cting on the set-up. The cceleting foce of gvity G = mg (g: gvittionl cceletion) must ccelete the mss m, ovecome fictionl foces t pulley the R n the oty isk D, n set the pulley n oty isk into n ccelete ottion. Fo this, the following foces e necessy:

3 9 F m : Acceleting foce fo m F RR: Fictionl foce t the pulley F R : Acceleting foce fo the pulley F RD: Fictionl foce t the oty isk F: Acceleting foce fo the oty isk Thus we obtin: (6) G = mg = Fm + FRR + FR + FRD + F The foce which cceletes m, F m = m, is theefoe consiebly smlle thn the foce of gvity G = mg. To simplify mttes we now ssume tht the foce of fiction n the cceleting foce e eplce by one foce cting on the pulley, which is necessy fo the tnsltionl cceletion of n equivlent mss m e (hee: m e. g): (7) F + F : = m R RR e We theefoe obtin fo the equie foce F fom Eq. (6): (8) F = mg ( m + m ) F Inseting this eqution into Eq. (5) we obtin: e RD (9) mg ( m + m ) = I + F e D RD Fo bette ebility we intouce foce (10) F : = mg ( m + m ) E e with the mesuble quntities m n n the known quntities m e n g such tht Eq. (9) becomes: (11) F = I + F E D RD The unknown quntity F RD which cnnot be mesue iectly is still botheing us in this eqution fo etemining I D. If we ssume, howeve, tht the fiction t the oty isc is olling n sliing fiction inepenent of the velocity (the so-clle COULOMB fiction), which only epens on the mss of the oty tble incluing the boies on it, then F RD cn be consiee time-inepenent constnt. In this cse Eq. (11) epesents simple line eqution of the fom (1) y = cx + b with (13) y = F, x=, c= I, b= F E D RD Plotting the elte quntity F E (to be clculte ccoing to Eq. (10)) ginst / (with fom Eq. (3)) fo constnt n iffeent cceleting msses m (Eq. (11)), we obtin line with the slope I D. Thus we hve foun wy to mesue the moment of ineti without knowing the quntity F RD. We now obseve the cse in which n itionl boy is plce on the oty isk. Suppose I K is the moment of ineti of this boy (mss m K) when it ottes bout one of its gvity xes (pincipl xis); if this gvity xis coespons with the oty xis H of the oty isk, then the ovell moment of ineti I of the system oty isk/boy is:

4 93 (14) I = ID + IK If the xes H n C un pllel t istnce s we obtin ccoing to STEINER's theoem 3 : (15) I = I + I + m s D K K Eq. (11) then es: (16) FE = I + F RD Using Eq. (3) it follows: I FE FRD FE FRD t l (17) = ( ) = ( ) We cn use this eltionship to etemine the position of gvity xis unning pllel to the oty xis of the isk fo boy of bity shpe lying on the oty isc. We tke the following steps: ccoing to Eq. (15) I is miniml when s = 0, i.e., fo the cse tht the gvity xis of the boy is ienticl to tht of the oty xis of the isc. Accoing to Eq. (17) minimum of I is equivlent to minimum of the fll time t n t, espectively. Shifting the boy on the oty isc (vying s), the fll time t must theefoe show minimum t cetin position. The elte function t = f(s) escibing this behviou will now be etemine. Fo this we inset Eq. (15) into Eq. (17), solve fo t n obtin fo t s function of s: (18) t ( ID + IK) l lmk ( ) ( ) = + s FE FRD FE FRD K1 K o in cle wy with the uxiliy quntities K 1 n K : (19) t = K + K s 1 Question 1: - Which function (cuve) oes Eq. (19) epesent? (Hint: Conic sections) In oe to etemine the position of the equie gvity xis C by mens of Eq. (19) we pocee s follows: Choose coointe system XY on the oty isc, the oigin of which coincies with the xis of ottion H (cf. Fig. ). A line of holes is cete long the y-xis of the oty isk. A pin is fixe t n optionl point P on the boy, fo which we fin the position of the gvity xis. The pin n line of holes e plce such tht the boy cn be shifte in the Y iection on the oty isk without chnging its oienttion with eg to the coointe system XY (cf. emks t the en of Chp. 3.). Let point P (the pin) hve the coointes (0, y P) fte plcing the boy on the oty isc. Fo the istnce s of the gvity xis C fom the oty xis H we then obtin: (0) ( ) s = x + y y P Accoing to Eq. (19) the fll time t fo the cceleting mss m hs minimum when s is miniml, which, ccoing to Eq. (0) with fixe x, is the cse fo y P = y. If we shift the boy in y iection on the oty isk n plot the fll time t ove the shift y P, we cn etemine the quntity y by fining the minimum in the pouce cuve. In n nlogous wy, the quntity x cn 3 JAKOB STEINER ( )

5 94 be etemine n poceeing fom the optionl point P, we cn stte the position of the esie gvity xis. y Pobeköpe C s x P H y y P x Fig. : Roty isc (yellow) with smple boy (white, top view). H is the xis of ottion, C the gvity xis of the smple boy 4 n P is the smple boy s point of fixtion long the veticl line of holes on the isc. s is the istnce between C n H. 3 Expeimentl poceue Equipment: Roty isc on tipo, 5 cceletion msses (m = (1,00 ± 0,01) g) with plte (m ccoing to impint, eo negligible), bss isk with locking pins, iegully shpe smple boy with locking pins, powe supply (PHYWE (0-15 / 0-30) V), mgnetic hole, stn mteil fo mgnetic hole, switch, light bie, electonic univesl counte, igitl oscilloscope TEKTRONIX TDS 101 / 101B / 01C / TBS 110B, pecision spiit level (ccucy 0.1 mm on 1 m), blnce, metl mesuing tpe, sliing cllipe, eceletion o, the. Attention: The oty iscs hve vey sensitive pecision beings which e esy to mge though impope hnling. Only move the oty iscs with ceful finges! Tke ce tht the the oes not get entngle in the being by timely eceletion! Only ecelete the iscs using the smll o vilble! Hint: Usully the oty iscs e levelle exctly by the technicl ssistnt using pecision wte level pio to the lb couse. 3.1 Moment of ineti of isc The moment of ineti I K of bss isk (ius K, mss m K) otting bout its symmety xis C (Fig. 3) is to be etemine by mens of the set-up in Fig. 1. It is then clculte ccoing to Eq. (14) s follows: (1) IK = I ID In oe to obtin I K, fist the moment of ineti of the oty isc (I D) hs to be etemine by mens of Eq. (11) n then the moment of ineti of the oty- n bss isks togethe (I) by mens of Eq. (16). Fo this pupose ) fo the oty isc b) fo oty isk with bss isc the fll time t (men vlue fom t lest fou single mesuements ech) is mesue fo five iffeent cceletion msses n fo peetemine istnce l (to be mesue!). The fll time is mesue by mens of n electonic univesl counte. The counte is stte by the impulse, which cuses the elese of the holing pin of the mgnetic hole, which is esponsible fo keeping the oty isk in the stting position. The stopping impulse fo the univesl counte is given by light bie, which the ccelete msses pss t the en of the specifie istnce l. 4 Note tht the white e epesents the top view of the smple boy. Fo this eson, C oes not nee to be locte t the cente of gvity of the white e.

6 95 ω K Fig. 3: Rottion of isc of ius K n mss m K bout its symmety xis C. C Subsequently F E is plotte ginst / fo ) n b) ccoing to Eq. (11) n Eq. (16) in one igm n the egession lines e clculte (mesue cefully using metl mesuing tpe) 5. An eo nlysis fo the iniviul vlues of F E n / is not equie. The fiction foces F RD on the oty isc s well s the moments of ineti I D n I e clculte fom the pmetes of the egession line (incluing eo) n fom tht I K ccoing to Eq. (1) (lso incluing eo). Question : - How cn the moment of ineti I of isk with the mss m K n the ius K otting bout its symmety xis C (cf. Fig. 3) be clculte fom the eltionship I = R m (cf. Chpte 1)? How lge is the theoeticlly expecte moment of ineti fo the bss isk use (mesue K n m K!)? Wht e the possible souces of evitions between theoy n expeiment? 3. Detemining the position of gvity xis of n iegully shpe boy Accoing to the explntions given fo Eqs. (18) - (0) the position of gvity xis C unning pllel to the oty xis H of n iegully shpe smple boy shll be etemine. Fo this pupose the pin mounte on the boy is put into ten iffeent holes of the hole ow long the y-xis of the oty isk n the coointe y P is etemine 6. At ech position, the vege fll time t (men of 4 single mesuements) fo peetemine istnce l is mesue fo one mss m ech. Aftews, t is plotte ginst y P incluing eo bs (stn evition of the men) n the vlue y is gphiclly etemine, whee t hs minimum. Altentively, the position of the minimum of t my be etemine by non-line fit 7. The tget function is, ccoing to Eq. (19), given by: t = K + K y y () ( ) 1 P with the fit pmetes K 1, K n y. This fit iectly povies the vlue y P = y fo which the fll time t is miniml. Anlogously, it woul be possible to etemine x n to stte the position of the cente of gvity C in the xy-plne eltive to the point P. In oe to sve time, howeve, we will confine ouselves to mesuing only the istnce y between P n C. Remks: In oe to mke sue tht the oienttion of the smple boy oes not chnge when shifting long the y-xis, two pins e mounte on the boy. Theefoe, it hs to be etemine fist, which of the two pins mks the position of point P. 5 The cceletion is in the oe of mgnitue of 10 - ms - n thus smll compe to g. Only smll iffeences theefoe ise fo F E (Eg. (10) in the cses ) n b). 6 The istnce between two holes on the isc is 10 mm (eo fee). 7 Nonline fits e elt with in pt II of the bsic lbotoy couse in the SoSe, see Hee the ppliction is optionl.

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

Ch 26 - Capacitance! What s Next! Review! Lab this week!

Ch 26 - Capacitance! What s Next! Review! Lab this week! Ch 26 - Cpcitnce! Wht s Next! Cpcitnce" One week unit tht hs oth theoeticl n pcticl pplictions! Cuent & Resistnce" Moving chges, finlly!! Diect Cuent Cicuits! Pcticl pplictions of ll the stuff tht we ve

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers Comptive Studies of Lw of Gvity nd Genel Reltivity No. of Comptive hysics Seies pes Fu Yuhu (CNOOC Resech Institute, E-mil:fuyh945@sin.com) Abstct: As No. of comptive physics seies ppes, this ppe discusses

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week. Couse Updtes http://www.phys.hwii.edu/~vne/phys7-sp1/physics7.html Remindes: 1) Assignment #8 vilble ) Chpte 8 this week Lectue 3 iot-svt s Lw (Continued) θ d θ P R R θ R d θ d Mgnetic Fields fom long

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Chapter 25 Electric Potential

Chapter 25 Electric Potential Chpte 5 lectic Potentil consevtive foces -> potentil enegy - Wht is consevtive foce? lectic potentil = U / : the potentil enegy U pe unit chge is function of the position in spce Gol:. estblish the eltionship

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Chapter 21: Electric Charge and Electric Field

Chapter 21: Electric Charge and Electric Field Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

Angular Contac t Ball Bearings

Angular Contac t Ball Bearings High Pecision Angul Contct ll eings Stn Seies 1 Angul Contct ll eings Ult High-Spee Angul Contct ll eings Angul Contct ll eings Pt 4 1. ANGULAR CONTACT ALL EARINGS High Pecision Angul Contct ll eings (Stn

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept.

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept. Physics Lectue 3 (Wlke: Ch. 6.4-5) Connected Objects Cicul Motion Centipetl Acceletion Centipetl Foce Sept. 30, 009 Exmple: Connected Blocks Block of mss m slides on fictionless tbletop. It is connected

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1 RELAIVE KINEMAICS he equtions of motion fo point P will be nlyzed in two diffeent efeence systems. One efeence system is inetil, fixed to the gound, the second system is moving in the physicl spce nd the

More information

LA0011_11GB. Formulas and Units. Rotation 2 W. W = work in Ws = J = Nm. = ang. velocity in rad./sec. f = frequency in rev./sec.

LA0011_11GB. Formulas and Units. Rotation 2 W. W = work in Ws = J = Nm. = ang. velocity in rad./sec. f = frequency in rev./sec. Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SI-units Line moement: s m/s t s t m s 1 m t m/s t P F W F m N Rottion ω π f d/s ω π f m/s M F P M ω W M J ω J ω W Ws

More information

Mark Scheme (Results) January 2008

Mark Scheme (Results) January 2008 Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question

More information

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook Solutions to Poblems Chapte 9 Poblems appeae on the en of chapte 9 of the Textbook 8. Pictue the Poblem Two point chages exet an electostatic foce on each othe. Stategy Solve Coulomb s law (equation 9-5)

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

4.2 Boussinesq s Theory. Contents

4.2 Boussinesq s Theory. Contents 00477 Pvement Stuctue 4. Stesses in Flexible vement Contents 4. Intoductions to concet of stess nd stin in continuum mechnics 4. Boussinesq s Theoy 4. Bumiste s Theoy 4.4 Thee Lye System Weekset Sung Chte

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

4. Compare the electric force holding the electron in orbit ( r = 0.53

4. Compare the electric force holding the electron in orbit ( r = 0.53 Electostatics WS Electic Foce an Fiel. Calculate the magnitue of the foce between two 3.60-µ C point chages 9.3 cm apat.. How many electons make up a chage of 30.0 µ C? 3. Two chage ust paticles exet a

More information

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s Chpte 5: Cuent, esistnce nd lectomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m q ndomizing Collisions (momentum, enegy) >esulting Motion http://phys3p.sl.psu.edu/phys_nim/m/ndom_wlk.vi

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts Chpte 5: Cuent, esistnce nd Electomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m qe ndomizing Collisions (momentum, enegy) =>esulting Motion Avege motion = Dift elocity = v d

More information

Rotational Motion and Moment of Inertia

Rotational Motion and Moment of Inertia Pupose: To detemine the ottionl ineti o disc nd o ing nd to compe these with the theoeticl vlues. Equipment: Rotting Tble, Disc, Ring Hooked Mss Set Long Rod Right Angle Clmp Cylindicl Rod Clmp Tble Clmp

More information

Picking Coordinate Axes

Picking Coordinate Axes Picing Coodinte Axes If the object you e inteested in Is cceleting Choose one xis long the cceletion Su of Foce coponents long tht xis equls Su of Foce coponents long ny othe xis equls 0 Clcultions e esie

More information

Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32

Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32 Winte 4 OSU 1 Souces Of Mgnetic Fields We lened two wys to clculte Electic Field Coulomb's Foce de 4 E da 1 dq Q enc ˆ ute Foce Clcultion High symmety Wht e the nlogous equtions fo the Mgnetic Field? Winte

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Moment. F r F r d. Magnitude of moment depends on magnitude of F and the length d

Moment. F r F r d. Magnitude of moment depends on magnitude of F and the length d Moment Tanslation Tanslation + Rotation This otation tenency is known as moment M of foce (toque) xis of otation may be any line which neithe intesects no paallel to the line of action of foce Magnitue

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Electric Potential Energy

Electric Potential Energy Electic Ptentil Enegy Ty Cnsevtive Fces n Enegy Cnsevtin Ttl enegy is cnstnt n is sum f kinetic n ptentil Electic Ptentil Enegy Electic Ptentil Cnsevtin f Enegy f pticle fm Phys 7 Kinetic Enegy (K) nn-eltivistic

More information

Using Potential Energy

Using Potential Energy Using Potentil Enegy You ve job poviing te engineeing elp o n citect in Coloo. You e cuently esigning cble tow to pull sies up ill so tey cn si own. e custoe woul lie te cble tow to pull sie upill t constnt

More information

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Ninth E CHPTER VECTOR MECHNICS OR ENGINEERS: DYNMICS edinnd P. ee E. Russell Johnston, J. Lectue Notes: J. Wlt Ole Texs Tech Univesity Kinetics of Pticles: Newton s Second Lw The McGw-Hill Copnies, Inc.

More information

Illustrating the space-time coordinates of the events associated with the apparent and the actual position of a light source

Illustrating the space-time coordinates of the events associated with the apparent and the actual position of a light source Illustting the spe-time oointes of the events ssoite with the ppent n the tul position of light soue Benh Rothenstein ), Stefn Popesu ) n Geoge J. Spi 3) ) Politehni Univesity of Timiso, Physis Deptment,

More information

CHAPTER 29 ELECTRIC FIELD AND POTENTIAL EXERCISES

CHAPTER 29 ELECTRIC FIELD AND POTENTIAL EXERCISES HPTER ELETRI FIELD ND POTENTIL EXERISES. oulob Newton l M L T 4 k F.. istnce between k so, foce k ( F ( The weight of boy 4 N 4 N wt of boy So,. foce between chges 4 So, foce between chges.6 weight of

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

CHAPTER? 29 ELECTRIC FIELD AND POTENTIAL EXERCISES = 2, N = (5.6) 1 = = = = = Newton

CHAPTER? 29 ELECTRIC FIELD AND POTENTIAL EXERCISES = 2, N = (5.6) 1 = = = = = Newton Downloe fo HPTER? ELETRI FIELD ND POTENTIL EXERISES. oulob Newton l M L T 4 k F.. istnce between k so, foce k ( F ( The weight of boy 4 N 4 N wt of boy.5 So, foce between chges 4 So, foce between chges

More information

MAGNETIC EFFECT OF CURRENT & MAGNETISM

MAGNETIC EFFECT OF CURRENT & MAGNETISM TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due

More information

15. SIMPLE MHD EQUILIBRIA

15. SIMPLE MHD EQUILIBRIA 15. SIMPLE MHD EQUILIBRIA In this Section we will examine some simple examples of MHD equilibium configuations. These will all be in cylinical geomety. They fom the basis fo moe the complicate equilibium

More information

Collection of Formulas

Collection of Formulas Collection of Fomuls Electomgnetic Fields EITF8 Deptment of Electicl nd Infomtion Technology Lund Univesity, Sweden August 8 / ELECTOSTATICS field point '' ' Oigin ' Souce point Coulomb s Lw The foce F

More information

Discrete Model Parametrization

Discrete Model Parametrization Poceedings of Intentionl cientific Confeence of FME ession 4: Automtion Contol nd Applied Infomtics Ppe 9 Discete Model Pmetition NOKIEVIČ, Pet Doc,Ing,Cc Deptment of Contol ystems nd Instumenttion, Fculty

More information

dx was area under f ( x ) if ( ) 0

dx was area under f ( x ) if ( ) 0 13. Line Integls Line integls e simil to single integl, f ( x) dx ws e unde f ( x ) if ( ) 0 Insted of integting ove n intevl [, ] (, ) f xy ds f x., we integte ove cuve, (in the xy-plne). **Figue - get

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

Unit 6. Magnetic forces

Unit 6. Magnetic forces Unit 6 Mgnetic foces 6.1 ntoduction. Mgnetic field 6. Mgnetic foces on moving electic chges 6. oce on conducto with cuent. 6.4 Action of unifom mgnetic field on flt cuent-cying loop. Mgnetic moment. Electic

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

Important design issues and engineering applications of SDOF system Frequency response Functions

Important design issues and engineering applications of SDOF system Frequency response Functions Impotnt design issues nd engineeing pplictions of SDOF system Fequency esponse Functions The following desciptions show typicl questions elted to the design nd dynmic pefomnce of second-ode mechnicl system

More information

Electric Potential. chapter

Electric Potential. chapter chpte 25 Electic Potentil 25.1 Electic Potentil n Potentil Diffeence 25.2 Potentil Diffeence in Unifom Electic Fiel 25.3 Electic Potentil n Potentil Enegy Due to Point Chges 25.4 Otining the Vlue of the

More information

1. The sphere P travels in a straight line with speed

1. The sphere P travels in a straight line with speed 1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

7.5-Determinants in Two Variables

7.5-Determinants in Two Variables 7.-eteminnts in Two Vibles efinition of eteminnt The deteminnt of sque mti is el numbe ssocited with the mti. Eve sque mti hs deteminnt. The deteminnt of mti is the single ent of the mti. The deteminnt

More information

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION PHYSICS. (HELD ON SUNDAY 20 th MAY, 2018) PART-1 : PHYSICS. (C) L = mkr ALLEN

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION PHYSICS. (HELD ON SUNDAY 20 th MAY, 2018) PART-1 : PHYSICS. (C) L = mkr ALLEN JEE(Advnced) 08 TEST PAPE WITH SOUTION (HED ON SUNDAY 0 th MAY, 08) PAT- : JEE(Advnced) 08/Ppe-. The potentil enegy of pticle of mss m t distnce fom fixed point O is given by V () k /, whee k is positive

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

A Crash Course in (2 2) Matrices

A Crash Course in (2 2) Matrices A Cash Couse in ( ) Matices Seveal weeks woth of matix algeba in an hou (Relax, we will only stuy the simplest case, that of matices) Review topics: What is a matix (pl matices)? A matix is a ectangula

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

(1) It increases the break down potential of the surrounding medium so that more potential can be applied and hence more charge can be stored.

(1) It increases the break down potential of the surrounding medium so that more potential can be applied and hence more charge can be stored. Cpcito Cpcito: Cpcito ( o conense ) is evice fo stoing chge. It essentilly consists of two conucting sufces such s two pltes o two spheicl shell o two cylines etc. kept exctly pllel to ech othe septe y

More information

Lecture 4. Electric Potential

Lecture 4. Electric Potential Lectue 4 Electic Ptentil In this lectue yu will len: Electic Scl Ptentil Lplce s n Pissn s Eutin Ptentil f Sme Simple Chge Distibutins ECE 0 Fll 006 Fhn Rn Cnell Univesity Cnsevtive Ittinl Fiels Ittinl

More information

4.[1pt] Two small spheres with charges -4 C and -9 C are held 9.5 m apart. Find the magnitude of the force between them.

4.[1pt] Two small spheres with charges -4 C and -9 C are held 9.5 m apart. Find the magnitude of the force between them. . [pt] A peson scuffing he feet on a wool ug on a y ay accumulates a net chage of - 4.uC. How many ecess electons oes this peson get? Coect, compute gets:.63e+4. [pt] By how much oes he mass incease? Coect,

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Motition Gien elocit field o ppoimted elocit field, we wnt to be ble to estimte

More information

STUDY OF THE UNIFORM MAGNETIC FIELD DOMAINS (3D) IN THE CASE OF THE HELMHOLTZ COILS

STUDY OF THE UNIFORM MAGNETIC FIELD DOMAINS (3D) IN THE CASE OF THE HELMHOLTZ COILS STUDY OF THE UNIFORM MAGNETIC FIED DOMAINS (3D) IN THE CASE OF THE HEMHOTZ COIS FORIN ENACHE, GHEORGHE GAVRIĂ, EMI CAZACU, Key wods: Unifom mgnetic field, Helmholt coils. Helmholt coils e used to estblish

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97 Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , ,

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , , SURFACE TENSION Definition Sufce tension is popety of liquid by which the fee sufce of liquid behves like stetched elstic membne, hving contctive tendency. The sufce tension is mesued by the foce cting

More information

EECE 260 Electrical Circuits Prof. Mark Fowler

EECE 260 Electrical Circuits Prof. Mark Fowler EECE 60 Electicl Cicuits Pof. Mk Fowle Complex Numbe Review /6 Complex Numbes Complex numbes ise s oots of polynomils. Definition of imginy # nd some esulting popeties: ( ( )( ) )( ) Recll tht the solution

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

PX3008 Problem Sheet 1

PX3008 Problem Sheet 1 PX38 Poblem Sheet 1 1) A sphee of dius (m) contins chge of unifom density ρ (Cm -3 ). Using Guss' theoem, obtin expessions fo the mgnitude of the electic field (t distnce fom the cente of the sphee) in

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

EWTO S LAWS OF MOTIO ewton 1 st lw o Lw of Ineti Evey body continues to be in its stte of est o of unifom motion until nd unless nd until it is compelled by n extenl foce to chnge its stte of est o of

More information

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r Wok, Potentil Enegy, Consevtion of Enegy the electic foces e consevtive: u Fd = Wok, Potentil Enegy, Consevtion of Enegy b b W = u b b Fdl = F()[ d + $ $ dl ] = F() d u Fdl = the electic foces e consevtive

More information

Chapter 2. Review of Newton's Laws, Units and Dimensions, and Basic Physics

Chapter 2. Review of Newton's Laws, Units and Dimensions, and Basic Physics Chpte. Review of Newton's Lws, Units nd Diensions, nd Bsic Physics You e ll fili with these ipotnt lws. But which e bsed on expeients nd which e ttes of definition? FIRST LAW n object oves unifoly (o eins

More information

Quantum Mechanics I - Session 5

Quantum Mechanics I - Session 5 Quantum Mechanics I - Session 5 Apil 7, 015 1 Commuting opeatos - an example Remine: You saw in class that Â, ˆB ae commuting opeatos iff they have a complete set of commuting obsevables. In aition you

More information

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018. SPA7U/SPA7P: THE GALAXY Solutions fo Cousewok Questions distibuted on: 25 Jnuy 28. Solution. Assessed question] We e told tht this is fint glxy, so essentilly we hve to ty to clssify it bsed on its spectl

More information

Wave Generation by Oscillating Wall in Static Media

Wave Generation by Oscillating Wall in Static Media We Genetion by Oscillting Wll in Sttic Medi Hongbin Ju Deptment of Mthemtics Floid Stte Uniesity, Tllhssee, FL.3306 www.eocoustics.info Plese send comments to: hju@mth.fsu.edu Sound, oticity we nd entopy

More information

CHAPTER 2 ELECTROSTATIC POTENTIAL

CHAPTER 2 ELECTROSTATIC POTENTIAL 1 CHAPTER ELECTROSTATIC POTENTIAL 1 Intoduction Imgine tht some egion of spce, such s the oom you e sitting in, is pemeted by n electic field (Pehps thee e ll sots of electiclly chged bodies outside the

More information